Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chronic lymphocytic leukaemia: from genetics to treatment

Abstract

Chronic lymphocytic leukaemia (CLL), the most frequent type of leukaemia in adults, is a lymphoproliferative disorder that is characterized by the expansion of monoclonal, mature CD5+CD23+ B cells in the peripheral blood, secondary lymphoid tissues and bone marrow. CLL is an incurable disease with a heterogeneous clinical course, for which the treatment decision still relies on conventional parameters (such as clinical stage and lymphocyte doubling time). During the past 5 years, relevant advances have been made in understanding CLL biology. Indeed, substantial progress has been made in the identification of the putative cell of origin of CLL, and comprehensive studies have dissected the genomic, epigenomic and transcriptomic landscape of CLL. Advances in clinical management include improvements in our understanding of the prognostic value of different genetic lesions, particularly those associated with chemoresistance and progression to highly aggressive forms of CLL, and the advent of new therapies targeting crucial biological pathways. In this Review, we discuss new insights into the genetic lesions involved in the pathogenesis of CLL and how these genetic insights influence clinical management and the development of new therapeutic strategies for this disease.

Key points

  • Next-generation sequencing of the coding genome has identified the most common somatic genetic alterations associated with the pathogenesis of chronic lymphocytic leukaemia (CLL).

  • Specific genetic alterations provide biomarkers for prognostication of the clinical course and prediction of response to chemotherapy and targeted therapy.

  • Recurrent genetic alterations identify cellular pathways that present potential therapeutic targets.

  • This new knowledge is informing novel treatment algorithms for the clinical management of patients with CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cellular origin of chronic lymphocytic leukaemia.
Fig. 2: CLL genetic landscape and currently tested targeted drugs.
Fig. 3: Genetics of chronic lymphocytic leukaemia progression.
Fig. 4: Therapeutic algorithm for patients with CLL.

Similar content being viewed by others

References

  1. Swerdlow, S. H. et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127, 2375–2390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. National Cancer Institute. Cancer stat facts: leukemia — chronic lymphocytic leukemia (CLL). SEER https://seer.cancer.gov/statfacts/html/clyl.html (2019).

  3. Wu, S.-J. et al. The incidence of chronic lymphocytic leukemia in Taiwan, 1986-2005: a distinct increasing trend with birth-cohort effect. Blood 116, 4430–4435 (2010).

    CAS  PubMed  Google Scholar 

  4. Wu, S.-J., Chiang, C.-J., Lin, C.-T., Tien, H.-F. & Lai, M.-S. A nationwide population-based cross-sectional comparison of hematological malignancies incidences between Taiwan and the United States of America. Ann. Hematol. 95, 165–167 (2016).

    PubMed  Google Scholar 

  5. Goldin, L. R., Pfeiffer, R. M., Li, X. & Hemminki, K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood 104, 1850–1854 (2004).

    CAS  PubMed  Google Scholar 

  6. Goldin, L. R. et al. Whole exome sequencing in families with CLL detects a variant in Integrin β 2 associated with disease susceptibility. Blood 128, 2261–2263 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Law, P. J. et al. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nat. Commun. 8, 14175 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Abrisqueta, P. et al. Improving survival in patients with chronic lymphocytic leukemia (1980–2008): the Hospital Clinic of Barcelona experience. Blood 114, 2044–2050 (2009).

    CAS  PubMed  Google Scholar 

  9. Hallek, M. et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute–Working Group 1996 guidelines. Blood 111, 5446–5456 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Campo, E., Harris, N. L., Jaffe, E. S., Stein, H. & Thiele, J. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (eds Swerdlow, S. H. et al.) (IARC, 2017).

  11. Rai, K. R. et al. Clinical staging of chronic lymphocytic leukemia. Blood 46, 219–234 (1975).

    CAS  PubMed  Google Scholar 

  12. Binet, J. L. et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 48, 198–206 (1981).

    CAS  PubMed  Google Scholar 

  13. Rai, K. R. Progress in chronic lymphocytic leukaemia: a historical perspective. Baillières Clin. Haematol. 6, 757–765 (1993).

    CAS  PubMed  Google Scholar 

  14. Crespo, M. et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N. Engl. J. Med. 348, 1764–1775 (2003).

    CAS  PubMed  Google Scholar 

  15. Rossi, D. et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 121, 1403–1412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cramer, P. & Hallek, M. Prognostic factors in chronic lymphocytic leukemia—what do we need to know? Nat. Rev. Clin. Oncol. 8, 38 (2011).

    CAS  PubMed  Google Scholar 

  17. International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 17, 779–790 (2016).

    Google Scholar 

  18. Burger, J. A. & Wiestner, A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat. Rev. Cancer 18, 148–167 (2018).

    CAS  PubMed  Google Scholar 

  19. Caligaris-Cappio, F., Gobbi, M., Bofill, M. & Janossy, G. Infrequent normal B lymphocytes express features of B-chronic lymphocytic leukemia. J. Exp. Med. 155, 623–628 (1982).

    CAS  PubMed  Google Scholar 

  20. Stall, A. M. et al. Ly-1 B cell clones similar to human chronic lymphocytic leukemias routinely develop in older normal mice and young autoimmune (New Zealand Black-related) animals. Proc. Natl Acad. Sci. U. S. A. 85, 7312–7316 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194, 1625–1638 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenwald, A. et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194, 1639–1648 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Seifert, M. et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 209, 2183–2198 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    CAS  PubMed  Google Scholar 

  25. Agathangelidis, A. et al. Stereotyped B cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 119, 4467–4475 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vardi, A. et al. Immunogenetic studies of chronic lymphocytic leukemia: revelations and speculations about ontogeny and clinical evolution. Cancer Res. 74, 4211–4216 (2014).

    CAS  PubMed  Google Scholar 

  27. Tobin, G., Thunberg, U. & Johnson, A. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101, 4952–4957 (2003).

    CAS  PubMed  Google Scholar 

  28. Stamatopoulos, K., Agathangelidis, A., Rosenquist, R. & Ghia, P. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia 31, 282–291 (2017).

    CAS  PubMed  Google Scholar 

  29. Minden, M. D. et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489, 309–312 (2012).

    CAS  Google Scholar 

  30. Husby, S. & Grønbæk, K. Mature lymphoid malignancies: origin, stem cells, and chronicity. Blood Adv. 1, 2444–2455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kikushige, Y. et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20, 246–259 (2011).

    CAS  PubMed  Google Scholar 

  32. Damm, F. et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4, 1088–1101 (2014).

    CAS  PubMed  Google Scholar 

  33. Marsilio, S. et al. Somatic CLL mutations occur at multiple distinct hematopoietic maturation stages: documentation and cautionary note regarding cell fraction purity. Leukemia 32, 1041–1044 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208, 1389–1401 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Puente, X. S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).

    CAS  PubMed  Google Scholar 

  41. Landau, D. A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012).

    CAS  Google Scholar 

  43. Ljungström, V. et al. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood 127, 1007–1016 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Kasar, S. et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6, 8866 (2015).

    CAS  PubMed  Google Scholar 

  45. Landau, D. A. et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat. Commun. 8, 2185 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fabbri, G. & Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat. Rev. Cancer 16, 145–162 (2016).

    PubMed  Google Scholar 

  49. Rosenquist, R., Beà, S., Du, M.-Q., Nadel, B. & Pan-Hammarström, Q. Genetic landscape and deregulated pathways in B cell lymphoid malignancies. J. Intern. Med. 282, 371–394 (2017).

    CAS  PubMed  Google Scholar 

  50. Döhner, H. et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343, 1910–1916 (2000).

    PubMed  Google Scholar 

  51. Klein, U. et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17, 28–40 (2010).

    CAS  PubMed  Google Scholar 

  52. Rawstron, A. C. Monoclonal B cell lymphocytosis and chronic lymphocytic leukemia. N. Engl. J. Med. 359, 575–583 (2008).

    CAS  PubMed  Google Scholar 

  53. Migliazza, A. et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B cell chronic lymphocytic leukemia. Blood 97, 2098–2104 (2001).

    CAS  PubMed  Google Scholar 

  54. Kalachikov, S. et al. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 42, 369–377 (1997).

    CAS  PubMed  Google Scholar 

  55. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. U. S. A. 99, 15524–15529 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Palamarchuk, A. et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood 115, 3916–3922 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hammarsund, M. et al. Characterization of a novel B-CLL candidate gene — DLEU7 — located in the 13q14 tumor suppressor locus. FEBS Lett. 556, 75–80 (2004).

    CAS  PubMed  Google Scholar 

  58. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. U. S. A. 102, 13944–13949 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Belver, L. & Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16, 494–507 (2016).

    CAS  PubMed  Google Scholar 

  60. Guruharsha, K. G., Kankel, M. W. & Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 13, 654–666 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Arruga, F. et al. Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 28, 1060–1070 (2014).

    CAS  PubMed  Google Scholar 

  62. Fabbri, G. et al. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. U. S. A. 114, E2911–E2919 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rossi, D. et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 119, 521–529 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Baliakas, P. et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 29, 329–336 (2015).

    CAS  PubMed  Google Scholar 

  65. Fabbri, G. et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J. Exp. Med. 210, 2273–2288 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rossi, D. et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood 117, 3391–3401 (2011).

    CAS  PubMed  Google Scholar 

  67. Balatti, V. et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 119, 329–331 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Benedetti, D. et al. NOTCH1 mutations are associated with high CD49d expression in chronic lymphocytic leukemia: link between the NOTCH1 and the NF-κB pathways. Leukemia 32, 654–662 (2017).

    PubMed  Google Scholar 

  69. Pozzo, F. et al. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia 31, 2407–2415 (2017).

    CAS  PubMed  Google Scholar 

  70. Stilgenbauer, S. et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 123, 3247–3254 (2014).

    CAS  PubMed  Google Scholar 

  71. Zenz, T. et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112, 3322–3329 (2008).

    CAS  PubMed  Google Scholar 

  72. Zenz, T. et al. TP53 mutation and survival in chronic lymphocytic leukemia. J. Clin. Oncol. 28, 4473–4479 (2010).

    PubMed  Google Scholar 

  73. Döhner, H. et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B cell leukemias. Blood 85, 1580–1589 (1995).

    PubMed  Google Scholar 

  74. Gonzalez, D. et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J. Clin. Oncol. 29, 2223–2229 (2011).

    PubMed  Google Scholar 

  75. Rossi, D. et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 123, 2139–2147 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Trbusek, M. et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J. Clin. Oncol. 29, 2703–2708 (2011).

    CAS  PubMed  Google Scholar 

  77. Yu, L. et al. Survival of Del17p CLL depends on genomic complexity and somatic mutation. Clin. Cancer Res. 23, 735–745 (2017).

    CAS  PubMed  Google Scholar 

  78. Austen, B. et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 106, 3175–3182 (2005).

    CAS  PubMed  Google Scholar 

  79. Rossi, D. et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 119, 2854–2862 (2012).

    CAS  PubMed  Google Scholar 

  80. Stankovic, T. & Skowronska, A. The role of ATM mutations and 11q deletions in disease progression in chronic lymphocytic leukemia. Leuk. Lymphoma 55, 1227–1239 (2014).

    CAS  PubMed  Google Scholar 

  81. Skowronska, A. et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. J. Clin. Oncol. 30, 4524–4532 (2012).

    CAS  PubMed  Google Scholar 

  82. Nadeu, F. et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 127, 2122–2130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramsay, A. J. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 45, 526–530 (2013).

    CAS  PubMed  Google Scholar 

  84. Rossi, D. et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118, 6904–6908 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, L. et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30, 750–763 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mansouri, L. et al. Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia. J. Exp. Med. 212, 833–843 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Martínez-Trillos, A. et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood 123, 3790–3796 (2014).

    PubMed  Google Scholar 

  88. Martínez-Trillos, A. et al. Clinical impact of MYD88 mutations in chronic lymphocytic leukemia. Blood 127, 1611–1613 (2016).

    PubMed  Google Scholar 

  89. Qin, S.-C. et al. MYD88 mutations predict unfavorable prognosis in chronic lymphocytic leukemia patients with mutated IGHV gene. Blood Cancer J. 7, 651 (2017).

    Google Scholar 

  90. Santos, F. P. S. & O’Brien, S. Small lymphocytic lymphoma and chronic lymphocytic leukemia: are they the same disease? Cancer J. 18, 396–403 (2012).

    CAS  PubMed  Google Scholar 

  91. Del Giudice, I. et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 97, 437–441 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Chigrinova, E. et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 122, 2673–2682 (2013).

    CAS  PubMed  Google Scholar 

  93. Landau, D. A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Beekman, R. et al. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat. Med. 24, 868–880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Timp, W. & Feinberg, A. P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer 13, 497–510 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gaiti, F. et al. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 569, 576–580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. World Health Organization International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn (eds Swerdlow, S. H. et al.) (IARC, 2008).

  98. Nieto, W. G. et al. Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach. Blood 114, 33–37 (2009).

    CAS  PubMed  Google Scholar 

  99. Almeida, J. et al. CLL-like B-lymphocytes are systematically present at very low numbers in peripheral blood of healthy adults. Leukemia 25, 718–722 (2011).

    CAS  PubMed  Google Scholar 

  100. Strati, P. & Shanafelt, T. D. Monoclonal B cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood 126, 454–462 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shanafelt, T. D., Ghia, P., Lanasa, M. C., Landgren, O. & Rawstron, A. C. Monoclonal B cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia 24, 512–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Landgren, O. et al. B cell clones as early markers for chronic lymphocytic leukemia. N. Engl. J. Med. 360, 659–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vardi, A. et al. Immunogenetics shows that not all MBL are equal: the larger the clone, the more similar to CLL. Blood 121, 4521–4528 (2013).

    CAS  PubMed  Google Scholar 

  104. Ghia, P., Melchers, F. & Rolink, A. G. Age-dependent changes in B lymphocyte development in man and mouse. Exp. Gerontol. 35, 159–165 (2000).

    CAS  PubMed  Google Scholar 

  105. Hallek, M. et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 131, 2745–2760 (2018).

    CAS  PubMed  Google Scholar 

  106. Dagklis, A. et al. The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)-like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood 114, 26–32 (2009).

    CAS  PubMed  Google Scholar 

  107. Agathangelidis, A. et al. Highly similar genomic landscapes in monoclonal B cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica 103, 865–873 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ojha, J. et al. Monoclonal B cell lymphocytosis is characterized by mutations in CLL putative driver genes and clonal heterogeneity many years before disease progression. Leukemia 28, 2395–2398 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Barrio, S. et al. Genomic characterization of high-count MBL cases indicates that early detection of driver mutations and subclonal expansion are predictors of adverse clinical outcome. Leukemia 31, 170–176 (2017).

    CAS  PubMed  Google Scholar 

  110. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shanafelt, T. D. et al. Karyotype evolution on fluorescent in situ hybridization analysis is associated with short survival in patients with chronic lymphocytic leukemia and is related to CD49d expression. J. Clin. Oncol. 26, e5–e6 (2008).

    PubMed  Google Scholar 

  113. Rossi, D. & Gaidano, G. Richter syndrome: pathogenesis and management. Semin. Oncol. 43, 311–319 (2016).

    CAS  PubMed  Google Scholar 

  114. Rossi, D., Spina, V. & Gaidano, G. Biology and treatment of Richter syndrome. Blood 131, 2761–2772 (2018).

    CAS  PubMed  Google Scholar 

  115. Miller, C. R. et al. Near-tetraploidy is associated with Richter transformation in chronic lymphocytic leukemia patients receiving ibrutinib. Blood Adv. 1, 1584–1588 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Weissmann, S. et al. Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia 27, 2393–2396 (2013).

    CAS  PubMed  Google Scholar 

  117. Villamor, N. et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 27, 1100–1106 (2013).

    CAS  PubMed  Google Scholar 

  118. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1058 (2010).

    CAS  PubMed  Google Scholar 

  119. Maddocks, K. J. et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 1, 80–87 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Innocenti, I. et al. Clinical, pathological, and biological characterization of Richter syndrome developing after ibrutinib treatment for relapsed chronic lymphocytic leukemia. Hematol. Oncol. 36, 600–603 (2018).

    Google Scholar 

  121. Anderson, M. A. et al. Clinico-pathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood 129, 3362–3370 (2017).

    CAS  PubMed  Google Scholar 

  122. Herling, C. D. et al. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia. Nat. Commun. 9, 727 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

    CAS  PubMed  Google Scholar 

  124. Damle, R. N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).

    CAS  PubMed  Google Scholar 

  125. Jeromin, S. et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 28, 108–117 (2014).

    CAS  PubMed  Google Scholar 

  126. Nadeu, F. et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 32, 645–653 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Keating, M. J. et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 23, 4079–4088 (2005).

    CAS  PubMed  Google Scholar 

  128. Thompson, P. A. et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 127, 303–309 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hallek, M. et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376, 1164–1174 (2010).

    CAS  PubMed  Google Scholar 

  130. Fischer, K. et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 127, 208–215 (2016).

    CAS  PubMed  Google Scholar 

  131. Bosch, F. et al. Rituximab, fludarabine, cyclophosphamide, and mitoxantrone: a new, highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia. J. Clin. Oncol. 27, 4578–4584 (2009).

    CAS  PubMed  Google Scholar 

  132. Abrisqueta, P. et al. Rituximab maintenance after first-line therapy with rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) for chronic lymphocytic leukemia. Blood 122, 3951–3959 (2013).

    CAS  PubMed  Google Scholar 

  133. Byrd, J. C. et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. Engl. J. Med. 371, 213–223 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Burger, J. A. et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N. Engl. J. Med. 373, 2425–2437 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Furman, R. R. et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370, 997–1007 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jones, J. A. et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial. Lancet Haematol. 4, e114–e126 (2017).

    PubMed  Google Scholar 

  137. Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).

    CAS  PubMed  Google Scholar 

  138. Stilgenbauer, S. et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 17, 768–778 (2016).

    CAS  PubMed  Google Scholar 

  139. Amin, N. A. et al. A quantitative analysis of subclonal and clonal gene mutations before and after therapy in chronic lymphocytic leukemia. Clin. Cancer Res. 22, 4525–4535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Pozzo, F. et al. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 30, 182–189 (2016).

    CAS  PubMed  Google Scholar 

  141. Messina, M. et al. Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness. Blood 123, 2378–2388 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Dreger, P. et al. TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood 121, 3284–3288 (2013).

    CAS  PubMed  Google Scholar 

  143. Hendriks, R. W., Yuvaraj, S. & Kil, L. P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer 14, 219–232 (2014).

    CAS  PubMed  Google Scholar 

  144. Farooqui, M. Z. H. et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 16, 169–176 (2015).

    CAS  PubMed  Google Scholar 

  145. Brown, J. R. et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia 32, 83–91 (2018).

    CAS  PubMed  Google Scholar 

  146. O’Brien, S. et al. Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood 131, 1910–1919 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Burger, J. A. et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 7, 11589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Woyach, J. A. et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286–2294 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Woyach, J. A. et al. BTKC481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J. Clin. Oncol. 35, 1437–1443 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Furman, R. R. et al. Ibrutinib resistance in chronic lymphocytic leukemia. N. Engl. J. Med. 370, 2352–2354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ahn, I. E. et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 129, 1469–1479 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Jones, J. et al. Evaluation of 230 patients with relapsed/refractory deletion 17p chronic lymphocytic leukaemia treated with ibrutinib from 3 clinical trials. Br. J. Haematol. 182, 504–512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rigolin, G. M. et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br. J. Haematol. 181, 229–233 (2018).

    CAS  PubMed  Google Scholar 

  154. O’Brien, S. M. et al. A phase 2 study of idelalisib plus rituximab in treatment-naive older patients with chronic lymphocytic leukemia. Blood 126, 2686–2694 (2015).

    PubMed  PubMed Central  Google Scholar 

  155. Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).

    Google Scholar 

  156. van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    PubMed  PubMed Central  Google Scholar 

  157. Blombery, P. et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Blood 132 (Suppl. 1), LBA-7 (2018).

    Google Scholar 

  158. National Comprehensive Cancer Network. Chronic lymphocytic leukemia / small lymphocytic lymphoma. NCCN https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf (2019).

  159. Goede, V. et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med. 370, 1101–1110 (2014).

    CAS  PubMed  Google Scholar 

  160. Woyach, J. A. et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N. Engl. J. Med. 379, 2517–2528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Moreno, C. et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 43–56 (2019).

    CAS  PubMed  Google Scholar 

  162. Shanafelt, T. et al. A randomized phase III study of ibrutinib (PCI-32765)-based therapy vs. standard fludarabine, cyclophosphamide, and rituximab (FCR) chemoimmunotherapy in untreated younger patients with chronic lymphocytic leukemia (CLL): a trial of the ECOG-ACRIN Cancer Research Group (E1912). Blood 132 (Suppl. 1), LBA-4 (2018).

    Google Scholar 

  163. Brown, J. R. How I treat CLL patients with ibrutinib. Blood 131, 379–386 (2018).

    CAS  PubMed  Google Scholar 

  164. Burger, J. A. & O’Brien, S. Evolution of CLL treatment — from chemoimmunotherapy to targeted and individualized therapy. Nat. Rev. Clin. Oncol. 15, 510–527 (2018).

    CAS  PubMed  Google Scholar 

  165. Badoux, X. C. et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood 117, 3016–3024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Fischer, K. et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J. Clin. Oncol. 29, 3559–3566 (2011).

    CAS  PubMed  Google Scholar 

  167. Seymour, J. F. et al. Venetoclax–rituximab in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med. 378, 1107–1120 (2018).

    CAS  PubMed  Google Scholar 

  168. Jones, J. A. et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 19, 65–75 (2018).

    CAS  PubMed  Google Scholar 

  169. Byrd, J. C. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 323–332 (2016).

    CAS  PubMed  Google Scholar 

  170. Fabian, C. A. et al. SNS-062 demonstrates efficacy in chronic lymphocytic leukemia in vitro and inhibits C481S mutated Bruton tyrosine kinase [abstract 1207]. Cancer Res. 77, 1207–1207 (2017).

    Google Scholar 

  171. Jebaraj, B. M. C. et al. Vecabrutinib is efficacious in vivo in a preclinical CLL adoptive transfer model. Blood 132, 1868–1868 (2018).

    Google Scholar 

  172. Allan, J. N. et al. Preliminary safety, pharmacokinetic, and pharmacodynamic results from a phase 1b/2 dose-escalation and cohort-expansion study of the noncovalent, reversible Bruton’s tyrosine kinase inhibitor (BTKi), vecabrutinib, in B-lymphoid malignancies. Blood 132, 3141–3141 (2018).

    Google Scholar 

  173. de Weerdt, I., Koopmans, S. M., Kater, A. P. & van Gelder, M. Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach. Haematologica 102, 1629–1639 (2017).

    PubMed  PubMed Central  Google Scholar 

  174. Flinn, I. W. et al. The phase 3 DUO trial: duvelisib versus ofatumumab in relapsed and refractory CLL/SLL. Blood 132, 2446–2455 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Younes, A. et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol. 6, e67–e78 (2019).

    PubMed  Google Scholar 

  176. Mato, A. R. et al. Phase I/II study of umbralisib (TGR-1202) in combination with ublituximab (TG-1101) and pembrolizumab in patients with relapsed/refractory CLL and Richter’s transformation. Blood 132, 297 (2018).

    Google Scholar 

  177. Cwynarski, K. et al. Autologous and allogeneic stem-cell transplantation for transformed chronic lymphocytic leukemia (Richter’s syndrome): a retrospective analysis from the chronic lymphocytic leukemia subcommittee of the chronic leukemia working party and lymphoma working party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. 30, 2211–2217 (2012).

    PubMed  Google Scholar 

  178. Park, J. H. et al. A phase I first-in-human clinical trial of CD19-targeted 19-28z/4-1BBL ‘armored’ CAR T cells in patients with relapsed or refractory NHL and CLL including Richter’s transformation. Blood 132, 224–224 (2018).

    Google Scholar 

  179. Hallek, M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 92, 946–965 (2017).

    CAS  PubMed  Google Scholar 

  180. Hillmen, P. et al. Initial results of ibrutinib plus venetoclax in relapsed, refractory CLL (Bloodwise TAP CLARITY Study): high rates of overall response, complete remission and MRD eradication after 6 months of combination therapy. Blood 130, 428 (2017).

    Google Scholar 

  181. Fischer, K. et al. Venetoclax and obinutuzumab in chronic lymphocytic leukemia. Blood 129, 2702–2705 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Cramer, P. et al. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 19, 1215–1228 (2018).

    CAS  PubMed  Google Scholar 

  183. Jain, N. et al. Combined venetoclax and ibrutinib for patients with previously untreated high-risk CLL, and relapsed/refractory CLL: a phase II trial. Blood 130, 429–429 (2017).

    Google Scholar 

  184. Byrd, J. C. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 32–42 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Mansouri, L. et al. NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia 27, 512–514 (2013).

    CAS  PubMed  Google Scholar 

  186. Wierda, W. G. et al. Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J. Clin. Oncol. 29, 4088–4095 (2011).

    PubMed  PubMed Central  Google Scholar 

  187. Rossi, D. et al. Alteration of BIRC3 and multiple other NF-κB pathway genes in splenic marginal zone lymphoma. Blood 118, 4930–4934 (2011).

    PubMed  Google Scholar 

  188. Baliakas, P. et al. Prognostic relevance of MYD88 mutations in CLL: the jury is still out. Blood 126, 1043–1044 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Hillmen, P. et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 25, 5616–5623 (2007).

    CAS  PubMed  Google Scholar 

  190. Herling, C. D. et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood 128, 395–404 (2016).

    CAS  PubMed  Google Scholar 

  191. O’Brien, S. et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 17, 1409–1418 (2016).

    PubMed  Google Scholar 

  192. Leonard, J. P. et al. Clinical activity of idelalisib (GS-1101), a selective inhibitor of PI3Kδ, in phase 1 and 2 trials in chronic lymphocytic leukemia (CLL): effect of Del(17p)/TP53 mutation, Del(11q), IGHV mutation, and NOTCH1 mutation. Blood 122, 1632–1632 (2013).

    Google Scholar 

  193. Oscier, D. G. et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 121, 468–475 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by grants to F.B. from the Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (17/00943) and to R.D.-F. from the US Department of Health & Human Services, NIH, National Cancer Institute (NCI) (1R35CA210105).

Reviewer information

Nature Reviews Clinical Oncology thanks S. Stilgenbauer, J. Burger and M. Hallek, for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Francesc Bosch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosch, F., Dalla-Favera, R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol 16, 684–701 (2019). https://doi.org/10.1038/s41571-019-0239-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0239-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer