Researchers from Google AI have presented results obtained using a deep learning model for the detection of lung cancer in screening CT images. The authors report a level of performance similar to, or better than, that of radiologists. However, these claims are currently too strong. The model is promising but needs further validation and could only be implemented if screening guidelines were adjusted to accept recommendations from black-box proprietary AI systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).
Pinsky, P. F. Lung cancer screening with low-dose CT: a world-wide view. Transl Lung Cancer Res. 7, 234–242 (2018).
Setio, A. A. A. et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017).
Ritchie, A. J. et al. Computer vision tool and technician as first reader of lung cancer screening CT scans. J. Thorac. Oncol. 11, 709–717 (2016).
Kaggle Inc. Data science bowl 2017. Can you improve lung cancer detection? Kaggle https://www.kaggle.com/c/data-science-bowl-2017/ (2017).
Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).
American College of Radiology. Lung CT screening reporting & data system. ACR https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads (2019).
Chung, K. et al. Lung-RADS category 4X: does it improve prediction of malignancy in subsolid nodules? Radiology 284, 264–271 (2017).
McWilliams, A. et al. Probability of cancer in pulmonary nodules detected on first screening CT. N. Engl. J. Med. 369, 910–919 (2013).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
C.J. and B.v.G. receive funding and royalties from MeVis Medical Solutions for the development of software related to lung cancer screening.
Rights and permissions
About this article
Cite this article
Jacobs, C., van Ginneken, B. Google’s lung cancer AI: a promising tool that needs further validation. Nat Rev Clin Oncol 16, 532–533 (2019). https://doi.org/10.1038/s41571-019-0248-7
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41571-019-0248-7