Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic alterations and their clinical implications in DLBCL

Abstract

Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous lymphoid neoplasm with variations in gene expression profiles and genetic alterations, which lead to substantial variations in clinical course and response to therapy. The advent of high-throughput genome sequencing platforms, and especially whole-exome sequencing, has helped to define the genetic landscape of DLBCL. In the past 10 years, these studies have identified many genetic alterations in DLBCL, some of which are specific to B cell lymphomas, whereas others can also be observed in other types of cancer. These aberrations result in altered activation of a wide range of signalling pathways and other cellular processes, including those involved in B cell differentiation, B cell receptor signalling, activation of the NF-κB pathway, apoptosis and epigenetic regulation. Further elaboration of the genetics of DLBCL will not only improve our understanding of disease pathogenesis but also provide further insight into disease classification, prognostication and therapeutic targets. In this Review, we describe the current understanding of the prevalence and causes of specific genetic alterations in DLBCL and their role in disease development and progression. We also summarize the available clinical data on therapies designed to target the aberrant pathways driven by these alterations.

Key points

  • Application of next-generation sequencing technologies, especially whole-exome sequencing, has helped to define the genomic landscape of diffuse large B cell lymphoma (DLBCL).

  • Characterization of genetic events provides important insights into the pathogenesis of DLBCL.

  • The genetic events identified in DLBCL have prognostic implications and can also enable the molecular classification of DLBCL into specific subtypes.

  • Novel agents have been developed to target the dysregulated signalling pathways caused by genetic events in DLBCL, and some of these agents have achieved promising efficacies.

  • Several genetic biomarkers are predictive of a response to novel targeted agents in patients with DLBCL and could be used in the future to guide patient selection for clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic aberrations generated by RAG1 and/or RAG2 and AID in DLBCL.
Fig. 2: Disruption of BCL-6.
Fig. 3: Genetic aberrations involving BCR signalling and related pathways.
Fig. 4: Genetic events and aberrations in p53, MYC and apoptotic pathways.
Fig. 5: Genetic events and aberrations in NOTCH signalling and cellular migration pathways.
Fig. 6: Alterations in epigenetic regulation that contribute to the development of lymphoma.
Fig. 7: Genetic alterations related to immune escape.
Fig. 8: Gene expression profiles and genetic subgroups of DLBCL.

Similar content being viewed by others

References

  1. Swerdlow, S. H. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (IARC Press, 2017).

  2. Feugier, P. et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J. Clin. Oncol. 23, 4117–4126 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Pfreundschuh, M. et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 9, 105–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pfreundschuh, M. et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 7, 379–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Coiffier, B. & Sarkozy, C. Diffuse large B cell lymphoma: R-CHOP failure-what to do? Hematol. Am. Soc. Hematol. Educ. Program 2016, 366–378 (2016).

    Article  Google Scholar 

  6. Gisselbrecht, C. et al. Salvage regimens with autologous transplantation for relapsed large B cell lymphoma in the rituximab era. J. Clin. Oncol. 28, 4184–4190 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Friedberg, J. W. Relapsed/refractory diffuse large B cell lymphoma. Hematol. Am. Soc. Hematol. Educ. Program 2011, 498–505 (2011).

    Article  Google Scholar 

  8. Alizadeh, A. A. et al. Distinct types of diffuse large B cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Xu-Monette, Z. Y. et al. Assessment of CD37 B cell antigen and cell of origin significantly improves risk prediction in diffuse large B cell lymphoma. Blood 128, 3083–3100 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gutierrez-Garcia, G. et al. Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B cell lymphoma treated with immunochemotherapy. Blood 117, 4836–4843 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Reddy, A. et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171, 481–494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmitz, R. et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N. Engl. J. Med. 378, 1396–1407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chapuy, B. et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 24, 679–690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jager, U. et al. Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95, 3520–3529 (2000).

    CAS  PubMed  Google Scholar 

  16. Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Lieber, M. R. Mechanisms of human lymphoid chromosomal translocations. Nat. Rev. Cancer 16, 387–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenz, G. et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J. Exp. Med. 204, 633–643 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deutsch, A. J. et al. MALT lymphoma and extranodal diffuse large B cell lymphoma are targeted by aberrant somatic hypermutation. Blood 109, 3500–3504 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Gordon, M. S., Kanegai, C. M., Doerr, J. R. & Wall, R. Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc. Natl Acad. Sci. USA 100, 4126–4131 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Basso, K. & Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 15, 172–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Hatzi, K. et al. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep. 4, 578–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Ye, B. H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Ye, B. H. et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J. 14, 6209–6217 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye, Q. et al. Prognostic impact of concurrent MYC and BCL6 rearrangements and expression in de novo diffuse large B cell lymphoma. Oncotarget 7, 2401–2416 (2016).

    PubMed  Google Scholar 

  28. Tibiletti, M. G. et al. BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Hum. Pathol. 40, 645–652 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Iqbal, J. et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B cell lymphoma. Leukemia 21, 2332–2343 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B cell lymphoma. Blood 101, 2914–2923 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ying, C. Y. et al. MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat. Immunol. 14, 1084–1092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan, S. et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B cell lymphomas. Nature 481, 90–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J. Exp. Med. 203, 311–317 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mandelbaum, J. et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 18, 568–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calado, D. P. et al. Constitutive canonical NF-kappaB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 18, 580–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rawlings, D. J., Metzler, G., Wray-Dutra, M. & Jackson, S. W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 17, 421–436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Davis, R. E. et al. Chronic active B cell-receptor signalling in diffuse large B cell lymphoma. Nature 463, 88–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Young, R. M. & Staudt, L. M. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Discov. 12, 229–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Young, R. M., Shaffer, A. L. 3rd, Phelan, J. D. & Staudt, L. M. B cell receptor signaling in diffuse large B cell lymphoma. Semin. Hematol. 52, 77–85 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Havranek, O. et al. Tonic B cell receptor signaling in diffuse large B cell lymphoma. Blood 130, 995–1006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Bohers, E. et al. Targetable activating mutations are very frequent in GCB and ABC diffuse large B cell lymphoma. Genes Chromosomes Cancer 53, 144–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Lamason, R. L., McCully, R. R., Lew, S. M. & Pomerantz, J. L. Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain. Biochemistry 49, 8240–8250 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, H. et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood 98, 1182–1187 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Willis, T. G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96, 35–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Nagel, D. et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 22, 825–837 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Dubois, S. et al. Biological and clinical relevance of associated genomic alterations in MYD88 L265P and non-L265P-mutated diffuse large B-cell lymphoma: analysis of 361 cases. Clin. Cancer Res. 23, 2232–2244 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Rovira, J. et al. MYD88 L265P mutations, but no other variants, identify a subpopulation of DLBCL patients of activated B cell origin, extranodal involvement, and poor outcome. Clin. Cancer Res. 22, 2755–2764 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Montesinos-Rongen, M. et al. Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma. Acta Neuropathol. 122, 791–792 (2011).

    Article  PubMed  Google Scholar 

  54. Zheng, M. et al. Frequency of MYD88 and CD79B mutations, and MGMT methylation in primary central nervous system diffuse large B cell lymphoma. Neuropathology 37, 509–516 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Fukumura, K. et al. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol. 131, 865–875 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Chapuy, B. et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127, 869–881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taniguchi, K. et al. Frequent MYD88 L265P and CD79B mutations in primary breast diffuse large B-cell lymphoma. Am. J. Surg. Pathol. 40, 324–334 (2016).

    Article  PubMed  Google Scholar 

  58. Cao, X. X. et al. Patients with primary breast and primary female genital tract diffuse large B cell lymphoma have a high frequency of MYD88 and CD79B mutations. Ann. Hematol. 96, 1867–1871 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Franco, F. et al. Mutational profile of primary breast diffuse large B cell lymphoma. Oncotarget 8, 102888–102897 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Pham-Ledard, A. et al. MYD88 somatic mutation is a genetic feature of primary cutaneous diffuse large B cell lymphoma, leg type. J. Invest. Dermatol. 132, 2118–2120 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Pham-Ledard, A. et al. Multiple genetic alterations in primary cutaneous large B cell lymphoma, leg type support a common lymphomagenesis with activated B cell-like diffuse large B cell lymphoma. Mod. Pathol. 27, 402–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Pham-Ledard, A. et al. High frequency and clinical prognostic value of MYD88 L265P mutation in primary cutaneous diffuse large B cell lymphoma, leg-type. JAMA Dermatol. 150, 1173–1179 (2014).

    Article  PubMed  Google Scholar 

  63. Zhou, X. A. et al. Genomic analyses identify recurrent alterations in immune evasion genes in diffuse large B-cell lymphoma, leg type. J. Invest. Dermatol. 138, 2365–2376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kraan, W. et al. High prevalence of oncogenic MYD88 and CD79B mutations in primary testicular diffuse large B cell lymphoma. Leukemia 28, 719–720 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Oishi, N. et al. High prevalence of the MYD88 mutation in testicular lymphoma: Immunohistochemical and genetic analyses. Pathol. Int. 65, 528–535 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560, 387–391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilmore, T. D., Kalaitzidis, D., Liang, M. C. & Starczynowski, D. T. The c-Rel transcription factor and B cell proliferation: a deal with the devil. Oncogene 23, 2275–2286 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Kaltschmidt, B., Greiner, J. F. W., Kadhim, H. M. & Kaltschmidt, C. Subunit-specific role of NF-kappaB in cancer. Biomedicines 6, E44 (2018).

    Article  PubMed  CAS  Google Scholar 

  69. Li, L. et al. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B cell lymphoma. Oncotarget 6, 23157–23180 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Ma, A. & Malynn, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B cell lymphoma. Nature 459, 717–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, J. Q., Jeelall, Y. S., Beutler, B., Horikawa, K. & Goodnow, C. C. Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance. J. Exp. Med. 211, 413–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wenzl, K. et al. Loss of TNFAIP3 enhances MYD88L265P-driven signaling in non-Hodgkin lymphoma. Blood Cancer J. 8, 97 (2018).

    Google Scholar 

  75. Uddin, S. et al. Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B cell lymphoma survival. Blood 108, 4178–4186 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, J. et al. Genetic heterogeneity of diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 110, 1398–1403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, X. et al. Clinical significance of PTEN deletion, mutation, and loss of PTEN expression in de novo diffuse large B-cell lymphoma. Neoplasia 20, 574–593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lenz, G. et al. Molecular subtypes of diffuse large B cell lymphoma arise by distinct genetic pathways. Proc. Natl Acad. Sci. USA 105, 13520–13525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pfeifer, M. et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 110, 12420–12425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jardin, F. et al. Diffuse large B cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood 116, 1092–1104 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Xu-Monette, Z. Y. et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood 119, 3668–3683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu-Monette, Z. Y. et al. Mutational profile and prognostic significance of TP53 in diffuse large B cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 120, 3986–3996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, Y. et al. Single nucleotide variation in the TP53 3’ untranslated region in diffuse large B cell lymphoma treated with rituximab-CHOP: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood 121, 4529–4540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Monti, S. et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 22, 359–372 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu-Monette, Z. Y. et al. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood 122, 2630–2640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Karube, K. & Campo, E. MYC alterations in diffuse large B cell lymphomas. Semin. Hematol. 52, 97–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Copie-Bergman, C. et al. MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immunochemotherapy: a GELA/LYSA study. Blood 126, 2466–2474 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Stasik, C. J. et al. Increased MYC gene copy number correlates with increased mRNA levels in diffuse large B cell lymphoma. Haematologica 95, 597–603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Quesada, A. E. et al. Increased MYC copy number is an independent prognostic factor in patients with diffuse large B cell lymphoma. Mod. Pathol. 30, 1688–1697 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Ennishi, D. et al. Genetic profiling of MYC and BCL2 in diffuse large B cell lymphoma determines cell-of-origin-specific clinical impact. Blood 129, 2760–2770 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Xu-Monette, Z. Y. et al. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B cell Lymphoma. Clin. Cancer Res. 22, 3593–3605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Visco, C. et al. Patients with diffuse large B cell lymphoma of germinal center origin with BCL2 translocations have poor outcome, irrespective of MYC status: a report from an International DLBCL rituximab-CHOP Consortium Program Study. Haematologica 98, 255–263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Iqbal, J. et al. BCL2 translocation defines a unique tumor subset within the germinal center B cell-like diffuse large B cell lymphoma. Am. J. Pathol. 165, 159–166 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kridel, R., Sehn, L. H. & Gascoyne, R. D. Pathogenesis of follicular lymphoma. J. Clin. Invest. 122, 3424–3431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Monni, O. et al. BCL2 overexpression associated with chromosomal amplification in diffuse large B cell lymphoma. Blood 90, 1168–1174 (1997).

    CAS  PubMed  Google Scholar 

  96. Rantanen, S., Monni, O., Joensuu, H., Franssila, K. & Knuutila, S. Causes and consequences of BCL2 overexpression in diffuse large B cell lymphoma. Leuk. Lymphoma 42, 1089–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kusumoto, S. et al. Diffuse large B cell lymphoma with extra Bcl-2 gene signals detected by FISH analysis is associated with a “non-germinal center phenotype”. Am. J. Surg. Pathol. 29, 1067–1073 (2005).

    PubMed  Google Scholar 

  98. Schuetz, J. M. et al. BCL2 mutations in diffuse large B cell lymphoma. Leukemia 26, 1383–1390 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Saito, M. et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 106, 11294–11299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Monaco, G. et al. Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ. 19, 295–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Deng, X., Gao, F., Flagg, T., Anderson, J. & May, W. S. Bcl2’s flexible loop domain regulates p53 binding and survival. Mol. Cell. Biol. 26, 4421–4434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grandgirard, D. et al. Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J. 17, 1268–1278 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Lee, S. Y. et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B cell lymphoma. Cancer Sci. 100, 920–926 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Arcaini, L. et al. The NOTCH pathway is recurrently mutated in diffuse large B cell lymphoma associated with hepatitis C virus infection. Haematologica 100, 246–252 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Green, J. A. et al. The sphingosine 1-phosphate receptor S1P(2) maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat. Immunol. 12, 672–680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Muppidi, J. R., Lu, E. & Cyster, J. G. The G protein-coupled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination. J. Exp. Med. 212, 2213–2222 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Muppidi, J. R. et al. Loss of signalling via Galpha13 in germinal centre B cell-derived lymphoma. Nature 516, 254–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kirmizis, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18, 1592–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Caganova, M. et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J. Clin. Invest. 123, 5009–5022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Velichutina, I. et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116, 5247–5255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B cell lymphomas. Proc. Natl Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yap, D. B. et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117, 2451–2459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sahasrabuddhe, A. A. et al. Oncogenic Y641 mutations in EZH2 prevent Jak2/beta-TrCP-mediated degradation. Oncogene 34, 445–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 21, 1199–1208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, J. et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109, 3879–3884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Horton, S. J. et al. Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nat. Cell Biol. 19, 1093–1104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, J. et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B cell lymphoma. Cancer Discov. 7, 322–337 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Hashwah, H. et al. Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCII expression and promotes DLBCL growth. Proc. Natl Acad. Sci. USA 114, 9701–9706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jiang, Y. et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 7, 38–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Grossman, S. R. p300/CBP/p53 interaction and regulation of the p53 response. Eur. J. Biochem. 268, 2773–2778 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Challa-Malladi, M. et al. Combined genetic inactivation of beta2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Steimle, V., Siegrist, C. A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265, 106–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Georgiou, K. et al. Genetic basis of PD-L1 overexpression in diffuse large B cell lymphomas. Blood 127, 3026–3034 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, X. et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27, 443–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Cortez, M. A. et al. PDL1 regulation by p53 via miR-34. J. Natl Cancer Inst. 108, djv303 (2016).

    Article  PubMed  CAS  Google Scholar 

  133. Boice, M. et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell 167, 405–418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Young, K. H. et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B cell lymphoma: an international collaborative study. Blood 112, 3088–3098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Young, K. H. et al. Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAILreceptor-2, predict for poor survival in diffuse large B cell lymphoma. Blood 110, 4396–4405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zenz, T. et al. TP53 mutation and survival in aggressive B cell lymphoma. Int. J. Cancer 141, 1381–1388 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, X. J. et al. P53 expression correlates with poorer survival and augments the negative prognostic effect of MYC rearrangement, expression or concurrent MYC/BCL2 expression in diffuse large B cell lymphoma. Mod. Pathol. 30, 194–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Jia, Z. et al. P53 deletion is independently associated with increased age and decreased survival in a cohort of Chinese patients with diffuse large B cell lymphoma. Leuk. Lymphoma 53, 2182–2185 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Cao, Y. et al. Mutations or copy number losses of CD58 and TP53 genes in diffuse large B cell lymphoma are independent unfavorable prognostic factors. Oncotarget 7, 83294–83307 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Le Gouill, S. et al. The clinical presentation and prognosis of diffuse large B cell lymphoma with t(14;18) and 8q24/c-MYC rearrangement. Haematologica 92, 1335–1342 (2007).

    Article  PubMed  CAS  Google Scholar 

  141. Klapper, W. et al. Structural aberrations affecting the MYC locus indicate a poor prognosis independent of clinical risk factors in diffuse large B cell lymphomas treated within randomized trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Leukemia 22, 2226–2229 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Niitsu, N., Okamoto, M., Miura, I. & Hirano, M. Clinical features and prognosis of de novo diffuse large B cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia 23, 777–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Barrans, S. et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B cell lymphoma treated in the era of rituximab. J. Clin. Oncol. 28, 3360–3365 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Kuhnl, A. et al. Outcome of elderly patients with diffuse large B cell lymphoma treated with R-CHOP: results from the UK NCRI R-CHOP14v21 trial with combined analysis of molecular characteristics with the DSHNHL RICOVER-60 trial. Ann. Oncol. 28, 1540–1546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cuccuini, W. et al. MYC+ diffuse large B cell lymphoma is not salvaged by classical R-ICE or R-DHAP followed by BEAM plus autologous stem cell transplantation. Blood 119, 4619–4624 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Lai, C. et al. MYC gene rearrangement in diffuse large B cell lymphoma does not confer a worse prognosis following dose-adjusted EPOCH-R. Leuk. Lymphoma 59, 505–508 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Landsburg, D. J. et al. Sole rearrangement but not amplification of MYC is associated with a poor prognosis in patients with diffuse large B cell lymphoma and B cell lymphoma unclassifiable. Br. J. Haematol. 175, 631–640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Testoni, M. et al. Gains of MYC locus and outcome in patients with diffuse large B cell lymphoma treated with R-CHOP. Br. J. Haematol. 155, 274–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Lu, T. X. et al. MYC or BCL2 copy number aberration is a strong predictor of outcome in patients with diffuse large B cell lymphoma. Oncotarget 6, 18374–18388 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Juskevicius, D. et al. Mutations of CREBBP and SOCS1 are independent prognostic factors in diffuse large B cell lymphoma: mutational analysis of the SAKK 38/07 prospective clinical trial cohort. J. Hematol. Oncol. 10, 70 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Dubois, S. et al. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA study. Clin. Cancer Res. 22, 2919–2928 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Scott, D. W. et al. Prognostic significance of diffuse large B-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J. Clin. Oncol. 33, 2848–2856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hu, S. et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B cell subtype of diffuse large B cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood 121, 4021–4031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, L. H. et al. Lenalidomide efficacy in activated B cell-like subtype diffuse large B cell lymphoma is dependent upon IRF4 and cereblon expression. Br. J. Haematol. 160, 487–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Hernandez-Ilizaliturri, F. J. et al. Higher response to lenalidomide in relapsed/refractory diffuse large B cell lymphoma in nongerminal center B cell-like than in germinal center B cell-like phenotype. Cancer 117, 5058–5066 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Wiernik, P. H. et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol. 26, 4952–4957 (2008).

    Article  PubMed  Google Scholar 

  157. Witzig, T. E. et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B cell non-Hodgkin’s lymphoma. Ann. Oncol. 22, 1622–1627 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Zinzani, P. L. et al. Combination of lenalidomide and rituximab in elderly patients with relapsed or refractory diffuse large B cell lymphoma: a phase 2 trial. Clin. Lymphoma Myeloma Leuk. 11, 462–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, M. et al. Oral lenalidomide with rituximab in relapsed or refractory diffuse large cell, follicular and transformed lymphoma: a phase II clinical trial. Leukemia 27, 1902–1909 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Feldman, T. et al. Addition of lenalidomide to rituximab, ifosfamide, carboplatin, etoposide (RICER) in first-relapse/primary refractory diffuse large B cell lymphoma. Br. J. Haematol. 166, 77–83 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Martin, A. et al. Lenalidomide in combination with R-ESHAP in patients with relapsed or refractory diffuse large B cell lymphoma: a phase 1b study from GELTAMO group. Br. J. Haematol. 173, 245–252 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Hitz, F. et al. Rituximab, bendamustine, and lenalidomide in patients with aggressive B cell lymphoma not eligible for high-dose chemotherapy or anthracycline-based therapy: phase I results of the SAKK 38/08 trial. Ann. Hematol. 92, 1033–1040 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Hitz, F. et al. Rituximab, bendamustine and lenalidomide in patients with aggressive B cell lymphoma not eligible for anthracycline-based therapy or intensive salvage chemotherapy - SAKK 38/08. Br. J. Haematol. 174, 255–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Ferreri, A. J. et al. Lenalidomide maintenance in patients with relapsed diffuse large B cell lymphoma who are not eligible for autologous stem cell transplantation: an open label, single-arm, multicentre phase 2 trial. Lancet Haematol. 4, e137–e146 (2017).

    Article  PubMed  Google Scholar 

  165. Czuczman, M. S. et al. A phase 2/3 multicenter, randomized, open-label study to compare the efficacy and safety of lenalidomide versus investigator’s choice in patients with relapsed or refractory diffuse large B-cell lymphoma. Clin. Cancer Res. 23, 4127–4137 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nowakowski, G. S. et al. Lenalidomide can be safely combined with R-CHOP (R2CHOP) in the initial chemotherapy for aggressive B cell lymphomas: phase I study. Leukemia 25, 1877–1881 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Chiappella, A. et al. Lenalidomide plus cyclophosphamide, doxorubicin, vincristine, prednisone and rituximab is safe and effective in untreated, elderly patients with diffuse large B cell lymphoma: a phase I study by the Fondazione Italiana Linfomi. Haematologica 98, 1732–1738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vitolo, U. et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol. 15, 730–737 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Nowakowski, G. S. et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B cell phenotype in newly diagnosed diffuse large B-Cell lymphoma: a phase II study. J. Clin. Oncol. 33, 251–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Nowakowski, G. S. et al. ROBUST: Lenalidomide-R-CHOP versus placebo-R-CHOP in previously untreated ABC-type diffuse large B cell lymphoma. Future Oncol. 12, 1553–1563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Thieblemont, C. et al. Lenalidomide maintenance compared with placebo in responding elderly patients with diffuse large B-cell lymphoma treated with first-line rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J. Clin. Oncol. 35, 2473–2481 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Reddy, N. M. et al. A phase II randomized study of lenalidomide or lenalidomide and rituximab as maintenance therapy following standard chemotherapy for patients with high/high-intermediate risk diffuse large B cell lymphoma. Leukemia 31, 241–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Chen, D., Frezza, M., Schmitt, S., Kanwar, J. & Dou, Q. P. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets 11, 239–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Goy, A. et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B cell non-Hodgkin’s lymphoma. J. Clin. Oncol. 23, 667–675 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Furman, R. R. et al. Phase 1 trial of bortezomib plus R-CHOP in previously untreated patients with aggressive non-Hodgkin lymphoma. Cancer 116, 5432–5439 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Dunleavy, K. et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B cell lymphoma. Blood 113, 6069–6076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Evens, A. M. et al. A phase I/II trial of bortezomib combined concurrently with gemcitabine for relapsed or refractory DLBCL and peripheral T cell lymphomas. Br. J. Haematol. 163, 55–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Ruan, J. et al. Bortezomib plus CHOP-rituximab for previously untreated diffuse large B cell lymphoma and mantle cell lymphoma. J. Clin. Oncol. 29, 690–697 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Offner, F. et al. Frontline rituximab, cyclophosphamide, doxorubicin, and prednisone with bortezomib (VR-CAP) or vincristine (R-CHOP) for non-GCB DLBCL. Blood 126, 1893–1901 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Leonard, J. P. et al. Randomized phase II study of R-CHOP with or without bortezomib in previously untreated patients with non-germinal center B-cell-like diffuse large B-cell lymphoma. J. Clin. Oncol. 35, 3538–3546 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Wilson, W. H. et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 21, 922–926 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Younes, A. et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 15, 1019–1026 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Sauter, C. S. et al. A phase 1 study of ibrutinib in combination with R-ICE in patients with relapsed or primary refractory DLBCL. Blood 131, 1805–1808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ramchandren, R. et al. The iR2 regimen (ibrutinib, lenalidomide, and rituximab) is active with a manageable safety profile in patients with relapsed/refractory non-germinal center-like diffuse large B-cell lymphoma. Blood 132, S402 (2018).

    Google Scholar 

  185. Younes, A. et al. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.18.02403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Grommes, C. et al. Ibrutinib unmasks critical role of bruton tyrosine kinase in primary CNS lymphoma. Cancer Discov. 7, 1018–1029 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lionakis, M. S. et al. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell 31, 833–843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Grommes, C. et al. Phase Ib trial of an ibrutinib-based combination therapy in recurrent/refractory CNS lymphoma. Blood https://doi.org/10.1182/blood-2018-09-875732 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Robertson, M. J. et al. Phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B cell lymphoma. J. Clin. Oncol. 25, 1741–1746 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Crump, M. et al. Randomized, double-blind, phase III trial of enzastaurin versus placebo in patients achieving remission after first-line therapy for high-risk diffuse large B-cell lymphoma. J. Clin. Oncol. 34, 2484–2492 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Hainsworth, J. D. et al. A randomized, phase 2 study of R-CHOP plus enzastaurin versus R-CHOP in patients with intermediate- or high-risk diffuse large B cell lymphoma. Leuk. Lymphoma 57, 216–218 (2016).

    Article  PubMed  Google Scholar 

  192. Friedberg, J. W. et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 115, 2578–2585 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Barr, P. M. et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood 127, 2411–2415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Burke, J. M. et al. An open-label, phase II trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in diffuse large B cell lymphoma. Clin. Lymphoma Myeloma Leuk. 18, e327–e331 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Flinn, I. W. et al. A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B cell lymphoma (DLBCL). Eur. J. Cancer 54, 11–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Brown, J. R. et al. Phase I trial of the pan-PI3K inhibitor pilaralisib (SAR245408/XL147) in patients with chronic lymphocytic leukemia (CLL) or relapsed/refractory lymphoma. Clin. Cancer Res. 21, 3160–3169 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Younes, A. et al. Pan-phosphatidylinositol 3-kinase inhibition with buparlisib in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica 102, 2104–2112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Dreyling, M. et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann. Oncol. 28, 2169–2178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Oki, Y. et al. CUDC-907 in relapsed/refractory diffuse large B cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica 102, 1923–1930 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang, J. et al. AKT hyperactivation and the potential of AKT-targeted therapy in diffuse large B-cell lymphoma. Am. J. Pathol. 187, 1700–1716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Oki, Y. et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br. J. Haematol. 171, 463–470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Witzig, T. E. et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25, 341–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Smith, S. M. et al. Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: the University of Chicago phase II consortium. J. Clin. Oncol. 28, 4740–4746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Barnes, J. A. et al. Everolimus in combination with rituximab induces complete responses in heavily pretreated diffuse large B cell lymphoma. Haematologica 98, 615–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Fenske, T. S. et al. A phase 2 study of weekly temsirolimus and bortezomib for relapsed or refractory B cell non-Hodgkin lymphoma: a Wisconsin Oncology Network study. Cancer 121, 3465–3471 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Witzig, T. E. et al. Adjuvant everolimus in high-risk diffuse large B cell lymphoma: final results from the PILLAR-2 randomized phase III trial. Ann. Oncol. 29, 707–714 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Johnston, P. B. et al. Everolimus combined with R-CHOP-21 for new, untreated, diffuse large B cell lymphoma (NCCTG 1085 [Alliance]): safety and efficacy results of a phase 1 and feasibility trial. Lancet Haematol. 3, e309–e316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Witzig, T. E. et al. High rate of event-free survival at 24 months with everolimus/RCHOP for untreated diffuse large B cell lymphoma: updated results from NCCTG N1085 (Alliance). Blood Cancer J. 7, e576 (2017).

    CAS  Google Scholar 

  209. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Ribrag, V. et al. Interim results from an ongoing phase 2 multicenter study of tazemetostat, an EZH2 inhibitor, in patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Blood 132, 4196 (2018).

    Google Scholar 

  211. Sarkozy, C. et al. Results from a phase Ib evaluation of tazemetostat (EPZ-6438) in combination with R-CHOP in poor prognosis newly diagnosed diffuse large B cell lymphoma (DLBCL): a Lysa study. Blood 132, 4191 (2018).

    Google Scholar 

  212. Straus, D. J. et al. Phase I/II trial of vorinostat with rituximab, cyclophosphamide, etoposide and prednisone as palliative treatment for elderly patients with relapsed or refractory diffuse large B cell lymphoma not eligible for autologous stem cell transplantation. Br. J. Haematol. 168, 663–670 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Batlevi, C. L. et al. A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br. J. Haematol. 178, 434–441 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kelly, W. K. et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 23, 3923–3931 (2005).

    Article  CAS  PubMed  Google Scholar 

  215. Crump, M. et al. Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B cell lymphoma. Ann. Oncol. 19, 964–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  216. Budde, L. E. et al. A phase I study of pulse high-dose vorinostat (V) plus rituximab (R), ifosphamide, carboplatin, and etoposide (ICE) in patients with relapsed lymphoma. Br. J. Haematol. 161, 183–191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Assouline, S. E. et al. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B cell lymphoma. Blood 128, 185–194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Oki, Y. et al. Phase I study of panobinostat plus everolimus in patients with relapsed or refractory lymphoma. Clin. Cancer Res. 19, 6882–6890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ribrag, V. et al. Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: results of a phase II study. Haematologica 102, 903–909 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Holkova, B. et al. Phase 1 trial of carfilzomib (PR-171) in combination with vorinostat (SAHA) in patients with relapsed or refractory B cell lymphomas. Leuk. Lymphoma 57, 635–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Nieto, Y. et al. Double epigenetic modulation of high-dose chemotherapy with azacitidine and vorinostat for patients with refractory or poor-risk relapsed lymphoma. Cancer 122, 2680–2688 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Hofmeister, C. C. et al. A phase 1 study of vorinostat maintenance after autologous transplant in high-risk lymphoma. Leuk. Lymphoma 56, 1043–1049 (2015).

    Article  PubMed  Google Scholar 

  223. Nieto, Y. et al. Vorinostat combined with high-dose gemcitabine, busulfan, and melphalan with autologous stem cell transplantation in patients with refractory lymphomas. Biol. Blood Marrow Transplant 21, 1914–1920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Davids, M. S. et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J. Clin. Oncol. 35, 826–833 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. de Vos, S. et al. Venetoclax, bendamustine, and rituximab in patients with relapsed or refractory NHL: a phase 1b dose-finding study. Ann. Oncol. 29, 1932–1938 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Morschhauser, F. et al. Venetoclax plus rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) improves outcomes in BCL2-positive first-line diffuse large B-cell lymphoma (DLBCL): first safety, efficacy and biomarker analyses from the phase II CAVALLI study. Blood 132, 782 (2018).

    Article  CAS  Google Scholar 

  227. Liu, Y. et al. NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death. Proc. Natl Acad. Sci. USA 115, 12034–12039 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Amorim, S. et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 3, e196–e204 (2016).

    Article  PubMed  Google Scholar 

  229. Lesokhin, A. M. et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J. Clin. Oncol. 34, 2698–2704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ansell, S. M. et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J. Clin. Oncol. 37, 481–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kline, J. et al. PD-L1 gene alterations identify a unique subset of diffuse large B cell lymphoma that harbors a T cell inflamed phenotype. Blood 132, 673 (2018).

    Google Scholar 

  232. Nayak, L. et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 129, 3071–3073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Greenawalt, D. M. et al. Comparative analysis of primary versus relapse/refractory DLBCL identifies shifts in mutation spectrum. Oncotarget 8, 99237–99244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Melchardt, T. et al. Clonal evolution in relapsed and refractory diffuse large B cell lymphoma is characterized by high dynamics of subclones. Oncotarget 7, 51494–51502 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Morin, R. D. et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin. Cancer Res. 22, 2290–2300 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Mareschal, S. et al. Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B cell lymphoma. Genes Chromosomes Cancer 55, 251–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Park, H. Y. et al. Whole-exome and transcriptome sequencing of refractory diffuse large B cell lymphoma. Oncotarget 7, 86433–86445 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.H.Y. acknowledges support from the US NIH National Cancer Institute (grants R01CA138688, R01CA187415 and 1RC1CA146299), The University of Texas MD Anderson Cancer Center Institutional Research and Development Fund, the Gundersen Lutheran Medical Foundation, the Hagemeister Lymphoma Foundation and the University Cancer Foundation via the Sister Institution Network Fund at The University of Texas MD Anderson Cancer Center. The work of the authors is also partially supported by NIH National Cancer Institute grants P50CA136411 and P50CA142509 and by the MD Anderson Cancer Center Support Grant CA016672.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Ken H. Young.

Ethics declarations

Competing interests

K.H.Y. has received research support from Adaptive Biotechnology, Dai Sanyo, Gilead Sciences, HTG Molecular Diagnostics, Incyte Pharmaceutical, Roche Molecular Systems and Seattle Genetics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Medeiros, L.J., Li, Y. et al. Genetic alterations and their clinical implications in DLBCL. Nat Rev Clin Oncol 16, 634–652 (2019). https://doi.org/10.1038/s41571-019-0225-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0225-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer