Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A systems approach to clinical oncology uses deep phenotyping to deliver personalized care

Abstract

Cancer encompasses a complex, heterogeneous and dynamic group of diseases that arise from perturbations to multiple biological networks within the body. A systems biology-based approach would help to decipher this complexity, to deeply characterize the pathophysiology of the disease and to stratify cancers into appropriate molecular subtypes to facilitate the development of personalized therapies. Technological advances made over the past decade have enabled multiscale, longitudinal measurements (‘snapshots’) of human biology, from single-cell analyses to whole-body monitoring. In this Perspective, we discuss some of these technologies and how they have (and will) contributed to our understanding of cancer biology as well as to the development of early diagnostics and personalized therapies. We argue that the integration of molecular profiling of cancerous tissues with deep, longitudinal profiling of the physiological state of an individual (‘deep phenotyping’) is key to understanding the prevention, initiation, progression and response to treatment of cancers. Systems biology-based approaches can provide an unprecedented trove of data for early detection of disease transitions, prediction of therapeutic responses and clinical outcomes, and for the design of personalized treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aggregated n-of-1 studies capture the uniqueness of cancer in each patient.
Fig. 2: A systems approach to clinical oncology.
Fig. 3: A systems approach to integrating longitudinal deep phenotyping.
Fig. 4: A systems approach to clinical trials.

Similar content being viewed by others

References

  1. Hood, L. & Friend, S. H. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat. Rev. Clin. Oncol. 8, 184–187 (2011).

    PubMed  Google Scholar 

  2. Jones, D. S., Podolsky, S. H. & Greene, J. A. The burden of disease and the changing task of medicine. N. Engl. J. Med. 366, 2333–2338 (2012).

    CAS  PubMed  Google Scholar 

  3. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  5. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Google Scholar 

  6. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Google Scholar 

  7. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26, 1205–1210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    CAS  PubMed  Google Scholar 

  9. Tian, Q., Price, N. D. & Hood, L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J. Intern. Med. 271, 111–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sagner, M. et al. The P4 health spectrum — a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog. Cardiovasc. Dis. 59, 506–521 (2017).

    PubMed  Google Scholar 

  11. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    CAS  PubMed  Google Scholar 

  12. Lillie, E. O. et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Per. Med. 8, 161–173 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Larson, E. B. N-of-1 clinical trials. A technique for improving medical therapeutics. West. J. Med. 152, 52–56 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Westerhoff, H. V. & Palsson, B. O. The evolution of molecular biology into systems biology. Nat. Biotechnol. 22, 1249–1252 (2004).

    CAS  PubMed  Google Scholar 

  15. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Swan, M. The quantified self: fundamental disruption in big data science and biological discovery. Big Data 1, 85–99 (2013).

    PubMed  Google Scholar 

  17. Smarr, L. Quantifying your body: a how-to guide from a systems biology perspective. Biotechnol. J. 7, 980–991 (2012).

    CAS  PubMed  Google Scholar 

  18. Hood, L. & Price, N. D. Demystifying disease, democratizing health care. Sci. Transl Med. 6, 225ed5 (2014).

    PubMed  Google Scholar 

  19. Plasqui, G. & Westerterp, K. R. Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 15, 2371–2379 (2007).

    Google Scholar 

  20. Wong, L. J. et al. Extended use of a new continuous glucose monitoring system with wireless data transmission in children with type 1 diabetes mellitus. Diabetes Technol. Ther. 8, 139–145 (2006).

    PubMed  Google Scholar 

  21. Jaffee, E. M. et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 18, e653–e706 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    CAS  PubMed  Google Scholar 

  23. Farkona, S., Diamandis, E. P. & Blasutig, I. M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 14, 73 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Kolker, E. et al. Toward more transparent and reproducible omics studies through a common metadata checklist and data publications. OMICS 18, 10–14 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Piening, B. D. et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6, 157–170.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schüssler-Fiorenza Rose, S. M. et al. A longitudinal big data approach for precision health. Nat. Med. 25, 792–804 (2019).

    PubMed  Google Scholar 

  29. Wilmanski, T. et al. Blood metabolome signature predicts gut microbiome α-diversity in health and disease. Nat. Biotechnol. 8, 69 (2019).

    Google Scholar 

  30. Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Knijnenburg, T. A. et al. Genomic and molecular characterization of preterm birth. Proc. Natl Acad. Sci. USA 62, 201716314 (2019).

    Google Scholar 

  32. Sugawara, J. et al. Maternity log study: a longitudinal lifelog monitoring and multiomics analysis for the early prediction of complicated pregnancy. BMJ Open 9, e025939 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Yurkovich, J. T. & Palsson, B. O. Quantitative -omic data empowers bottom-up systems biology. Curr. Opin. Biotechnol. 51, 130–136 (2018).

    CAS  PubMed  Google Scholar 

  34. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Google Scholar 

  35. Weinstein, J. N. et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705.e9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, Y. et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567, 257–261 (2019).

    CAS  PubMed  Google Scholar 

  40. Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Laganà, A. et al. Precision medicine for relapsed multiple myeloma on the basis of an integrative multiomics approach. JCO Precis. Oncol. 2018, (2018).

  42. Taglang, G. & Jackson, D. B. Use of ‘big data’ in drug discovery and clinical trials. Gynecol. Oncol. 141, 17–23 (2016).

    PubMed  Google Scholar 

  43. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu, L.-X. & Schwabe, R. F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 14, 527–539 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  46. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  47. Kauffman, S. Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969).

    CAS  PubMed  Google Scholar 

  48. del Sol, A., Balling, R., Hood, L. & Galas, D. Diseases as network perturbations. Curr. Opin. Biotechnol. 21, 566–571 (2010).

    PubMed  Google Scholar 

  49. Yi, S. et al. Functional variomics and network perturbation: connecting genotype to phenotype in cancer. Nat. Rev. Genet. 18, 395–410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Santolini, M. & Barabási, A.-L. Predicting perturbation patterns from the topology of biological networks. Proc. Natl Acad. Sci. USA 115, E6375–E6383 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Heath, J. R., Ribas, A. & Mischel, P. S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15, 204–216 (2016).

    CAS  PubMed  Google Scholar 

  52. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    CAS  PubMed  Google Scholar 

  53. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    CAS  PubMed  Google Scholar 

  54. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    CAS  PubMed  Google Scholar 

  55. Schwartzman, O. & Tanay, A. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16, 716–726 (2015).

    CAS  PubMed  Google Scholar 

  56. Duncan, K. D., Fyrestam, J. & Lanekoff, I. Advances in mass spectrometry based single-cell metabolomics. Analyst 144, 782–793 (2019).

    CAS  PubMed  Google Scholar 

  57. Specht, H. & Slavov, N. Transformative opportunities for single-cell proteomics. J. Proteome Res. 17, 2565–2571 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Bock, C., Farlik, M. & Sheffield, N. C. Multi-omics of single cells: strategies and applications. Trends Biotechnol. 34, 605–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Xue, M. et al. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137, 4066–4069 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Karaayvaz, M. et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat. Commun. 9, 3588 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Liberali, P., Snijder, B. & Pelkmans, L. Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet. 16, 18–32 (2015).

    CAS  PubMed  Google Scholar 

  62. Hochane, M. et al. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLOS Biol. 17, e3000152 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    CAS  PubMed  Google Scholar 

  64. Nguyen, A., Yoshida, M., Goodarzi, H. & Tavazoie, S. F. Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat. Commun. 7, 11246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma, A. et al. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nat. Commun. 9, 4931 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Su, Y. et al. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc. Natl Acad. Sci. USA 114, 13679–13684 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl Acad. Sci. USA 109, 419–424 (2012).

    CAS  PubMed  Google Scholar 

  70. Hu, Y. et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 17, 88 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304–319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87, 9761–9768 (2015).

    CAS  PubMed  Google Scholar 

  74. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 6, 28 (2019).

    Google Scholar 

  75. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 96 (2018).

    PubMed Central  Google Scholar 

  76. Mitra, A. K. et al. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors. Leukemia 30, 1094–1102 (2016).

    CAS  PubMed  Google Scholar 

  77. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    CAS  PubMed  Google Scholar 

  78. Yurkovich, J. T. & Hood, L. Blood is a window into health and disease. Clin. Chem. 65, 1204–1206 (2019).

    Article  PubMed  Google Scholar 

  79. Shi, L. et al. A decade of blood biomarkers for Alzheimer’s disease research: an evolving field, improving study designs, and the challenge of replication. J. Alzheimers Dis. 62, 1181–1198 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. van der Pol, A. et al. Accumulation of 5-oxoproline in myocardial dysfunction and the protective effects of OPLAH. Sci. Transl Med. 9, eaam8574 (2017).

    PubMed  Google Scholar 

  81. Dudley, J. T. & Butte, A. J. Identification of discriminating biomarkers for human disease using integrative network biology. Pac. Symp. Biocomput. 2009, 27–38 (2009).

  82. Goldenberg, D. M. et al. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N. Engl. J. Med. 298, 1384–1386 (1978).

    CAS  PubMed  Google Scholar 

  83. Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).

    CAS  PubMed  Google Scholar 

  84. Kim, E. H. & Andriole, G. L. Prostate-specific antigen-based screening: controversy and guidelines. BMC Med. 13, 61 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Sørensen, C. G., Karlsson, W. K., Pommergaard, H.-C., Burcharth, J. & Rosenberg, J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence — a systematic review. Int. J. Surg. 25, 134–144 (2016).

    PubMed  Google Scholar 

  86. Kearney, P., Boniface, J. J., Price, N. D. & Hood, L. The building blocks of successful translation of proteomics to the clinic. Curr. Opin. Biotechnol. 51, 123–129 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, X.-J. et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl Med. 5, 207ra142 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    PubMed  PubMed Central  Google Scholar 

  89. Houssami, N., Ciatto, S., Martinelli, F., Bonardi, R. & Duffy, S. W. Early detection of second breast cancers improves prognosis in breast cancer survivors. Ann. Oncol. 20, 1505–1510 (2009).

    CAS  PubMed  Google Scholar 

  90. Shah, C. et al. The impact of early detection and intervention of breast cancer-related lymphedema: a systematic review. Cancer Med. 5, 1154–1162 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Ilbawi, A. M. & Anderson, B. O. Cancer in global health: how do prevention and early detection strategies relate? Sci. Transl Med. 7, 278cm1 (2015).

    PubMed  Google Scholar 

  92. Hiom, S. C. Diagnosing cancer earlier: reviewing the evidence for improving cancer survival. Br. J. Cancer 112 (Suppl 1), S1–S5 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Tamborero, D. et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Iranzo, J., Martincorena, I. & Koonin, E. V. Cancer-mutation network and the number and specificity of driver mutations. Proc. Natl Acad. Sci. USA 115, E6010–E6019 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Canisius, S., Martens, J. W. M. & Wessels, L. F. A. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence. Genome Biol. 17, 261 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Nussinov, R., Jang, H., Tsai, C.-J. & Cheng, F. Review: precision medicine and driver mutations: computational methods, functional assays and conformational principles for interpreting cancer drivers. PLOS Comput. Biol. 15, e1006658 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Nussinov, R., Jang, H., Tsai, C.-J. & Cheng, F. Precision medicine review: rare driver mutations and their biophysical classification. Biophys. Rev. 11, 5–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, K. et al. The spectrum of circulating RNA: a window into systems toxicology. Toxicol. Sci. 132, 478–492 (2013).

    CAS  PubMed  Google Scholar 

  102. Zhang, F. & Chen, J. Y. HOMER: a human organ-specific molecular electronic repository. BMC Bioinformatics 12 (Suppl 10), S4 (2011).

    PubMed  PubMed Central  Google Scholar 

  103. Qin, S. et al. SRM targeted proteomics in search for biomarkers of HCV-induced progression of fibrosis to cirrhosis in HALT-C patients. Proteomics 12, 1244–1252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Qin, S. et al. Identification of organ-enriched protein biomarkers of acute liver injury by targeted quantitative proteomics of blood in acetaminophen- and carbon-tetrachloride-treated mouse models and acetaminophen overdose patients. J. Proteome Res. 15, 3724–3740 (2016).

    CAS  PubMed  Google Scholar 

  105. Steffen, P. et al. Protein species as diagnostic markers. J. Proteomics 134, 5–18 (2016).

    CAS  PubMed  Google Scholar 

  106. Zubair, N. et al. Genetic predisposition impacts clinical changes in a lifestyle coaching program. Sci. Rep. 9, 524 (2019).

    Google Scholar 

  107. Ohgaki, H. & Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res. 19, 764–772 (2013).

    CAS  PubMed  Google Scholar 

  108. Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

    CAS  PubMed  Google Scholar 

  109. Hwang, D. et al. A systems approach to prion disease. Mol. Syst. Biol. 5, 252 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. Song, Y. et al. Evolutionary etiology of high-grade astrocytomas. Proc. Natl Acad. Sci. USA 110, 17933–17938 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. GLASS Consortium. Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro Oncol. 20, 873–884 (2018).

    Google Scholar 

  112. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  113. Liu, R. et al. Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep. 2, 813 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou, J. X., Aliyu, M. D. S., Aurell, E. & Huang, S. Quasi-potential landscape in complex multi-stable systems. J. R. Soc. Interface 9, 3539–3553 (2012).

    PubMed  PubMed Central  Google Scholar 

  115. Li, Q. et al. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape. Proc. Natl Acad. Sci. USA 113, 2672–2677 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Inde, Z. & Dixon, S. J. The impact of non-genetic heterogeneity on cancer cell death. Crit. Rev. Biochem. Mol. Biol. 53, 99–114 (2018).

    CAS  PubMed  Google Scholar 

  117. Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wraith, D. C. The future of immunotherapy: a 20-year perspective. Front. Immunol. 8, 1668 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. van der Vlist, M., Kuball, J., Radstake, T. R. D. & Meyaard, L. Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat. Rev. Rheumatol. 12, 593–604 (2016).

    PubMed  Google Scholar 

  120. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    CAS  PubMed  Google Scholar 

  121. Buchbinder, E. & Stephen Hodi, F. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest. 125, 3377–3383 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Cho, S.-F., Anderson, K. C. & Tai, Y.-T. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front. Immunol. 9, 1821 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Xue, Q. et al. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J. Immunother. Cancer 5, 85 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

    CAS  PubMed  Google Scholar 

  126. Chung, W. et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8, 15081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, Q. et al. A novel approach for rapid high-throughput selection of recombinant functional rat monoclonal antibodies. BMC Immunol. 19, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Ye, B., Smerin, D., Gao, Q., Kang, C. & Xiong, X. High-throughput sequencing of the immune repertoire in oncology: applications for clinical diagnosis, monitoring, and immunotherapies. Cancer Lett. 416, 42–56 (2018).

    CAS  PubMed  Google Scholar 

  129. Costa-Nunes, C. et al. High-throughput screening of human tumor antigen-specific CD4 T cells, including neoantigen-reactive T cells. Clin. Cancer Res. 25, 4320–4331 (2019).

    PubMed  Google Scholar 

  130. Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Arts, E. J. & Hazuda, D. J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2, a007161 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Deisboeck, T. S., Wang, Z., Macklin, P. & Cristini, V. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011).

    CAS  PubMed  Google Scholar 

  133. Wang, Z. & Deisboeck, T. S. Dynamic targeting in cancer treatment. Front. Physiol. 10, 96 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Zhang, L., Strouthos, C. G., Wang, Z. & Deisboeck, T. S. Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math. Comput. Model. 49, 307–319 (2009).

    PubMed  PubMed Central  Google Scholar 

  135. Araujo, R. P., Petricoin, E. F. & Liotta, L. A. A mathematical model of combination therapy using the EGFR signaling network. Biosystems 80, 57–69 (2005).

    CAS  PubMed  Google Scholar 

  136. Fitzgerald, J. B., Schoeberl, B., Nielsen, U. B. & Sorger, P. K. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2, 458–466 (2006).

    CAS  PubMed  Google Scholar 

  137. Kitano, H. A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov. 6, 202–210 (2007).

    CAS  PubMed  Google Scholar 

  138. Estey, E. et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 107, 3469–3473 (2006).

    CAS  PubMed  Google Scholar 

  139. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ravandi, F., Walter, R. B. & Freeman, S. D. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2, 1356–1366 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Grimwade, D. & Freeman, S. D. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for ‘prime time’? Blood 124, 3345–3355 (2014).

    CAS  PubMed  Google Scholar 

  142. Schuurhuis, G. J. et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131, 1275–1291 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Green, E. D., Guyer, M. S. & National Human Genome Research Institute. Charting a course for genomic medicine from base pairs to bedside. Nature 470, 204–213 (2011).

    CAS  PubMed  Google Scholar 

  144. Simon, R. The use of genomics in clinical trial design. Clin. Cancer Res. 14, 5984–5993 (2008).

    PubMed  Google Scholar 

  145. Caskey, C. T. Using genetic diagnosis to determine individual therapeutic utility. Annu. Rev. Med. 61, 1–15 (2010).

    CAS  PubMed  Google Scholar 

  146. Gagan, J. & Van Allen, E. M. Next-generation sequencing to guide cancer therapy. Genome Med. 7, 80 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Vargas, A. J. & Harris, C. C. Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer 16, 525–537 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. McShane, L. M. et al. Criteria for the use of omics-based predictors in clinical trials. Nature 502, 317–320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Antman, E., Weiss, S. & Loscalzo, J. Systems pharmacology, pharmacogenetics, and clinical trial design in network medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 367–383 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nat. Biotechnol. 22, 1253–1259 (2004).

    CAS  PubMed  Google Scholar 

  151. Senn, S. Statistical pitfalls of personalized medicine. Nature 563, 619–621 (2018).

    CAS  PubMed  Google Scholar 

  152. Beckman, R. A. & Chen, C. New evidence-based adaptive clinical trial methods for optimally integrating predictive biomarkers into oncology clinical development programs. Chin. J. Cancer 32, 233–241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Duan, N., Kravitz, R. L. & Schmid, C. H. Single-patient (n-of-1) trials: a pragmatic clinical decision methodology for patient-centered comparative effectiveness research. J. Clin. Epidemiol. 66, S21–S28 (2013).

    PubMed  PubMed Central  Google Scholar 

  154. Raz, I. et al. Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 36, 1779–1788 (2013).

    Google Scholar 

  155. Meric-Bernstam, F. & Mills, G. B. Overcoming implementation challenges of personalized cancer therapy. Nat. Rev. Clin. Oncol. 9, 542–548 (2012).

    CAS  PubMed  Google Scholar 

  156. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    CAS  PubMed  Google Scholar 

  157. Hopkins, A. L. Network pharmacology. Nat. Biotechnol. 25, 1110–1111 (2007).

    CAS  PubMed  Google Scholar 

  158. Yu, K.-H. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Jiang, C. et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell 175, 277–291.e31 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kinross, J. M., Holmes, E., Darzi, A. W. & Nicholson, J. K. Metabolic phenotyping for monitoring surgical patients. Lancet 377, 1817–1819 (2011).

    PubMed  Google Scholar 

  161. Wang, J., Moore, N. E., Deng, Y.-M., Eccles, D. A. & Hall, R. J. MinION nanopore sequencing of an influenza genome. Front. Microbiol. 6, 766 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Blakeman, K. H., Wolfe, D. W., Cavanaugh, C. A. & Ramsey, J. M. High pressure mass spectrometry: the generation of mass spectra at operating pressures exceeding 1 Torr in a microscale cylindrical ion trap. Anal. Chem. 88, 5378–5384 (2016).

    CAS  PubMed  Google Scholar 

  163. Gallagher, R. A. & Levy, J. A. Advances in point-of-care ultrasound in pediatric emergency medicine. Curr. Opin. Pediatr. 26, 265–271 (2014).

    PubMed  Google Scholar 

  164. Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the international space station. Sci. Rep. 7, 18022 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Deisboeck, T. S. Personalizing medicine: a systems biology perspective. Mol. Syst. Biol. 5, 249 (2009).

    PubMed  PubMed Central  Google Scholar 

  166. Emery, J. C. H. & Zwicker, J. D. Innovation, productivity, and pricing: capturing value from precision medicine technology in Canada. Healthc. Manage. Forum 30, 197–199 (2017).

    PubMed  Google Scholar 

  167. Louis, R. & Roche, N. Personalised medicine: are we ready? Eur. Respir. Rev. 26, 170088 (2017).

    PubMed  Google Scholar 

  168. Spoonamore, K. G. & Johnson, N. M. Who pays? Coverage challenges for cardiovascular genetic testing in U.S. patients. Front. Cardiovasc. Med 3, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Hyman, M. A. Finding the money for healthcare reform. Altern. Ther. Health Med. 15, 20–23 (2009).

    PubMed  Google Scholar 

  170. Taw, M. B. Integrative medicine, or not integrative medicine: that is the question. J. Integr. Med. 13, 350–352 (2015).

    PubMed  Google Scholar 

  171. Joyner, M. J. & Paneth, N. Seven questions for personalized medicine. JAMA 314, 999–1000 (2015).

    CAS  PubMed  Google Scholar 

  172. National Human Genome Research Institute. DNA sequencing costs: data (NHGRI, 2019).

  173. Shevchenko, Y. & Bale, S. Clinical versus research sequencing. Cold Spring Harb. Perspect. Med. 6, a025809 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Crow, D. A new wave of genomics for all. Cell 177, 5–7 (2019).

    CAS  PubMed  Google Scholar 

  175. Institute of Medicine (US). The Healthcare Imperative. Lowering Costs and Improving Outcomes: Workshop Series Summary (eds Yong, P. L., Saunders, R. S. & Olsen L. A.) (National Academies Press, 2010).

  176. Van Dyke, K. The incredible costs of chronic diseases: why they occur and possible preventions and/or treatments. J. Health Edu. Res. Dev. 4, 182 (2016).

  177. Chapel, J. M., Ritchey, M. D., Zhang, D. & Wang, G. Prevalence and medical costs of chronic diseases among adult Medicaid beneficiaries. Am. J. Prev. Med. 53, S143–S154 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    CAS  PubMed  Google Scholar 

  179. Nguyen, D. X. & Massagué, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet. 8, 341–352 (2007).

    CAS  PubMed  Google Scholar 

  180. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    CAS  PubMed  Google Scholar 

  181. Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15, 34–48 (2014).

    CAS  PubMed  Google Scholar 

  182. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    CAS  PubMed  Google Scholar 

  183. Aly, M. et al. Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study. Eur. Urol. 60, 21–28 (2011).

    PubMed  PubMed Central  Google Scholar 

  184. Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104, 21–34 (2019).

    CAS  PubMed  Google Scholar 

  185. Rahman, N. Mainstreaming genetic testing of cancer predisposition genes. Clin. Med. 14, 436–439 (2014).

    Google Scholar 

  186. Stoutenberg, M., Sogor, A., Arheart, K., Cutrono, S. E. & Kornfeld, J. A wellness program for cancer survivors and caregivers: developing an integrative pilot program with exercise, nutrition, and complementary medicine. J. Cancer Educ. 31, 47–54 (2016).

    PubMed  Google Scholar 

  187. Haslem, D. S. et al. Precision oncology in advanced cancer patients improves overall survival with lower weekly healthcare costs. Oncotarget 9, 12316–12322 (2018).

    PubMed  PubMed Central  Google Scholar 

  188. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Schroeder, S. A. Shattuck Lecture. We can do better — improving the health of the American people. N. Engl. J. Med. 357, 1221–1228 (2007).

    CAS  PubMed  Google Scholar 

  190. Karaca, S., Erge, S., Cesuroglu, T. & Polimanti, R. Nutritional habits, lifestyle, and genetic predisposition in cardiovascular and metabolic traits in Turkish population. Nutrition 32, 693–701 (2016).

    PubMed  Google Scholar 

  191. Wheate, N. J., Walker, S., Craig, G. E. & Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113–8127 (2010).

    CAS  PubMed  Google Scholar 

  192. Oxnard, G. R. et al. Response rate as a regulatory end point in single-arm studies of advanced solid tumors. JAMA Oncol. 2, 772–779 (2016).

    PubMed  PubMed Central  Google Scholar 

  193. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Chaudhury, S. et al. Age-specific biological and molecular profiling distinguishes paediatric from adult acute myeloid leukaemias. Nat. Commun. 9, 5280 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Goggins, M., Canto, M. & Hruban, R. Can we screen high-risk individuals to detect early pancreatic carcinoma? J. Surg. Oncol. 74, 243–248 (2000).

    CAS  PubMed  Google Scholar 

  196. Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Szulkin, R. et al. Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate 75, 1467–1474 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Pashayan, N. et al. Implications of polygenic risk-stratified screening for prostate cancer on overdiagnosis. Genet. Med. 17, 789–795 (2015).

    PubMed  PubMed Central  Google Scholar 

  199. Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Hart, P. A. Early detection of pancreatic cancer in high-risk individuals: where do we go from here? Am. J. Gastroenterol. 114, 560–561 (2019).

    PubMed  PubMed Central  Google Scholar 

  201. Best, M. G. et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Donaldson, J. & Park, B. H. Circulating tumor DNA: measurement and clinical utility. Annu. Rev. Med. 69, 223–234 (2018).

    CAS  PubMed  Google Scholar 

  203. Mamdouhi, T., Twomey, J. D., McSweeney, K. M. & Zhang, B. Fugitives on the run: circulating tumor cells (CTCs) in metastatic diseases. Cancer Metastasis Rev. 38, 297–305 (2019).

    PubMed  PubMed Central  Google Scholar 

  204. FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 356, 1915–1927 (2007).

    Google Scholar 

  205. Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl Med. 10, eaao5931 (2018).

    PubMed  Google Scholar 

  206. Berzofsky, J. A. et al. Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol. Immunother. 67, 1863–1869 (2018).

    CAS  PubMed  Google Scholar 

  207. Iorio, F. et al. A landscape of pharmacogenomic interactions in Cancer. Cell 166, 740–754 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Skehan, P. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl Cancer Inst. 82, 1107–1112 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Huang for insightful discussions. The work of J.T.Y. is supported by the Translational Research Fellows Program from the Institute for Systems Biology. The work of N.D.P. was supported in part by the United States National Institutes of Health (NIH) grant R01CA200859.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation.

Corresponding authors

Correspondence to Nathan D. Price or Leroy Hood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurkovich, J.T., Tian, Q., Price, N.D. et al. A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat Rev Clin Oncol 17, 183–194 (2020). https://doi.org/10.1038/s41571-019-0273-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0273-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer