Comorbid chronic diseases and cancer diagnosis: disease-specific effects and underlying mechanisms

Abstract

An earlier diagnosis is a key strategy for improving the outcomes of patients with cancer. However, achieving this goal can be challenging, particularly for the growing number of people with one or more chronic conditions (comorbidity/multimorbidity) at the time of diagnosis. Pre-existing chronic diseases might affect patient participation in cancer screening, help-seeking for new and/or changing symptoms and clinicians’ decision-making on the use of diagnostic investigations. Evidence suggests, for example, that pre-existing pulmonary, cardiovascular, neurological and psychiatric conditions are all associated with a more advanced stage of cancer at diagnosis. By contrast, hypertension and certain gastrointestinal and musculoskeletal conditions might be associated with a more timely diagnosis. In this Review, we propose a comprehensive framework that encompasses the effects of disease-specific, patient-related and health-care-related factors on the diagnosis of cancer in individuals with pre-existing chronic illnesses. Several previously postulated aetiological mechanisms (including alternative explanations, competing demands and surveillance effects) are integrated with newly identified mechanisms, such as false reassurances, or patient concerns about appearing to be a hypochondriac. By considering specific effects of chronic diseases on diagnostic processes and outcomes, tailored early diagnosis initiatives can be developed to improve the outcomes of the large proportion of patients with cancer who have pre-existing chronic conditions.

Key points

  • Many individuals with possible symptoms of cancer also have pre-existing chronic diseases, which can affect both diagnostic timeliness and cancer stage at diagnosis.

  • Evidence suggests that pulmonary, cardiovascular, neurological and psychiatric disorders are associated with longer intervals before cancer diagnosis and more advanced-stage disease at diagnosis.

  • Effects of specific chronic conditions seem to vary in terms of both direction and size according to pre-existing disease type and the nature of the presenting symptoms.

  • Targeted interventions designed to expedite cancer diagnosis and thus improve patient outcomes might be possible by considering the effects of chronic diseases on participation in cancer screening, patient help-seeking for cancer symptoms, and doctors’ decision-making about the use of investigations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of quantitative studies providing evidence on the role of chronic diseases in influencing the diagnosis of cancer.
Fig. 2: Mechanisms through which chronic diseases can influence the timely diagnosis of cancer along the diagnostic pathway.

References

  1. 1.

    Hamilton, W., Walter, F. M., Rubin, G. & Neal, R. D. Improving early diagnosis of symptomatic cancer. Nat. Rev. Clin. Oncol. 13, 740–749 (2016).

    PubMed  Google Scholar 

  2. 2.

    Swann, R. et al. Diagnosing cancer in primary care: results from the National Cancer Diagnosis Audit. Br. J. Gen. Pract. 68, e63–e72 (2018).

    PubMed  Google Scholar 

  3. 3.

    Ritchie, C. S. et al. Association between patients’ perception of the comorbidity burden and symptoms in outpatients with common solid tumors. Cancer 123, 3835–3842 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Extermann, M. Interaction between comorbidity and cancer. Cancer Control 14, 13–22 (2007).

    PubMed  Google Scholar 

  5. 5.

    Sarfati, D., Koczwara, B. & Jackson, C. The impact of comorbidity on cancer and its treatment. CA Cancer J. Clin. 66, 337–350 (2016).

    PubMed  Google Scholar 

  6. 6.

    Klil-Drori, A. J., Azoulay, L. & Pollak, M. N. Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing? Nat. Rev. Clin. Oncol. 14, 85–99 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Eibl, G. et al. Diabetes mellitus and obesity as risk factors for pancreatic cancer. J. Acad. Nutr. Diet. 118, 555–567 (2018).

    PubMed  Google Scholar 

  8. 8.

    Setiawan, V. W. et al. Pancreatic cancer following incident diabetes in African Americans and Latinos: the multiethnic cohort. J. Natl Cancer Inst. 111, 27–33 (2019).

    PubMed  Google Scholar 

  9. 9.

    Din, F. V. et al. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut 59, 1670–1679 (2010).

    CAS  PubMed  Google Scholar 

  10. 10.

    Algra, A. M. & Rothwell, P. M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 13, 518–527 (2012).

    CAS  PubMed  Google Scholar 

  11. 11.

    Onitilo, A. A. et al. Diabetes and cancer II: role of diabetes medications and influence of shared risk factors. Cancer Control 23, 991–1008 (2012).

    Google Scholar 

  12. 12.

    Scott, S. E., Walter, F. M., Webster, A., Sutton, S. & Emery, J. The model of pathways to treatment: conceptualization and integration with existing theory. Br. J. Health Psychol. 18, 45–65 (2013).

    CAS  PubMed  Google Scholar 

  13. 13.

    Lyratzopoulos, G., Vedsted, P. & Singh, H. Understanding missed opportunities for more timely diagnosis of cancer in symptomatic patients after presentation. Br. J. Cancer 112 (Suppl. 1), S84–S91 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Walter, F., Webster, A., Scott, S. & Emery, J. The Andersen model of total patient delay: a systematic review of its application in cancer diagnosis. J. Health Serv. Res. Policy 17, 110–118 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Macdonald, S., Macleod, U., Campbell, N. C., Weller, D. & Mitchell, E. Systematic review of factors influencing patient and practitioner delay in diagnosis of upper gastrointestinal cancer. Br. J. Cancer 94, 1272–1280 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mitchell, E., Macdonald, S., Campbell, N. C., Weller, D. & Macleod, U. Influences on pre-hospital delay in the diagnosis of colorectal cancer: a systematic review. Br. J. Cancer 98, 60–70 (2008).

    CAS  PubMed  Google Scholar 

  17. 17.

    Zhou, Y. et al. Diagnosis of cancer as an emergency: a critical review of current evidence. Nat. Rev. Clin. Oncol. 14, 45–56 (2017).

    PubMed  Google Scholar 

  18. 18.

    Corkum, M. et al. Impact of comorbidity and healthcare utilization on colorectal cancer stage at diagnosis: literature review. Cancer Control 23, 213–220 (2012).

    Google Scholar 

  19. 19.

    The Academy of Medical Sciences. Multimorbidity: a priority for global health research. The Academy of Medical Sciences https://acmedsci.ac.uk/policy/policy-projects/multimorbidity (2019).

  20. 20.

    Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383 (1987).

    CAS  PubMed  Google Scholar 

  21. 21.

    Geraci, J. M., Escalante, C. P., Freeman, J. L. & Goodwin, J. S. Comorbid disease and cancer: the need for more relevant conceptual models in health services research. J. Clin. Oncol. 23, 7399–7404 (2005).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gurney, J., Sarfati, D. & Stanley, J. The impact of patient comorbidity on cancer stage at diagnosis. Br. J. Cancer 113, 1375–1380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gonzalez, E. C., Ferrante, J. M., Van Durme, D. J., Pal, N. & Roetzheim, R. G. Comorbid illness and the early detection of cancer. South. Med. J. 94, 913–920 (2001).

    CAS  PubMed  Google Scholar 

  24. 24.

    El-Charnoubi, W. A., Svendsen, J. B., Tange, U. B. & Kroman, N. Women with inoperable or locally advanced breast cancer — what characterizes them? A retrospective review of 157 cases. Acta Oncol. 51, 1081–1085 (2012).

    PubMed  Google Scholar 

  25. 25.

    Fleming, S. T., Pursley, H. G., Newman, B., Pavlov, D. & Chen, K. Comorbidity as a predictor of stage of illness for patients with breast cancer. Med. Care 43, 132–140 (2005).

    PubMed  Google Scholar 

  26. 26.

    O’Rourke, R. W. et al. Psychiatric illness delays diagnosis of esophageal cancer. Dis. Esophagus 21, 416–421 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Siddiqui, A. A. et al. Elevated HbA1c is an independent predictor of aggressive clinical behavior in patients with colorectal cancer: a case-control study. Dig. Dis. Sci. 53, 2486–2494 (2008).

    CAS  PubMed  Google Scholar 

  28. 28.

    Xiao, H. et al. Impact of comorbidities on prostate cancer stage at diagnosis in Florida. Am. J. Mens Health 10, 285–295 (2016).

    PubMed  Google Scholar 

  29. 29.

    Yasmeen, S. et al. Risk of advanced-stage breast cancer among older women with comorbidities. Cancer Epidemiol. Biomarkers Prev. 21, 1510–1519 (2012).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Desai, M. M., Bruce, M. L. & Kasl, S. V. The effects of major depression and phobia on stage at diagnosis of breast cancer. Int. J. Psychiatry Med. 29, 29–45 (1999).

    CAS  PubMed  Google Scholar 

  31. 31.

    Fleming, S. T., McDavid, K., Pearce, K. & Pavlov, D. Comorbidities and the risk of late-stage prostate cancer. ScientificWorldJournal 6, 2460–2470 (2006).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gornick, M. E., Eggers, P. W. & Riley, G. F. Associations of race, education, and patterns of preventive service use with stage of cancer at time of diagnosis. Health Serv. Res. 39, 1403–1427 (2004).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Reid, B. C., Warren, J. L. & Rozier, G. Comorbidity and early diagnosis of head and neck cancer in a Medicare population. Am. J. Prev. Med. 27, 373–378 (2004).

    PubMed  Google Scholar 

  34. 34.

    Sikka, V. & Ornato, J. P. Cancer diagnosis and outcomes in Michigan EDs versus other settings. Am. J. Emerg. Med. 30, 283–292 (2012).

    PubMed  Google Scholar 

  35. 35.

    Taneja, S., Mandayam, S., Kayani, Z. Z., Kuo, Y. F. & Shahinian, V. B. Comparison of stage at diagnosis of cancer in patients who are on dialysis versus the general population. Clin. J. Am. Soc. Nephrol. 2, 1008–1013 (2007).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Baillargeon, J. et al. Effect of mental disorders on diagnosis, treatment, and survival of older adults with colon cancer. J. Am. Geriatr. Soc. 59, 1268–1273 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ahn, D. H. et al. Influence of medical comorbidities on the presentation and outcomes of stage I–III non-small-cell lung cancer. Clin. Lung Cancer 14, 644–650 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Abgrall-Barbry, G. et al. Depressive mood and subsequent cancer diagnosis in patients undergoing a colonoscopy. Psychosomatics 53, 356–362 (2012).

    PubMed  Google Scholar 

  39. 39.

    Fazio, L., Cotterchio, M., Manno, M., McLaughlin, J. & Gallinger, S. Association between colonic screening, subject characteristics, and stage of colorectal cancer. Am. J. Gastroenterol. 100, 2531–2539 (2005).

    PubMed  Google Scholar 

  40. 40.

    Fisher, D. A. et al. Risk factors for advanced disease in colorectal cancer. Am. J. Gastroenterol. 99, 2019–2024 (2004).

    PubMed  Google Scholar 

  41. 41.

    Fisher, D. A. et al. Determinants of medical system delay in the diagnosis of colorectal cancer within the Veteran Affairs Health System. Dig. Dis. Sci. 55, 1434–1441 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gupta, S. K. & Lamont, E. B. Patterns of presentation, diagnosis, and treatment in older patients with colon cancer and comorbid dementia. J. Am. Geriatr. Soc. 52, 1681–1687 (2004).

    PubMed  Google Scholar 

  43. 43.

    Iritani, S., Tohgi, M., Miyata, H. & Ohi, G. Impact of dementia on cancer discovery and pain. Psychogeriatrics 11, 6–13 (2011).

    PubMed  Google Scholar 

  44. 44.

    Henry, K. A., Sherman, R. & Roche, L. M. Colorectal cancer stage at diagnosis and area socioeconomic characteristics in New Jersey. Health Place 15, 505–513 (2009).

    PubMed  Google Scholar 

  45. 45.

    Raval, A. D., Madhavan, S., Mattes, M. D. & Sambamoorthi, U. Association between types of chronic conditions and cancer stage at diagnosis among elderly Medicare beneficiaries with prostate cancer. Popul. Health Manag. 19, 445–453 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zafar, S. Y. et al. Comorbidity, age, race and stage at diagnosis in colorectal cancer: a retrospective, parallel analysis of two health systems. BMC Cancer 8, 345 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Elliss-Brookes, L. et al. Routes to diagnosis for cancer — determining the patient journey using multiple routine data sets. Br. J. Cancer 107, 1220–1226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    McPhail, S. et al. Emergency presentation of cancer and short-term mortality. Br. J. Cancer 109, 2027–2034 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Salika, T. et al. Associations between diagnostic pathways and care experience in colorectal cancer: evidence from patient-reported data. Frontline Gastroenterol. 9, 241–248 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Pruitt, S. L., Davidson, N. O., Gupta, S., Yan, Y. & Schootman, M. Missed opportunities: racial and neighborhood socioeconomic disparities in emergency colorectal cancer diagnosis and surgery. BMC Cancer 14, 927 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sikka, V. Cancer diagnosis and outcomes in Michigan emergency departments versus other settings [abstract 278]. Ann. Emerg. Med. 56, S92 (2010).

    Google Scholar 

  52. 52.

    Rabeneck, L., Paszat, L. F. & Li, C. Risk factors for obstruction, perforation, or emergency admission at presentation in patients with colorectal cancer: a population-based study. Am. J. Gastroenterol. 101, 1098–1103 (2006).

    PubMed  Google Scholar 

  53. 53.

    Askari, A. et al. Defining characteristics of patients with colorectal cancer requiring emergency surgery. Int. J. Colorectal Dis. 30, 1329–1336 (2015).

    PubMed  Google Scholar 

  54. 54.

    Wallace, D. et al. Identifying patients at risk of emergency admission for colorectal cancer. Br. J. Cancer 111, 577–580 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Beckett, P., Tata, L. & Hubbard, R. Risk factors and survival outcome for non-elective referral in non-small cell lung cancer patients — analysis based on the National Lung Cancer Audit. Lung Cancer 83, 396–400 (2014).

    CAS  PubMed  Google Scholar 

  56. 56.

    Markar, S. R. et al. Emergency presentation of esophagogastric cancer: predictors and long-term prognosis. Ann. Surg. 267, 711–715 (2018).

    PubMed  Google Scholar 

  57. 57.

    Mitchell, E., Rubin, G., Merriman, L. & Macleod, U. The role of primary care in cancer diagnosis via emergency presentation: qualitative synthesis of significant event reports. Br. J. Cancer 112 (Suppl. 1), S50–S56 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Shawihdi, M. et al. Variation in gastroscopy rate in English general practice and outcome for oesophagogastric cancer: retrospective analysis of Hospital Episode Statistics. Gut 63, 250–261 (2014).

    PubMed  Google Scholar 

  59. 59.

    Solsky, I. et al. Gastric cancer diagnosis after presentation to the ED: the independent association of presenting location and outcomes. Am. J. Surg. 216, 286–292 (2017).

    PubMed  Google Scholar 

  60. 60.

    Tsang, C., Bottle, A., Majeed, A. & Aylin, P. Cancer diagnosed by emergency admission in England: an observational study using the general practice research database. BMC Health Serv. Res. 13, 308 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Vajdic, C. M. et al. Health service utilisation and investigations before diagnosis of cancer of unknown primary (CUP): a population-based nested case-control study in Australian Government Department of Veterans’ Affairs clients. Cancer Epidemiol. 39, 585–592 (2015).

    PubMed  Google Scholar 

  62. 62.

    Renzi, C., Lyratzopoulos, G., Hamilton, W., Maringe, C. & Rachet, B. Contrasting effects of comorbidities on emergency colon cancer diagnosis: a longitudinal data-linkage study in England. BMC Health Serv. Res. 19, 311 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Black, G. et al. Patients’ experiences of cancer diagnosis as a result of an emergency presentation: a qualitative study. PLOS ONE 10, e0135027 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Gunnarsson, H., Holm, T., Ekholm, A. & Olsson, L. I. Emergency presentation of colon cancer is most frequent during summer. Colorectal Dis. 13, 663–668 (2011).

    CAS  PubMed  Google Scholar 

  65. 65.

    Mitchell, A. D., Inglis, K. M., Murdoch, J. M. & Porter, G. A. Emergency room presentation of colorectal cancer: a consecutive cohort study. Ann. Surg. Oncol. 14, 1099–1104 (2007).

    PubMed  Google Scholar 

  66. 66.

    Gunnarsson, H. et al. Heterogeneity of colon cancer patients reported as emergencies. World J. Surg. 38, 1819–1826 (2014).

    CAS  PubMed  Google Scholar 

  67. 67.

    Guilcher, S. J. et al. Level of disability, multi-morbidity and breast cancer screening: does severity matter? Prev. Med. 67, 193–198 (2014).

    PubMed  Google Scholar 

  68. 68.

    Lofters, A. et al. Screening for cervical cancer in women with disability and multimorbidity: a retrospective cohort study in Ontario, Canada. CMAJ Open 2, E240–E247 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Kiefe, C. I., Funkhouser, E., Fouad, M. N. & May, D. S. Chronic disease as a barrier to breast and cervical cancer screening. J. Gen. Intern. Med. 13, 357–365 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Klabunde, C. N. et al. Influence of age and comorbidity on colorectal cancer screening in the elderly. Am. J. Preventive Med. 51, e67–e75 (2016).

    Google Scholar 

  71. 71.

    Zhao, G., Ford, E. S., Ahluwalia, I. B., Li, C. & Mokdad, A. H. Prevalence and trends of receipt of cancer screenings among US women with diagnosed diabetes. J. Gen. Intern. Med. 24, 270–275 (2009).

    PubMed  Google Scholar 

  72. 72.

    Bell, R. A., Shelton, B. J. & Paskett, E. D. Colorectal cancer screening in North Carolina: associations with diabetes mellitus and demographic and health characteristics. Prev. Med. 32, 163–167 (2001).

    CAS  PubMed  Google Scholar 

  73. 73.

    McBean, A. M. & Yu, X. The underuse of screening services among elderly women with diabetes. Diabetes Care 30, 1466–1472 (2007).

    PubMed  Google Scholar 

  74. 74.

    von Wagner, C. et al. Predictors of intention translation in bowel scope (flexible sigmoidoscopy) screening for colorectal cancer. Health Psychol. (in the press).

  75. 75.

    Chan, W. et al. Impact of socio-economic status on breast cancer screening in women with diabetes: a population-based study. Diabet. Med. 31, 806–812 (2014).

    CAS  PubMed  Google Scholar 

  76. 76.

    Lipscombe, L. L., Hux, J. E. & Booth, G. L. Reduced screening mammography among women with diabetes. Arch. Intern. Med. 165, 2090–2095 (2005).

    PubMed  Google Scholar 

  77. 77.

    Kendall, C. E. et al. A cross-sectional population-based study of breast cancer screening among women with HIV in Ontario, Canada. CMAJ Open 5, E673–E681 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Vigod, S. N., Kurdyak, P. A., Stewart, D. E., Gnam, W. H. & Goering, P. N. Depressive symptoms as a determinant of breast and cervical cancer screening in women: a population-based study in Ontario, Canada. Arch. Womens Mental Health 14, 159–168 (2011).

    Google Scholar 

  79. 79.

    Martin-Lopez, R. et al. Inequalities in uptake of breast cancer screening in Spain: analysis of a cross-sectional national survey. Public Health 127, 822–827 (2013).

    CAS  PubMed  Google Scholar 

  80. 80.

    Wee, C. C., McCarthy, E. P., Davis, R. B. & Phillips, R. S. Obesity and breast cancer screening. J. Gen. Intern. Med. 19, 324–331 (2004).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Ferrante, J. M., Chen, P. H. & Jacobs, A. Breast and cervical cancer screening in obese minority women. J. Womens Health 15, 531–541 (2006).

    Google Scholar 

  82. 82.

    Birt, L. et al. Responding to symptoms suggestive of lung cancer: a qualitative interview study. BMJ Open Respir. Res. 1, e000067 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Corner, J., Hopkinson, J. & Roffe, L. Experience of health changes and reasons for delay in seeking care: a UK study of the months prior to the diagnosis of lung cancer. Soc. Sci. Med. 62, 1381–1391 (2006).

    PubMed  Google Scholar 

  84. 84.

    Teppo, H. & Alho, O. P. Comorbidity and diagnostic delay in cancer of the larynx, tongue and pharynx. Oral Oncol. 45, 692–695 (2009).

    PubMed  Google Scholar 

  85. 85.

    Van Hout, A. M., de Wit, N. J., Rutten, F. H. & Peeters, P. H. Determinants of patient’s and doctor’s delay in diagnosis and treatment of colorectal cancer. Eur. J. Gastroenterol. Hepatol. 23, 1056–1063 (2011).

    PubMed  Google Scholar 

  86. 86.

    Brandenbarg, D. et al. Possible missed opportunities for diagnosing colorectal cancer in Dutch primary care: a multimethods approach. Br. J. Gen. Pract. 68, e54–e62 (2018).

    PubMed  Google Scholar 

  87. 87.

    Mor, V., Masterson-Allen, S., Goldberg, R., Guadagnoli, E. & Wool, M. S. Pre-diagnostic symptom recognition and help seeking among cancer patients. J. Commun. Health 15, 253–266 (1990).

    CAS  Google Scholar 

  88. 88.

    McLachlan, S. et al. Symptom perceptions and help-seeking behaviour prior to lung and colorectal cancer diagnoses: a qualitative study. Fam. Pract. 32, 568–577 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Renzi, C., Whitaker, K. L., Winstanley, K., Cromme, S. & Wardle, J. Unintended consequences of an ‘all-clear’ diagnosis for potential cancer symptoms: a nested qualitative interview study with primary care patients. Br. J. Gen. Pract. 66, e158–e170 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Salika, T., Lyratzopoulos, G., Whitaker, K. L., Waller, J. & Renzi, C. Do comorbidities influence help-seeking for cancer alarm symptoms? A population-based survey in England. J. Public Health 40, 340–349 (2017).

    Google Scholar 

  91. 91.

    Smith, S. M. et al. Factors contributing to the time taken to consult with symptoms of lung cancer: a cross-sectional study. Thorax 64, 523–531 (2009).

    CAS  PubMed  Google Scholar 

  92. 92.

    Cunningham, Y. et al. Symptom appraisal of potential lung cancer symptoms among people with chronic obstructive pulmonary disease — the challenge of multimorbidity. Psychooncology 28, 718–725 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Burgess, C. C., Ramirez, A. J., Smith, P. & Richards, M. A. Do adverse life events and mood disorders influence delayed presentation of breast cancer? J. Psychosom. Res. 48, 171–175 (2000).

    CAS  PubMed  Google Scholar 

  94. 94.

    Robinson, K., Christensen, K., Ottesen, B. & Krasnik, A. Socio-demographic factors, comorbidity and diagnostic delay among women diagnosed with cervical, endometrial or ovarian cancer. Eur. J. Cancer Care 20, 653–661 (2011).

    CAS  Google Scholar 

  95. 95.

    Walter, F. M. et al. Symptoms and patient factors associated with longer time to diagnosis for colorectal cancer: results from a prospective cohort study. Br. J. Cancer 115, 533–541 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Cheung, D., Evison, F., Patel, P. & Trudgill, N. Factors associated with colorectal cancer occurrence after colonoscopy that did not diagnose colorectal cancer. Gastrointest. Endosc. 84, 287–295 (2016).

    PubMed  Google Scholar 

  97. 97.

    Nikonova, A., Guirguis, H. R., Buckstein, R. & Cheung, M. C. Predictors of delay in diagnosis and treatment in diffuse large B cell lymphoma and impact on survival. Br. J. Haematol. 168, 492–500 (2015).

    PubMed  Google Scholar 

  98. 98.

    Wagland, R. et al. Facilitating early diagnosis of lung cancer amongst primary care patients: the views of GPs. Eur. J. Cancer Care 26, e12704 (2017).

    Google Scholar 

  99. 99.

    Mitchell, E. D., Rubin, G. & Macleod, U. Understanding diagnosis of lung cancer in primary care: qualitative synthesis of significant event audit reports. Br. J. Gen. Pract. 63, e37–e46 (2013).

    PubMed  Google Scholar 

  100. 100.

    Singh, H. et al. Missed opportunities to initiate endoscopic evaluation for colorectal cancer diagnosis. Am. J. Gastroenterol. 104, 2543–2554 (2009).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Bjerager, M., Palshof, T., Dahl, R., Vedsted, P. & Olesen, F. Delay in diagnosis of lung cancer in general practice. Br. J. Gen. Pract. 56, 863–868 (2006).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Mounce, L. T. A., Price, S., Valderas, J. M. & Hamilton, W. Comorbid conditions delay diagnosis of colorectal cancer: a cohort study using electronic primary care records. Br. J. Cancer 116, 1536–1543 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Walter, F. M. et al. Symptoms and other factors associated with time to diagnosis and stage of lung cancer: a prospective cohort study. Br. J. Cancer 112 (Suppl. 1), S6–S13 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Allison, P., Franco, E. & Feine, J. Predictors of professional diagnostic delays for upper aerodigestive tract carcinoma. Oral Oncol. 34, 127–132 (1998).

    CAS  PubMed  Google Scholar 

  105. 105.

    Friese, C. R. et al. Diagnostic delay and complications for older adults with multiple myeloma. Leuk. Lymphoma 50, 392–400 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Friese, C. R. et al. Timeliness and quality of diagnostic care for medicare recipients with chronic lymphocytic leukemia. Cancer 117, 1470–1477 (2011).

    PubMed  Google Scholar 

  107. 107.

    Huo, Q. et al. Delay in diagnosis and treatment of symptomatic breast cancer in China. Ann. Surg. Oncol. 22, 883–888 (2015).

    PubMed  Google Scholar 

  108. 108.

    Shah, H. A., Paszat, L. F., Saskin, R., Stukel, T. A. & Rabeneck, L. Factors associated with incomplete colonoscopy: a population-based study. Gastroenterology 132, 2297–2303 (2007).

    PubMed  Google Scholar 

  109. 109.

    Robertson, D. J. et al. Colorectal cancers soon after colonoscopy: a pooled multicohort analysis. Gut 63, 949–956 (2014).

    PubMed  Google Scholar 

  110. 110.

    Chopra, D. & Hookey, L. C. Comorbid illness, bowel preparation, and logistical constraints are key reasons for outpatient colonoscopy nonattendance. Can. J. Gastroenterol. Hepatol. 2016, 2179354 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Koido, S. et al. Factors associated with incomplete colonoscopy at a Japanese academic hospital. World J. Gastroenterol. 20, 6961–6967 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Mills, K. et al. Understanding symptom appraisal and help-seeking in people with symptoms suggestive of pancreatic cancer: a qualitative study. BMJ Open 7, e015682 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Newschaffer, C. J. et al. Does comorbid disease interact with cancer? An epidemiologic analysis of mortality in a cohort of elderly breast cancer patients. J. Gerontol. A Biol. Sci. Med. Sci. 53, M372–M378 (1998).

    CAS  PubMed  Google Scholar 

  114. 114.

    Giovannucci, E. et al. Diabetes and cancer: a consensus report. Diabetes Care 33, 1674–1685 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Simon, T. G. et al. Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: results from two prospective cohort studies. Hepatology 67, 1797–1806 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Hall, N. et al. Concerns, perceived need and competing priorities: a qualitative exploration of decision-making and non-participation in a population-based flexible sigmoidoscopy screening programme to prevent colorectal cancer. BMJ Open 6, e012304 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Whitaker, K. L., Macleod, U., Winstanley, K., Scott, S. E. & Wardle, J. Help seeking for cancer ‘alarm’ symptoms: a qualitative interview study of primary care patients in the UK. Br. J. Gen. Pract. 65, e96–e105 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Forbes, L. J. et al. Differences in cancer awareness and beliefs between Australia, Canada, Denmark, Norway, Sweden and the UK (the International Cancer Benchmarking Partnership): do they contribute to differences in cancer survival? Br. J. Cancer 108, 292–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Cassell, A. et al. The epidemiology of multimorbidity in primary care: a retrospective cohort study. Br. J. Gen. Pract. 68, e245–e251 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Driver, J. A. et al. Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ 344, e1442 (2012).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    NHS Digital. Adult psychiatric morbidity in England — 2007, results of a household survey. NHS https://digital.nhs.uk/data-and-information/publications/statistical/adult-psychiatric-morbidity-survey/adult-psychiatric-morbidity-in-england-2007-results-of-a-household-survey (2009).

  122. 122.

    World Health Organization. Data and resources. WHO www.euro.who.int/en/health-topics/noncommunicable-diseases/mental-health/data-and-resources (2018).

  123. 123.

    Solbjor, M., Skolbekken, J. A., Saetnan, A. R., Hagen, A. I. & Forsmo, S. Could screening participation bias symptom interpretation? An interview study on women’s interpretations of and responses to cancer symptoms between mammography screening rounds. BMJ Open 2, e001508 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Bandura, A. Health promotion from the perspective of social cognitive theory. Psychol. Health 13, 623–649 (1998).

    Google Scholar 

  125. 125.

    Singh, H. & Graber, M. L. Improving diagnosis in health care — the next imperative for patient safety. N. Engl. J. Med. 373, 2493–2495 (2015).

    PubMed  Google Scholar 

  126. 126.

    Singh, H. & Sittig, D. F. Advancing the science of measurement of diagnostic errors in healthcare: the Safer Dx framework. BMJ Qual. Saf. 24, 103–110 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Murphy, D. R. et al. Electronic health record-based triggers to detect potential delays in cancer diagnosis. BMJ Qual. Saf. 23, 8–16 (2014).

    PubMed  Google Scholar 

  128. 128.

    Salisbury, C. et al. Management of multimorbidity using a patient-centred care model: a pragmatic cluster-randomised trial of the 3D approach. Lancet 392, 41–50 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Fuller, E., Fitzgerald, K. & Hiom, S. Accelerate, Coordinate, Evaluate Programme: a new approach to cancer diagnosis. Br. J. Gen. Pract. 66, 176–177 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Moseholm, E. & Lindhardt, B. O. Patient characteristics and cancer prevalence in the Danish cancer patient pathway for patients with serious non-specific symptoms and signs of cancer — a nationwide, population-based cohort study. Cancer Epidemiol. 50, 166–172 (2017).

    CAS  PubMed  Google Scholar 

  131. 131.

    Naeser, E., Fredberg, U., Moller, H. & Vedsted, P. Clinical characteristics and risk of serious disease in patients referred to a diagnostic centre: a cohort study. Cancer Epidemiol. 50, 158–165 (2017).

    PubMed  Google Scholar 

  132. 132.

    Foster, A., Renzi, C. & Lyratzopoulos, G. Diagnosing cancer in patients with ‘non-alarm’ symptoms: learning from diagnostic care innovations in Denmark. Cancer Epidemiol. 54, 101–103 (2018).

    Google Scholar 

  133. 133.

    Nicholson, B. D. et al. The Suspected CANcer (SCAN) pathway: protocol for evaluating a new standard of care for patients with non-specific symptoms of cancer. BMJ Open 8, e018168 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Fisher, D. A., Judd, L. & Sanford, N. S. Inappropriate colorectal cancer screening: findings and implications. Am. J. Gastroenterol. 100, 2526–2530 (2005).

    PubMed  Google Scholar 

  135. 135.

    Grunfeld, E. et al. Improving chronic disease prevention and screening in primary care: results of the BETTER pragmatic cluster randomized controlled trial. BMC Fam. Pract. 14, 175 (2013).

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Mazza, D. & Mitchell, G. Cancer, ageing, multimorbidity and primary care. Eur. J. Cancer Care 26, e12717 (2017).

    Google Scholar 

  137. 137.

    Almond, S., Mant, D. & Thompson, M. Diagnostic safety-netting. Br. J. Gen. Pract. 59, 872–874 (2009).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Sheringham, J. et al. Variations in GPs’ decisions to investigate suspected lung cancer: a factorial experiment using multimedia vignettes. BMJ Qual. Saf. 26, 449–459 (2017).

    PubMed  Google Scholar 

  139. 139.

    Meyer, A. D., Payne, V. L., Meeks, D. W., Rao, R. & Singh, H. Physicians’ diagnostic accuracy, confidence, and resource requests: a vignette study. JAMA Intern. Med. 173, 1952–1958 (2013).

    PubMed  Google Scholar 

  140. 140.

    Bhise, V. et al. Patient perspectives on how physicians communicate diagnostic uncertainty: an experimental vignette study. Int. J. Qual. Health Care 30, 2–8 (2018).

    PubMed  Google Scholar 

  141. 141.

    Bhise, V. et al. Defining and measuring diagnostic uncertainty in medicine: a systematic review. J. Gen. Intern. Med. 33, 103–115 (2018).

    PubMed  Google Scholar 

  142. 142.

    Erichsen, R., Horvath-Puho, E., Iversen, L. H., Lash, T. L. & Sorensen, H. T. Does comorbidity interact with colorectal cancer to increase mortality? A nationwide population-based cohort study. Br. J. Cancer 109, 2005–2013 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Iversen, L. H., Norgaard, M., Jacobsen, J., Laurberg, S. & Sorensen, H. T. The impact of comorbidity on survival of Danish colorectal cancer patients from 1995 to 2006 — a population-based cohort study. Dis. Colon Rectum. 52, 71–78 (2009).

    PubMed  Google Scholar 

  144. 144.

    Berger, Z. D. et al. Patient centred diagnosis: sharing diagnostic decisions with patients in clinical practice. BMJ 359, j4218 (2017).

    PubMed  Google Scholar 

  145. 145.

    Lawal, A. K. et al. What is a clinical pathway? Refinement of an operational definition to identify clinical pathway studies for a Cochrane systematic review. BMC Med. 14, 35 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    The National Institute for Health and Care Excellence. NICE pathways: what are NICE pathways? NICE www.nice.org.uk/about/what-we-do/our-programmes/about-nice-pathways (2019).

  147. 147.

    Weller, D. et al. The Aarhus statement: improving design and reporting of studies on early cancer diagnosis. Br. J. Cancer 106, 1262–1267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Jaen, C. R., Stange, K. C. & Nutting, P. A. Competing demands of primary care: a model for the delivery of clinical preventive services. J. Fam. Pract. 38, 166–171 (1994).

    CAS  PubMed  Google Scholar 

  149. 149.

    Feinstein, A. R. The pre-therapeutic classification of co-morbidity in chronic disease. J. Chronic Dis. 23, 455–468 (1970).

    CAS  PubMed  Google Scholar 

  150. 150.

    Pace, R. et al. Testing the reliability and efficiency of the pilot Mixed Methods Appraisal Tool (MMAT) for systematic mixed studies review. Int. J. Nurs. Stud. 49, 47–53 (2012).

    PubMed  Google Scholar 

  151. 151.

    Braithwaite, D. et al. Screening outcomes in older US women undergoing multiple mammograms in community practice: does interval, age, or comorbidity score affect tumor characteristics or false positive rates? J. Natl Cancer Inst. 105, 334–341 (2013).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Walter, L. C. et al. Impact of age and comorbidity on colorectal cancer screening among older veterans. Ann. Intern. Med. 150, 465–473 (2009).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Jiménez-Garcia, R., Hernandez-Barrera, V., Carrasco-Garrido, P. & Gil, A. Prevalence and predictors of breast and cervical cancer screening among Spanish women with diabetes. Diabetes Care 32, 1470–1472 (2009).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Cunningham, R., Sarfati, D., Stanley, J., Peterson, D. & Collings, S. Cancer survival in the context of mental illness: a national cohort study. Gen. Hosp. Psychiatry 37, 501–506 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

This research arises from the CanTest Collaborative, which is funded by Cancer Research UK (C8640/A23385). C.R. acknowledges funding from a BMA TP Gunton research grant. H.S. is partly supported by the VA Health Services Research and Development Service Center for Innovations in Quality, Effectiveness and Safety (CIN13-413). G.L. acknowledges funding from Cancer Research UK (Advanced Clinician Scientist Fellowship Award, grant number C18081/A18180). J.E. acknowledges funding from an NHMRC Practitioner Fellowship.

Review criteria

This Review includes original research involving quantitative, qualitative and mixed methods. Qualitative studies are included in order to provide insights into the complex effects of chronic conditions and their underlying mechanisms. The available evidence refers to cohort (n = 31), cross-sectional (n = 25) and case-control (n = 6) studies, as well as case-series (n = 13) and qualitative studies (n = 11). A quality score was assigned to each reference according to the Mixed Methods Appraisal Tool (MMAT) (further details on the review methods are provided in the Supplementary Box and Figure). The MMAT is a validated quality assessment tool, enabling the merits of each study to be evaluated based on various criteria specific for the different study designs (with a highest possible score of 100, if all criteria are met). Most studies received a MMAT score of 75 or 50 (35 and 31 studies, respectively); a score of 100 was assigned to 11 studies; and only 1 study received a score of 25 (Supplementary Table 1).

Author information

Affiliations

Authors

Contributions

C.R. and A.K researched data for the manuscript. All authors made a substantial contribution to discussions of content. C.R. and G.L. wrote the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Cristina Renzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renzi, C., Kaushal, A., Emery, J. et al. Comorbid chronic diseases and cancer diagnosis: disease-specific effects and underlying mechanisms. Nat Rev Clin Oncol 16, 746–761 (2019). https://doi.org/10.1038/s41571-019-0249-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing