Abstract
Cancer encompasses a complex, heterogeneous and dynamic group of diseases that arise from perturbations to multiple biological networks within the body. A systems biology-based approach would help to decipher this complexity, to deeply characterize the pathophysiology of the disease and to stratify cancers into appropriate molecular subtypes to facilitate the development of personalized therapies. Technological advances made over the past decade have enabled multiscale, longitudinal measurements (‘snapshots’) of human biology, from single-cell analyses to whole-body monitoring. In this Perspective, we discuss some of these technologies and how they have (and will) contributed to our understanding of cancer biology as well as to the development of early diagnostics and personalized therapies. We argue that the integration of molecular profiling of cancerous tissues with deep, longitudinal profiling of the physiological state of an individual (‘deep phenotyping’) is key to understanding the prevention, initiation, progression and response to treatment of cancers. Systems biology-based approaches can provide an unprecedented trove of data for early detection of disease transitions, prediction of therapeutic responses and clinical outcomes, and for the design of personalized treatments.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hood, L. & Friend, S. H. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat. Rev. Clin. Oncol. 8, 184–187 (2011).
Jones, D. S., Podolsky, S. H. & Greene, J. A. The burden of disease and the changing task of medicine. N. Engl. J. Med. 366, 2333–2338 (2012).
Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).
Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).
Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26, 1205–1210 (2010).
Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).
Tian, Q., Price, N. D. & Hood, L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J. Intern. Med. 271, 111–121 (2012).
Sagner, M. et al. The P4 health spectrum — a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog. Cardiovasc. Dis. 59, 506–521 (2017).
Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).
Lillie, E. O. et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Per. Med. 8, 161–173 (2011).
Larson, E. B. N-of-1 clinical trials. A technique for improving medical therapeutics. West. J. Med. 152, 52–56 (1990).
Westerhoff, H. V. & Palsson, B. O. The evolution of molecular biology into systems biology. Nat. Biotechnol. 22, 1249–1252 (2004).
Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).
Swan, M. The quantified self: fundamental disruption in big data science and biological discovery. Big Data 1, 85–99 (2013).
Smarr, L. Quantifying your body: a how-to guide from a systems biology perspective. Biotechnol. J. 7, 980–991 (2012).
Hood, L. & Price, N. D. Demystifying disease, democratizing health care. Sci. Transl Med. 6, 225ed5 (2014).
Plasqui, G. & Westerterp, K. R. Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 15, 2371–2379 (2007).
Wong, L. J. et al. Extended use of a new continuous glucose monitoring system with wireless data transmission in children with type 1 diabetes mellitus. Diabetes Technol. Ther. 8, 139–145 (2006).
Jaffee, E. M. et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 18, e653–e706 (2017).
Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).
Farkona, S., Diamandis, E. P. & Blasutig, I. M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 14, 73 (2016).
David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).
Kolker, E. et al. Toward more transparent and reproducible omics studies through a common metadata checklist and data publications. OMICS 18, 10–14 (2014).
Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).
Piening, B. D. et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6, 157–170.e8 (2018).
Schüssler-Fiorenza Rose, S. M. et al. A longitudinal big data approach for precision health. Nat. Med. 25, 792–804 (2019).
Wilmanski, T. et al. Blood metabolome signature predicts gut microbiome α-diversity in health and disease. Nat. Biotechnol. 8, 69 (2019).
Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).
Knijnenburg, T. A. et al. Genomic and molecular characterization of preterm birth. Proc. Natl Acad. Sci. USA 62, 201716314 (2019).
Sugawara, J. et al. Maternity log study: a longitudinal lifelog monitoring and multiomics analysis for the early prediction of complicated pregnancy. BMJ Open 9, e025939 (2019).
Yurkovich, J. T. & Palsson, B. O. Quantitative -omic data empowers bottom-up systems biology. Curr. Opin. Biotechnol. 51, 130–136 (2018).
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).
Weinstein, J. N. et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).
Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354.e15 (2018).
Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705.e9 (2018).
Jiang, Y. et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567, 257–261 (2019).
Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e8 (2018).
Laganà, A. et al. Precision medicine for relapsed multiple myeloma on the basis of an integrative multiomics approach. JCO Precis. Oncol. 2018, (2018).
Taglang, G. & Jackson, D. B. Use of ‘big data’ in drug discovery and clinical trials. Gynecol. Oncol. 141, 17–23 (2016).
Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).
Yu, L.-X. & Schwabe, R. F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 14, 527–539 (2017).
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
Kauffman, S. Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969).
del Sol, A., Balling, R., Hood, L. & Galas, D. Diseases as network perturbations. Curr. Opin. Biotechnol. 21, 566–571 (2010).
Yi, S. et al. Functional variomics and network perturbation: connecting genotype to phenotype in cancer. Nat. Rev. Genet. 18, 395–410 (2017).
Santolini, M. & Barabási, A.-L. Predicting perturbation patterns from the topology of biological networks. Proc. Natl Acad. Sci. USA 115, E6375–E6383 (2018).
Heath, J. R., Ribas, A. & Mischel, P. S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15, 204–216 (2016).
Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).
Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).
Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).
Schwartzman, O. & Tanay, A. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16, 716–726 (2015).
Duncan, K. D., Fyrestam, J. & Lanekoff, I. Advances in mass spectrometry based single-cell metabolomics. Analyst 144, 782–793 (2019).
Specht, H. & Slavov, N. Transformative opportunities for single-cell proteomics. J. Proteome Res. 17, 2565–2571 (2018).
Bock, C., Farlik, M. & Sheffield, N. C. Multi-omics of single cells: strategies and applications. Trends Biotechnol. 34, 605–608 (2016).
Xue, M. et al. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137, 4066–4069 (2015).
Karaayvaz, M. et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat. Commun. 9, 3588 (2018).
Liberali, P., Snijder, B. & Pelkmans, L. Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet. 16, 18–32 (2015).
Hochane, M. et al. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLOS Biol. 17, e3000152 (2019).
Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).
Nguyen, A., Yoshida, M., Goodarzi, H. & Tavazoie, S. F. Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat. Commun. 7, 11246 (2016).
Sharma, A. et al. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nat. Commun. 9, 4931 (2018).
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018).
Su, Y. et al. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc. Natl Acad. Sci. USA 114, 13679–13684 (2017).
Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl Acad. Sci. USA 109, 419–424 (2012).
Hu, Y. et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 17, 88 (2016).
Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016).
Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304–319 (2016).
Zhang, Y. et al. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87, 9761–9768 (2015).
Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 6, 28 (2019).
Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 96 (2018).
Mitra, A. K. et al. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors. Leukemia 30, 1094–1102 (2016).
Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).
Yurkovich, J. T. & Hood, L. Blood is a window into health and disease. Clin. Chem. 65, 1204–1206 (2019).
Shi, L. et al. A decade of blood biomarkers for Alzheimer’s disease research: an evolving field, improving study designs, and the challenge of replication. J. Alzheimers Dis. 62, 1181–1198 (2018).
van der Pol, A. et al. Accumulation of 5-oxoproline in myocardial dysfunction and the protective effects of OPLAH. Sci. Transl Med. 9, eaam8574 (2017).
Dudley, J. T. & Butte, A. J. Identification of discriminating biomarkers for human disease using integrative network biology. Pac. Symp. Biocomput. 2009, 27–38 (2009).
Goldenberg, D. M. et al. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N. Engl. J. Med. 298, 1384–1386 (1978).
Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).
Kim, E. H. & Andriole, G. L. Prostate-specific antigen-based screening: controversy and guidelines. BMC Med. 13, 61 (2015).
Sørensen, C. G., Karlsson, W. K., Pommergaard, H.-C., Burcharth, J. & Rosenberg, J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence — a systematic review. Int. J. Surg. 25, 134–144 (2016).
Kearney, P., Boniface, J. J., Price, N. D. & Hood, L. The building blocks of successful translation of proteomics to the clinic. Curr. Opin. Biotechnol. 51, 123–129 (2018).
Li, X.-J. et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl Med. 5, 207ra142 (2013).
Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).
Houssami, N., Ciatto, S., Martinelli, F., Bonardi, R. & Duffy, S. W. Early detection of second breast cancers improves prognosis in breast cancer survivors. Ann. Oncol. 20, 1505–1510 (2009).
Shah, C. et al. The impact of early detection and intervention of breast cancer-related lymphedema: a systematic review. Cancer Med. 5, 1154–1162 (2016).
Ilbawi, A. M. & Anderson, B. O. Cancer in global health: how do prevention and early detection strategies relate? Sci. Transl Med. 7, 278cm1 (2015).
Hiom, S. C. Diagnosing cancer earlier: reviewing the evidence for improving cancer survival. Br. J. Cancer 112 (Suppl 1), S1–S5 (2015).
Tamborero, D. et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650 (2013).
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).
Iranzo, J., Martincorena, I. & Koonin, E. V. Cancer-mutation network and the number and specificity of driver mutations. Proc. Natl Acad. Sci. USA 115, E6010–E6019 (2018).
Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).
Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).
Canisius, S., Martens, J. W. M. & Wessels, L. F. A. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence. Genome Biol. 17, 261 (2016).
Nussinov, R., Jang, H., Tsai, C.-J. & Cheng, F. Review: precision medicine and driver mutations: computational methods, functional assays and conformational principles for interpreting cancer drivers. PLOS Comput. Biol. 15, e1006658 (2019).
Nussinov, R., Jang, H., Tsai, C.-J. & Cheng, F. Precision medicine review: rare driver mutations and their biophysical classification. Biophys. Rev. 11, 5–19 (2019).
Wang, K. et al. The spectrum of circulating RNA: a window into systems toxicology. Toxicol. Sci. 132, 478–492 (2013).
Zhang, F. & Chen, J. Y. HOMER: a human organ-specific molecular electronic repository. BMC Bioinformatics 12 (Suppl 10), S4 (2011).
Qin, S. et al. SRM targeted proteomics in search for biomarkers of HCV-induced progression of fibrosis to cirrhosis in HALT-C patients. Proteomics 12, 1244–1252 (2012).
Qin, S. et al. Identification of organ-enriched protein biomarkers of acute liver injury by targeted quantitative proteomics of blood in acetaminophen- and carbon-tetrachloride-treated mouse models and acetaminophen overdose patients. J. Proteome Res. 15, 3724–3740 (2016).
Steffen, P. et al. Protein species as diagnostic markers. J. Proteomics 134, 5–18 (2016).
Zubair, N. et al. Genetic predisposition impacts clinical changes in a lifestyle coaching program. Sci. Rep. 9, 524 (2019).
Ohgaki, H. & Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res. 19, 764–772 (2013).
Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).
Hwang, D. et al. A systems approach to prion disease. Mol. Syst. Biol. 5, 252 (2009).
Song, Y. et al. Evolutionary etiology of high-grade astrocytomas. Proc. Natl Acad. Sci. USA 110, 17933–17938 (2013).
GLASS Consortium. Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro Oncol. 20, 873–884 (2018).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Liu, R. et al. Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep. 2, 813 (2012).
Zhou, J. X., Aliyu, M. D. S., Aurell, E. & Huang, S. Quasi-potential landscape in complex multi-stable systems. J. R. Soc. Interface 9, 3539–3553 (2012).
Li, Q. et al. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape. Proc. Natl Acad. Sci. USA 113, 2672–2677 (2016).
Inde, Z. & Dixon, S. J. The impact of non-genetic heterogeneity on cancer cell death. Crit. Rev. Biochem. Mol. Biol. 53, 99–114 (2018).
Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).
Wraith, D. C. The future of immunotherapy: a 20-year perspective. Front. Immunol. 8, 1668 (2017).
van der Vlist, M., Kuball, J., Radstake, T. R. D. & Meyaard, L. Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat. Rev. Rheumatol. 12, 593–604 (2016).
Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).
Buchbinder, E. & Stephen Hodi, F. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest. 125, 3377–3383 (2015).
Cho, S.-F., Anderson, K. C. & Tai, Y.-T. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front. Immunol. 9, 1821 (2018).
Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).
Xue, Q. et al. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J. Immunother. Cancer 5, 85 (2017).
Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).
Chung, W. et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8, 15081 (2017).
Chen, Q. et al. A novel approach for rapid high-throughput selection of recombinant functional rat monoclonal antibodies. BMC Immunol. 19, 35 (2018).
Ye, B., Smerin, D., Gao, Q., Kang, C. & Xiong, X. High-throughput sequencing of the immune repertoire in oncology: applications for clinical diagnosis, monitoring, and immunotherapies. Cancer Lett. 416, 42–56 (2018).
Costa-Nunes, C. et al. High-throughput screening of human tumor antigen-specific CD4 T cells, including neoantigen-reactive T cells. Clin. Cancer Res. 25, 4320–4331 (2019).
Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018).
Arts, E. J. & Hazuda, D. J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2, a007161 (2012).
Deisboeck, T. S., Wang, Z., Macklin, P. & Cristini, V. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011).
Wang, Z. & Deisboeck, T. S. Dynamic targeting in cancer treatment. Front. Physiol. 10, 96 (2019).
Zhang, L., Strouthos, C. G., Wang, Z. & Deisboeck, T. S. Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math. Comput. Model. 49, 307–319 (2009).
Araujo, R. P., Petricoin, E. F. & Liotta, L. A. A mathematical model of combination therapy using the EGFR signaling network. Biosystems 80, 57–69 (2005).
Fitzgerald, J. B., Schoeberl, B., Nielsen, U. B. & Sorger, P. K. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2, 458–466 (2006).
Kitano, H. A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov. 6, 202–210 (2007).
Estey, E. et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 107, 3469–3473 (2006).
Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).
Ravandi, F., Walter, R. B. & Freeman, S. D. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2, 1356–1366 (2018).
Grimwade, D. & Freeman, S. D. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for ‘prime time’? Blood 124, 3345–3355 (2014).
Schuurhuis, G. J. et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131, 1275–1291 (2018).
Green, E. D., Guyer, M. S. & National Human Genome Research Institute. Charting a course for genomic medicine from base pairs to bedside. Nature 470, 204–213 (2011).
Simon, R. The use of genomics in clinical trial design. Clin. Cancer Res. 14, 5984–5993 (2008).
Caskey, C. T. Using genetic diagnosis to determine individual therapeutic utility. Annu. Rev. Med. 61, 1–15 (2010).
Gagan, J. & Van Allen, E. M. Next-generation sequencing to guide cancer therapy. Genome Med. 7, 80 (2015).
Vargas, A. J. & Harris, C. C. Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer 16, 525–537 (2016).
McShane, L. M. et al. Criteria for the use of omics-based predictors in clinical trials. Nature 502, 317–320 (2013).
Antman, E., Weiss, S. & Loscalzo, J. Systems pharmacology, pharmacogenetics, and clinical trial design in network medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 367–383 (2012).
Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nat. Biotechnol. 22, 1253–1259 (2004).
Senn, S. Statistical pitfalls of personalized medicine. Nature 563, 619–621 (2018).
Beckman, R. A. & Chen, C. New evidence-based adaptive clinical trial methods for optimally integrating predictive biomarkers into oncology clinical development programs. Chin. J. Cancer 32, 233–241 (2013).
Duan, N., Kravitz, R. L. & Schmid, C. H. Single-patient (n-of-1) trials: a pragmatic clinical decision methodology for patient-centered comparative effectiveness research. J. Clin. Epidemiol. 66, S21–S28 (2013).
Raz, I. et al. Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 36, 1779–1788 (2013).
Meric-Bernstam, F. & Mills, G. B. Overcoming implementation challenges of personalized cancer therapy. Nat. Rev. Clin. Oncol. 9, 542–548 (2012).
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
Hopkins, A. L. Network pharmacology. Nat. Biotechnol. 25, 1110–1111 (2007).
Yu, K.-H. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016).
Jiang, C. et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell 175, 277–291.e31 (2018).
Kinross, J. M., Holmes, E., Darzi, A. W. & Nicholson, J. K. Metabolic phenotyping for monitoring surgical patients. Lancet 377, 1817–1819 (2011).
Wang, J., Moore, N. E., Deng, Y.-M., Eccles, D. A. & Hall, R. J. MinION nanopore sequencing of an influenza genome. Front. Microbiol. 6, 766 (2015).
Blakeman, K. H., Wolfe, D. W., Cavanaugh, C. A. & Ramsey, J. M. High pressure mass spectrometry: the generation of mass spectra at operating pressures exceeding 1 Torr in a microscale cylindrical ion trap. Anal. Chem. 88, 5378–5384 (2016).
Gallagher, R. A. & Levy, J. A. Advances in point-of-care ultrasound in pediatric emergency medicine. Curr. Opin. Pediatr. 26, 265–271 (2014).
Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the international space station. Sci. Rep. 7, 18022 (2017).
Deisboeck, T. S. Personalizing medicine: a systems biology perspective. Mol. Syst. Biol. 5, 249 (2009).
Emery, J. C. H. & Zwicker, J. D. Innovation, productivity, and pricing: capturing value from precision medicine technology in Canada. Healthc. Manage. Forum 30, 197–199 (2017).
Louis, R. & Roche, N. Personalised medicine: are we ready? Eur. Respir. Rev. 26, 170088 (2017).
Spoonamore, K. G. & Johnson, N. M. Who pays? Coverage challenges for cardiovascular genetic testing in U.S. patients. Front. Cardiovasc. Med 3, 14 (2016).
Hyman, M. A. Finding the money for healthcare reform. Altern. Ther. Health Med. 15, 20–23 (2009).
Taw, M. B. Integrative medicine, or not integrative medicine: that is the question. J. Integr. Med. 13, 350–352 (2015).
Joyner, M. J. & Paneth, N. Seven questions for personalized medicine. JAMA 314, 999–1000 (2015).
National Human Genome Research Institute. DNA sequencing costs: data (NHGRI, 2019).
Shevchenko, Y. & Bale, S. Clinical versus research sequencing. Cold Spring Harb. Perspect. Med. 6, a025809 (2016).
Crow, D. A new wave of genomics for all. Cell 177, 5–7 (2019).
Institute of Medicine (US). The Healthcare Imperative. Lowering Costs and Improving Outcomes: Workshop Series Summary (eds Yong, P. L., Saunders, R. S. & Olsen L. A.) (National Academies Press, 2010).
Van Dyke, K. The incredible costs of chronic diseases: why they occur and possible preventions and/or treatments. J. Health Edu. Res. Dev. 4, 182 (2016).
Chapel, J. M., Ritchey, M. D., Zhang, D. & Wang, G. Prevalence and medical costs of chronic diseases among adult Medicaid beneficiaries. Am. J. Prev. Med. 53, S143–S154 (2017).
Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).
Nguyen, D. X. & Massagué, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet. 8, 341–352 (2007).
Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).
Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15, 34–48 (2014).
Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).
Aly, M. et al. Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study. Eur. Urol. 60, 21–28 (2011).
Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104, 21–34 (2019).
Rahman, N. Mainstreaming genetic testing of cancer predisposition genes. Clin. Med. 14, 436–439 (2014).
Stoutenberg, M., Sogor, A., Arheart, K., Cutrono, S. E. & Kornfeld, J. A wellness program for cancer survivors and caregivers: developing an integrative pilot program with exercise, nutrition, and complementary medicine. J. Cancer Educ. 31, 47–54 (2016).
Haslem, D. S. et al. Precision oncology in advanced cancer patients improves overall survival with lower weekly healthcare costs. Oncotarget 9, 12316–12322 (2018).
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
Schroeder, S. A. Shattuck Lecture. We can do better — improving the health of the American people. N. Engl. J. Med. 357, 1221–1228 (2007).
Karaca, S., Erge, S., Cesuroglu, T. & Polimanti, R. Nutritional habits, lifestyle, and genetic predisposition in cardiovascular and metabolic traits in Turkish population. Nutrition 32, 693–701 (2016).
Wheate, N. J., Walker, S., Craig, G. E. & Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113–8127 (2010).
Oxnard, G. R. et al. Response rate as a regulatory end point in single-arm studies of advanced solid tumors. JAMA Oncol. 2, 772–779 (2016).
Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).
Chaudhury, S. et al. Age-specific biological and molecular profiling distinguishes paediatric from adult acute myeloid leukaemias. Nat. Commun. 9, 5280 (2018).
Goggins, M., Canto, M. & Hruban, R. Can we screen high-risk individuals to detect early pancreatic carcinoma? J. Surg. Oncol. 74, 243–248 (2000).
Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).
Szulkin, R. et al. Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate 75, 1467–1474 (2015).
Pashayan, N. et al. Implications of polygenic risk-stratified screening for prostate cancer on overdiagnosis. Genet. Med. 17, 789–795 (2015).
Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016).
Hart, P. A. Early detection of pancreatic cancer in high-risk individuals: where do we go from here? Am. J. Gastroenterol. 114, 560–561 (2019).
Best, M. G. et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).
Donaldson, J. & Park, B. H. Circulating tumor DNA: measurement and clinical utility. Annu. Rev. Med. 69, 223–234 (2018).
Mamdouhi, T., Twomey, J. D., McSweeney, K. M. & Zhang, B. Fugitives on the run: circulating tumor cells (CTCs) in metastatic diseases. Cancer Metastasis Rev. 38, 297–305 (2019).
FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 356, 1915–1927 (2007).
Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl Med. 10, eaao5931 (2018).
Berzofsky, J. A. et al. Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol. Immunother. 67, 1863–1869 (2018).
Iorio, F. et al. A landscape of pharmacogenomic interactions in Cancer. Cell 166, 740–754 (2016).
Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).
Skehan, P. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl Cancer Inst. 82, 1107–1112 (1990).
Acknowledgements
The authors thank S. Huang for insightful discussions. The work of J.T.Y. is supported by the Translational Research Fellows Program from the Institute for Systems Biology. The work of N.D.P. was supported in part by the United States National Institutes of Health (NIH) grant R01CA200859.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of manuscript preparation.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yurkovich, J.T., Tian, Q., Price, N.D. et al. A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat Rev Clin Oncol 17, 183–194 (2020). https://doi.org/10.1038/s41571-019-0273-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41571-019-0273-6
This article is cited by
-
The transition from genomics to phenomics in personalized population health
Nature Reviews Genetics (2024)
-
Digital twins in dermatology, current status, and the road ahead
npj Digital Medicine (2024)
-
Evaluation of single-sample network inference methods for precision oncology
npj Systems Biology and Applications (2024)
-
Cross-sectional network analysis of plasma proteins/metabolites correlated with pathogenesis and therapeutic response in acute promyelocytic leukemia
Frontiers of Medicine (2024)
-
The genomic and immunogenomic landscape of mechanics pathway informs clinical prognosis and response to mechanotherapy
Science China Life Sciences (2024)