Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways

Abstract

Targeted therapy and immunotherapy have greatly improved the prognosis of patients with metastatic melanoma, but resistance to these therapeutic modalities limits the percentage of patients with long-lasting responses. Accumulating evidence indicates that a persisting subpopulation of melanoma cells contributes to resistance to targeted therapy or immunotherapy, even in patients who initially have a therapeutic response; however, the root mechanism of resistance remains elusive. To address this problem, we propose a new model, in which dynamic fluctuations of protein expression at the single-cell level and longitudinal reshaping of the cellular state at the cell-population level explain the whole process of therapeutic resistance development. Conceptually, we focused on two different pivotal signalling pathways (mediated by microphthalmia-associated transcription factor (MITF) and IFNγ) to construct the evolving trajectories of melanoma and described each of the cell states. Accordingly, the development of therapeutic resistance could be divided into three main phases: early survival of cell populations, reversal of senescence, and the establishment of new homeostatic states and development of irreversible resistance. On the basis of existing data, we propose future directions in both translational research and the design of therapeutic strategies that incorporate this emerging understanding of resistance.

Key points

  • In any particular cell, the expression of a given protein fluctuates dynamically around a pre-set homeostatic level, contributing to temporal heterogeneity. At the cell-population level, the expression of a given protein fits a log-normal distribution, contributing to spatial heterogeneity.

  • Cell state is mostly determined by the expression levels of different proteins, which is a continuous quantitative variable and can be perturbed by extrinsic stress, such as drug exposure.

  • The development of resistance to targeted therapy and immunotherapy can be divided into three phases, namely, early survival (including persister cells and innate resistant cells), reversal of senescence and new homeostasis; along these phases, resistance gradually changes from reversible to irreversible.

  • The persister cell subpopulation is programmed to tolerate cell death and capable of surviving harsh environmental conditions, such as hypoxia, lack of nutrients and exposure to targeted therapy and/or immunotherapy.

  • Future therapeutic developments should take into account the highly dynamic heterogeneity and the existence of distinct homeostatic states of tumour cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic fluctuation model.
Fig. 2: MITF expression and phenotype switching in melanoma before and after treatment with targeted agents.
Fig. 3: Reshaping of cell states at different stages in melanoma.
Fig. 4: IFNγ–JAK1/JAK2–STAT1/STAT3 pathway in melanoma.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    PubMed  Google Scholar 

  4. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    PubMed  Google Scholar 

  5. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).

    PubMed  Google Scholar 

  8. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    CAS  PubMed  Google Scholar 

  10. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    CAS  PubMed  Google Scholar 

  11. Sullivan, R. J. & Flaherty, K. T. Resistance to BRAF-targeted therapy in melanoma. Eur. J. Cancer 49, 1297–1304 (2013).

    CAS  PubMed  Google Scholar 

  12. Ribas, A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600–1609 (2016).

    CAS  PubMed  Google Scholar 

  13. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hugo, W. et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162, 1271–1285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fallahi-Sichani, M. et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol. Syst. Biol. 13, 905 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Ravindran Menon, D. et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34, 4448–4459 (2015).

    CAS  PubMed  Google Scholar 

  18. Chen, L., Heymach, J. V., Qin, F. X. & Gibbons, D. L. The mutually regulatory loop of epithelial-mesenchymal transition and immunosuppression in cancer progression. Oncoimmunology 4, e1002731 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta, P. B., Chaffer, C. L. & Weinberg, R. A. Cancer stem cells: mirage or reality? Nat. Med. 15, 1010–1012 (2009).

    CAS  PubMed  Google Scholar 

  22. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  PubMed  Google Scholar 

  23. Zabierowski, S. E. & Herlyn, M. Melanoma stem cells: the dark seed of melanoma. J. Clin. Oncol. 26, 2890–2894 (2008).

    PubMed  Google Scholar 

  24. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schatton, T., Frank, N. Y. & Frank, M. H. Identification and targeting of cancer stem cells. Bioessays 31, 1038–1049 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kemper, K., de Goeje, P. L., Peeper, D. S. & van Amerongen, R. Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res. 74, 5937–5941 (2014).

    CAS  PubMed  Google Scholar 

  27. Hoek, K. S. et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 19, 290–302 (2006).

    CAS  PubMed  Google Scholar 

  28. Zipser, M. C. et al. A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status. Pigment Cell Melanoma Res. 24, 326–333 (2011).

    CAS  PubMed  Google Scholar 

  29. Wellbrock, C. & Arozarena, I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 28, 390–406 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho, H. I., Lee, Y. R. & Celis, E. Interferon gamma limits the effectiveness of melanoma peptide vaccines. Blood 117, 135–144 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nowicki, T. S., Hu-Lieskovan, S. & Ribas, A. Mechanisms of resistance to PD-1 and PD-L1 Blockade. Cancer J. 24, 47–53 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sucker, A. et al. Acquired IFNgamma resistance impairs anti-tumor immunity and gives rise to T cell-resistant melanoma lesions. Nat. Commun. 8, 15440 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mehta, A. et al. Immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov. 8, 935–943 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zha, Z. et al. Interferon-gamma is a master checkpoint regulator of cytokine-induced differentiation. Proc. Natl Acad. Sci. USA 114, E6867–E6874 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Buszczak, M., Signer, R. A. & Morrison, S. J. Cellular differences in protein synthesis regulate tissue homeostasis. Cell 159, 242–251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, S. Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev. 32, 423–448 (2013).

    PubMed  Google Scholar 

  39. Brock, A. & Huang, S. Precision oncology: between vaguely right and precisely wrong. Cancer Res. 77, 6473–6479 (2017).

    CAS  PubMed  Google Scholar 

  40. Zhou, H., Neelakantan, D. & Ford, H. L. Clonal cooperativity in heterogenous cancers. Semin. Cell Dev. Biol. 64, 79–89 (2017).

    PubMed  Google Scholar 

  41. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Frank, S. A. & Rosner, M. R. Nonheritable cellular variability accelerates the evolutionary processes of cancer. PLOS Biol. 10, e1001296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Niepel, M., Spencer, S. L. & Sorger, P. K. Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr. Opin. Chem. Biol. 13, 556–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sigal, A. et al. Variability and memory of protein levels in human cells. Nature 444, 643–646 (2006).

    CAS  PubMed  Google Scholar 

  47. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    CAS  PubMed  Google Scholar 

  48. Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–342 (2009).

    CAS  PubMed  Google Scholar 

  49. Huang, S., Ernberg, I. & Kauffman, S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20, 869–876 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    CAS  PubMed  Google Scholar 

  51. Huang, S. & Kauffman, S. How to escape the cancer attractor: rationale and limitations of multi-target drugs. Semin. Cancer Biol. 23, 270–278 (2013).

    CAS  PubMed  Google Scholar 

  52. Shain, A. H. & Bastian, B. C. From melanocytes to melanomas. Nat. Rev. Cancer 16, 345–358 (2016).

    CAS  PubMed  Google Scholar 

  53. Chen, H., Weng, Q. Y. & Fisher, D. E. UV signaling pathways within the skin. J. Invest. Dermatol. 134, 2080–2085 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, J. J. & Fisher, D. E. Lighting a path to pigmentation: mechanisms of MITF induction by UV. Pigment Cell Melanoma Res. 23, 741–745 (2010).

    PubMed  Google Scholar 

  55. King, R., Googe, P. B., Weilbaecher, K. N., Mihm, M. C. Jr & Fisher, D. E. Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. Am. J. Surg. Pathol. 25, 51–57 (2001).

    CAS  PubMed  Google Scholar 

  56. Yokoyama, S. et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480, 99–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    CAS  PubMed  Google Scholar 

  58. Ugurel, S. et al. Microphthalmia-associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response. Clin. Cancer Res. 13, 6344–6350 (2007).

    CAS  PubMed  Google Scholar 

  59. Jager, E. et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int. J. Cancer 66, 470–476 (1996).

    CAS  PubMed  Google Scholar 

  60. Gogas, H. et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med. 354, 709–718 (2006).

    CAS  PubMed  Google Scholar 

  61. Freeman-Keller, M. et al. Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin. Cancer Res. 22, 886–894 (2016).

    CAS  PubMed  Google Scholar 

  62. Lo, J. A., Fisher, D. E. & Flaherty, K. T. Prognostic significance of cutaneous adverse events associated with pembrolizumab therapy. JAMA Oncol. 1, 1340–1341 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Fane, M. E. et al. NFIB mediates BRN2 driven melanoma cell migration and invasion through regulation of EZH2 and MITF. EBioMedicine 16, 63–75 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Kim, H. et al. Downregulation of the ubiquitin ligase RNF125 underlies resistance of melanoma cells to BRAF inhibitors via JAK1 deregulation. Cell Rep. 11, 1458–1473 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Slominski, A. et al. The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1alpha expression and HIF-dependent attendant pathways. Arch. Biochem. Biophys. 563, 79–93 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    CAS  PubMed  Google Scholar 

  67. Hartman, M. L. & Czyz, M. MITF in melanoma: mechanisms behind its expression and activity. Cell. Mol. Life Sci. 72, 1249–1260 (2015).

    CAS  PubMed  Google Scholar 

  68. Koludrovic, D. & Davidson, I. MITF, the Janus transcription factor of melanoma. Future Oncol. 9, 235–244 (2013).

    CAS  PubMed  Google Scholar 

  69. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    CAS  PubMed  Google Scholar 

  70. Rose, A. A. et al. MAPK pathway inhibitors sensitize BRAF-mutant melanoma to an antibody-drug conjugate targeting GPNMB. Clin. Cancer Res. 22, 6088–6098 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. van Lanschot, C. G., Koljenovic, S., Grunhagen, D. J., Verhoef, C. & van Akkooi, A. C. Pigmentation in the sentinel node correlates with increased sentinel node tumor burden in melanoma patients. Melanoma Res. 24, 261–266 (2014).

    PubMed  Google Scholar 

  72. Widmer, D. S. et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res. 25, 343–353 (2012).

    CAS  PubMed  Google Scholar 

  73. Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: do differences make a difference? Cell 141, 559–563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bennett, D. C. Mechanisms of differentiation in melanoma cells and melanocytes. Environ. Health Perspect. 80, 49–59 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Konieczkowski, D. J. et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4, 816–827 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pearl Mizrahi, S., Gefen, O., Simon, I. & Balaban, N. Q. Persistence to anti-cancer treatments in the stationary to proliferating transition. Cell Cycle 15, 3442–3453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith, M. P. et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell 29, 270–284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Muller, J. et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5, 5712 (2014).

    PubMed  Google Scholar 

  79. Song, C. et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPKi-induced melanoma regression and early adaptation. Cancer Discov. 7, 1248–1265 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hensel, Z. et al. Stochastic expression dynamics of a transcription factor revealed by single-molecule noise analysis. Nat. Struct. Mol. Biol. 19, 797–802 (2012).

    CAS  PubMed  Google Scholar 

  81. Hoek, K. S. et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650–656 (2008).

    CAS  PubMed  Google Scholar 

  82. Kumar, D., Gorain, M., Kundu, G. & Kundu, G. C. Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Mol. Cancer 16, 7 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Brinckerhoff, C. E. Cancer stem cells (CSCs) in melanoma: there’s smoke, but is there fire? J. Cell. Physiol. 232, 2674–2678 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Murphy, G. F., Wilson, B. J., Girouard, S. D., Frank, N. Y. & Frank, M. H. Stem cells and targeted approaches to melanoma cure. Mol. Aspects Med. 39, 33–49 (2014).

    CAS  PubMed  Google Scholar 

  85. Holzel, M., Bovier, A. & Tuting, T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat. Rev. Cancer 13, 365–376 (2013).

    PubMed  Google Scholar 

  86. Pisco, A. O. & Huang, S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘what does not kill me strengthens me’. Br. J. Cancer 112, 1725–1732 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Litvin, O. et al. Interferon alpha/beta enhances the cytotoxic response of MEK inhibition in melanoma. Mol. Cell 57, 784–796 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Su, Y. et al. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc. Natl Acad. Sci. USA 114, 13679–13684 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pisco, A. O. et al. Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun. 4, 2467 (2013).

    PubMed  Google Scholar 

  90. Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ji, Z. et al. MITF modulates therapeutic resistance through EGFR signaling. J. Invest. Dermatol. 135, 1863–1872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kammertoens, T. et al. Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression. Nature 545, 98–102 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016).

    PubMed  Google Scholar 

  98. Ivashkiv, L. B. IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Minn, A. J. Interferons and the immunogenic effects of cancer therapy. Trends Immunol. 36, 725–737 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    CAS  PubMed  Google Scholar 

  101. Respa, A. et al. Association of IFN-gamma signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin. Cancer Res. 17, 2668–2678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sucker, A. et al. Genetic evolution of T cell resistance in the course of melanoma progression. Clin. Cancer Res. 20, 6593–6604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. White, C. A. et al. Constitutive transduction of peptide transporter and HLA genes restores antigen processing function and cytotoxic T cell-mediated immune recognition of human melanoma cells. Int. J. Cancer 75, 590–595 (1998).

    CAS  PubMed  Google Scholar 

  104. Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zaidi, M. R. et al. Interferon-gamma links ultraviolet radiation to melanomagenesis in mice. Nature 469, 548–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Spranger, S. et al. Density of immunogenic antigens does not explain the presence or absence of the T cell-inflamed tumor microenvironment in melanoma. Proc. Natl Acad. Sci. USA 113, E7759–E7768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wischhusen, J., Waschbisch, A. & Wiendl, H. Immune-refractory cancers and their little helpers—an extended role for immunetolerogenic MHC molecules HLA-G and HLA-E? Semin. Cancer Biol. 17, 459–468 (2007).

    CAS  PubMed  Google Scholar 

  108. Brocker, E. B., Zwadlo, G., Holzmann, B., Macher, E. & Sorg, C. Inflammatory cell infiltrates in human melanoma at different stages of tumor progression. Int. J. Cancer 41, 562–567 (1988).

    CAS  PubMed  Google Scholar 

  109. Rodriguez, T. et al. Patterns of constitutive and IFN-gamma inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics 59, 123–133 (2007).

    CAS  PubMed  Google Scholar 

  110. Mortarini, R., Belli, F., Parmiani, G. & Anichini, A. Cytokine-mediated modulation of HLA-class II, ICAM-1, LFA-3 and tumor-associated antigen profile of melanoma cells. Comparison with anti-proliferative activity by rIL1-beta, rTNF-alpha, rIFN-gamma, rIL4 and their combinations. Int. J. Cancer 45, 334–341 (1990).

    CAS  PubMed  Google Scholar 

  111. Garbe, C. et al. Antitumor activities of interferon alpha, beta, and gamma and their combinations on human melanoma cells in vitro: changes of proliferation, melanin synthesis, and immunophenotype. J. Invest. Dermatol. 95 (Suppl. 6), 231–237 (1990).

    Google Scholar 

  112. Hemon, P. et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J. Immunol. 186, 5173–5183 (2011).

    CAS  PubMed  Google Scholar 

  113. Mo, X. et al. Interferon-gamma signaling in melanocytes and melanoma cells regulates expression of CTLA-4. Cancer Res. 78, 436–450 (2018).

    CAS  PubMed  Google Scholar 

  114. Spranger, S. et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl Med. 5, 200ra116 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra137 (2012).

    Google Scholar 

  116. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Seo, S. K. et al. Attenuation of IFN-gamma-induced B7-H1 expression by 15-deoxy-delta(12,14)-prostaglandin J2 via downregulation of the Jak/STAT/IRF-1 signaling pathway. Life Sci. 112, 82–89 (2014).

    CAS  PubMed  Google Scholar 

  118. Dong, H. et al. Tumor-associated B7-H1 promotes T cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    CAS  PubMed  Google Scholar 

  119. Minn, A. J. & Wherry, E. J. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165, 272–275 (2016).

    CAS  PubMed  Google Scholar 

  120. Brody, J. R. et al. Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 8, 1930–1934 (2009).

    CAS  PubMed  Google Scholar 

  121. Markel, G. et al. Dynamic expression of protective CEACAM1 on melanoma cells during specific immune attack. Immunology 126, 186–200 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

    PubMed  Google Scholar 

  123. Bahrambeigi, V. et al. PhiC31/PiggyBac modified stromal stem cells: effect of interferon gamma and/or tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on murine melanoma. Mol. Cancer 13, 255 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. Taniguchi, K. et al. Interferon gamma induces lung colonization by intravenously inoculated B16 melanoma cells in parallel with enhanced expression of class I major histocompatibility complex antigens. Proc. Natl Acad. Sci. USA 84, 3405–3409 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Brown, T. J., Lioubin, M. N. & Marquardt, H. Purification and characterization of cytostatic lymphokines produced by activated human T lymphocytes. Synergistic antiproliferative activity of transforming growth factor beta 1, interferon-gamma, and oncostatin M for human melanoma cells. J. Immunol. 139, 2977–2983 (1987).

    CAS  PubMed  Google Scholar 

  126. Zaidi, M. R. & Merlino, G. The two faces of interferon-gamma in cancer. Clin. Cancer Res. 17, 6118–6124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Matsushita, H. et al. Cytotoxic T lymphocytes block tumor growth both by lytic activity and IFNgamma-dependent cell-cycle arrest. Cancer Immunol. Res. 3, 26–36 (2015).

    CAS  PubMed  Google Scholar 

  128. Kortylewski, M. et al. Interferon-gamma-mediated growth regulation of melanoma cells: involvement of STAT1-dependent and STAT1-independent signals. J. Invest. Dermatol. 122, 414–422 (2004).

    CAS  PubMed  Google Scholar 

  129. Schmitt, M. J. et al. Interferon-gamma-induced activation of signal transducer and activator of transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun. Signal 10, 41 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Raz, A. Actin organization, cell motility, and metastasis. Adv. Exp. Med. Biol. 233, 227–233 (1988).

    CAS  PubMed  Google Scholar 

  131. Natarajan, V. T. et al. IFN-gamma signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc. Natl Acad. Sci. USA 111, 2301–2306 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gollob, J. A., Sciambi, C. J., Huang, Z. & Dressman, H. K. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-gamma. Cancer Res. 65, 8869–8877 (2005).

    CAS  PubMed  Google Scholar 

  133. Le Poole, I. C. et al. Interferon-gamma reduces melanosomal antigen expression and recognition of melanoma cells by cytotoxic T cells. Am. J. Pathol. 160, 521–528 (2002).

    PubMed  PubMed Central  Google Scholar 

  134. Schultz, J. et al. Tumor-promoting role of signal transducer and activator of transcription (Stat)1 in late-stage melanoma growth. Clin. Exp. Metastasis 27, 133–140 (2010).

    PubMed  Google Scholar 

  135. Ramsdale, R. et al. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci. Signal 8, ra82 (2015).

    PubMed  Google Scholar 

  136. Meyskens, F. L. Jr. et al. Randomized trial of adjuvant human interferon gamma versus observation in high-risk cutaneous melanoma: a Southwest Oncology Group study. J. Natl Cancer Inst. 87, 1710–1713 (1995).

    PubMed  Google Scholar 

  137. Porter, G. A. et al. Significance of plasma cytokine levels in melanoma patients with histologically negative sentinel lymph nodes. Ann. Surg. Oncol. 8, 116–122 (2001).

    CAS  PubMed  Google Scholar 

  138. He, Y. F. et al. Sustained low-level expression of interferon-gamma promotes tumor development: potential insights in tumor prevention and tumor immunotherapy. Cancer Immunol. Immunother. 54, 891–897 (2005).

    CAS  PubMed  Google Scholar 

  139. Chhabra, Y. et al. Genetic variation in IRF4 expression modulates growth characteristics, tyrosinase expression and interferon-gamma response in melanocytic cells. Pigment Cell Melanoma Res. 31, 51–63 (2018).

    CAS  PubMed  Google Scholar 

  140. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    CAS  PubMed  Google Scholar 

  141. Dunn, G. P. et al. Interferon-gamma and cancer immunoediting. Immunol. Res. 32, 231–245 (2005).

    CAS  PubMed  Google Scholar 

  142. Kaplan, D. H. et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kovarik, J. et al. Malignant melanoma associates with deficient IFN-induced STAT 1 phosphorylation. Int. J. Mol. Med. 12, 335–340 (2003).

    CAS  PubMed  Google Scholar 

  144. Osborn, J. L. & Greer, S. F. Metastatic melanoma cells evade immune detection by silencing STAT1. Int. J. Mol. Sci. 16, 4343–4361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao, C. et al. Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol. Sci. 37, 47–61 (2016).

    CAS  PubMed  Google Scholar 

  147. Li, Z. et al. Expression of SOCS-1, suppressor of cytokine signalling-1, in human melanoma. J. Invest. Dermatol. 123, 737–745 (2004).

    CAS  PubMed  Google Scholar 

  148. Jager, E. et al. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int. J. Cancer 71, 142–147 (1997).

    CAS  PubMed  Google Scholar 

  149. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Restifo, N. P., Smyth, M. J. & Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat. Rev. Cancer 16, 121–126 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  154. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bellone, M. & Elia, A. R. Constitutive and acquired mechanisms of resistance to immune checkpoint blockade in human cancer. Cytokine Growth Factor Rev. 36, 17–24 (2017).

    CAS  PubMed  Google Scholar 

  156. Gao, J. et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Chang, C. C. et al. Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J. Biol. Chem. 290, 26562–26575 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pardoll, D. Cancer and the immune system: basic concepts and targets for intervention. Semin. Oncol. 42, 523–538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    CAS  PubMed  Google Scholar 

  161. Overacre-Delgoffe, A. E. et al. Interferon-gamma drives treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhao, X. & Subramanian, S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 77, 817–822 (2017).

    CAS  PubMed  Google Scholar 

  164. Herlyn, M., Guerry, D. & Koprowski, H. Recombinant gamma-interferon induces changes in expression and shedding of antigens associated with normal human melanocytes, nevus cells, and primary and metastatic melanoma cells. J. Immunol. 134, 4226–4230 (1985).

    CAS  PubMed  Google Scholar 

  165. Reinhardt, J. et al. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res. 77, 4697–4709 (2017).

    CAS  PubMed  Google Scholar 

  166. Landsberg, J. et al. Melanomas resist T cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).

    CAS  PubMed  Google Scholar 

  167. Braumuller, H. et al. T-Helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    PubMed  Google Scholar 

  168. Zingg, D. et al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854–867 (2017).

    CAS  PubMed  Google Scholar 

  169. Riesenberg, S. et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat. Commun. 6, 8755 (2015).

    CAS  PubMed  Google Scholar 

  170. Sanchez-Perez, L. et al. Potent selection of antigen loss variants of B16 melanoma following inflammatory killing of melanocytes in vivo. Cancer Res. 65, 2009–2017 (2005).

    CAS  PubMed  Google Scholar 

  171. Falletta, P. et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31, 18–33 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Haferkamp, S. et al. Vemurafenib induces senescence features in melanoma cells. J. Invest. Dermatol. 133, 1601–1609 (2013).

    CAS  PubMed  Google Scholar 

  173. Webster, M. R. et al. Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res. 28, 184–195 (2015).

    CAS  PubMed  Google Scholar 

  174. Tsao, H., Fukunaga-Kalabis, M. & Herlyn, M. Recent advances in melanoma and melanocyte biology. J. Invest. Dermatol. 137, 557–560 (2017).

    CAS  PubMed  Google Scholar 

  175. Giuliano, S. et al. Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res. 70, 3813–3822 (2010).

    CAS  PubMed  Google Scholar 

  176. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Mo, J. et al. Hypoxia-induced senescence contributes to the regulation of microenvironment in melanomas. Pathol. Res. Pract. 209, 640–647 (2013).

    CAS  PubMed  Google Scholar 

  178. La Porta, C. A., Zapperi, S. & Sethna, J. P. Senescent cells in growing tumors: population dynamics and cancer stem cells. PLOS Comput. Biol. 8, e1002316 (2012).

    PubMed  PubMed Central  Google Scholar 

  179. Giampietri, C. et al. Cancer microenvironment and endoplasmic reticulum stress response. Mediators Inflamm. 2015, 417281 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. Li, Y. & Laterra, J. Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res. 72, 576–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang, X. et al. Both complexity and location of DNA damage contribute to cellular senescence induced by ionizing radiation. PLOS ONE 11, e0155725 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51–57 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Sun, X. et al. Senescence-associated secretory factors induced by cisplatin in melanoma cells promote non-senescent melanoma cell growth through activation of the ERK1/2-RSK1 pathway. Cell Death Dis. 9, 260 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Liu, Y. et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-kappaB impairs this drug-induced senescence. EMBO Mol. Med. 5, 149–166 (2013).

    CAS  PubMed  Google Scholar 

  185. Gray-Schopfer, V. C., Karasarides, M., Hayward, R. & Marais, R. Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 67, 122–129 (2007).

    CAS  PubMed  Google Scholar 

  186. Obenauf, A. C. et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520, 368–372 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Ohanna, M. et al. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget 4, 2212–2224 (2013).

    PubMed  PubMed Central  Google Scholar 

  188. Somasundaram, R. et al. Tumor-associated B cells induce tumor heterogeneity and therapy resistance. Nat. Commun. 8, 607 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. Hsu, M. Y. et al. Notch3 signaling-mediated melanoma-endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis. Lab Invest. 97, 725–736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Wang, T. et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin. Cancer Res. 21, 1652–1664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Flach, E. H., Rebecca, V. W., Herlyn, M., Smalley, K. S. & Anderson, A. R. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol. Pharm. 8, 2039–2049 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Fedorenko, I. V., Wargo, J. A., Flaherty, K. T., Messina, J. L. & Smalley, K. S. M. BRAF inhibition generates a host-tumor niche that mediates therapeutic escape. J. Invest. Dermatol. 135, 3115–3124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Young, H. L. et al. An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. J. Exp. Med. 214, 1691–1710 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    CAS  PubMed  Google Scholar 

  196. Ohanna, M. et al. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev. 25, 1245–1261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Jobe, N. P. et al. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 146, 205–217 (2016).

    CAS  PubMed  Google Scholar 

  198. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Smith, M. P. et al. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J. Natl Cancer Inst. 105, 33–46 (2013).

    CAS  PubMed  Google Scholar 

  200. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Sharma, R. et al. Activity-based protein profiling shows heterogeneous signaling adaptations to BRAF inhibition. J. Proteome Res. 15, 4476–4489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Titz, B. et al. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discov. 2, 16028 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Sun, C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118–122 (2014).

    CAS  PubMed  Google Scholar 

  205. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Mak, M. P. et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin. Cancer Res. 22, 609–620 (2016).

    CAS  PubMed  Google Scholar 

  207. Maccalli, C., Parmiani, G. & Ferrone, S. Immunomodulating and immunoresistance properties of cancer-initiating cells: implications for the clinical success of immunotherapy. Immunol. Invest. 46, 221–238 (2017).

    CAS  PubMed  Google Scholar 

  208. Schachter, J. et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 390, 1853–1862 (2017).

    CAS  PubMed  Google Scholar 

  209. Long, G. V. et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 28, 1631–1639 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    PubMed  PubMed Central  Google Scholar 

  211. Kong, X. et al. Cancer drug addiction is relayed by an ERK2-dependent phenotype switch. Nature 550, 270–274 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  PubMed  Google Scholar 

  213. Valpione, S. et al. Rechallenge with BRAF-directed treatment in metastatic melanoma: a multi-institutional retrospective study. Eur. J. Cancer 91, 116–124 (2018).

    CAS  PubMed  Google Scholar 

  214. De Luca, A. et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6, 14777–14795 (2015).

    PubMed  PubMed Central  Google Scholar 

  215. Duellman, S. J. et al. A novel steroidal inhibitor of estrogen-related receptor alpha (ERR alpha). Biochem. Pharmacol. 80, 819–826 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Bardini, M. et al. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 29, 38–50 (2015).

    CAS  PubMed  Google Scholar 

  217. Keats, J. J. et al. Clonal competition with alternating dominance in multiple myeloma. Blood 120, 1067–1076 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Charles, J. P. et al. Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases. Nat. Commun. 5, 3981 (2014).

    CAS  PubMed  Google Scholar 

  219. Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508, 113–117 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Miller, D. M. & Flaherty, K. T. Cyclin-dependent kinases as therapeutic targets in melanoma. Pigment Cell Melanoma Res. 27, 351–365 (2014).

    CAS  PubMed  Google Scholar 

  221. Wan, L., Pantel, K. & Kang, Y. Tumor metastasis: moving new biological insights into the clinic. Nat. Med. 19, 1450–1464 (2013).

    CAS  PubMed  Google Scholar 

  222. Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23, 811–825 (2013).

    CAS  PubMed  Google Scholar 

  223. Kirkwood, J. M. et al. Effect of JAK/STAT or PI3Kδ plus PD-1 inhibition on the tumor microenvironment: biomarker results from a phase Ib study in patients with advanced solid tumors [abstract]. Cancer Res. 78 (Suppl. 13), CT176 (2018).

    Google Scholar 

  224. Winkler, J. K., Schiller, M., Bender, C., Enk, A. H. & Hassel, J. C. Rituximab as a therapeutic option for patients with advanced melanoma. Cancer Immunol. Immunother. 67, 917–924 (2018).

    CAS  PubMed  Google Scholar 

  225. Lauss, M. et al. Genome-wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation. J. Invest. Dermatol. 135, 1820–1828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Chatterjee-Kishore, M., Kishore, R., Hicklin, D. J., Marincola, F. M. & Ferrone, S. Different requirements for signal transducer and activator of transcription 1alpha and interferon regulatory factor 1 in the regulation of low molecular mass polypeptide 2 and transporter associated with antigen processing 1 gene expression. J. Biol. Chem. 273, 16177–16183 (1998).

    CAS  PubMed  Google Scholar 

  227. Gowrishankar, K. et al. Inducible but not constitutive expression of PD-L1 in human melanoma cells is dependent on activation of NF-κB. PLOS ONE 10, e0123410 (2015).

    PubMed  PubMed Central  Google Scholar 

  228. Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005).

    CAS  PubMed  Google Scholar 

  229. Lee, H. et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat. Med. 16, 1421–1428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kreis, S., Munz, G. A., Haan, S., Heinrich, P. C. & Behrmann, I. Cell density dependent increase of constitutive signal transducers and activators of transcription 3 activity in melanoma cells is mediated by Janus kinases. Mol. Cancer Res. 5, 1331–1341 (2007).

  231. Nam, S. Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells. Mol. Oncol. 6, 484–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Sims, J. T. et al. Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS ONE 8, e55509 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Lee, H. et al. A requirement of STAT3 DNA binding precludes Th-1 immunostimulatory gene expression by NF-κB in tumors. Cancer Res. 71, 3772–3780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Lee, H. et al. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 15, 283–293 (2009).

  235. Zhang, L. et al. Paeonol inhibits B16F10 melanoma metastasis in vitro and in vivo and via disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 67, 778–788 (2015).

    CAS  PubMed  Google Scholar 

  236. Wong, L. H., Hatzinisiriou, I., Devenish, R. J. & Ralph, S. J. IFN-γ priming up-regulates IFN-stimulated gene factor 3 (ISGF3) components, augmenting responsiveness of IFN-resistant melanoma cells to type I IFNs. J. Immunol. 160, 5475–5484 (1998).

  237. Kovarik A. et al. Interferon-gamma, but not interferon-alpha, induces SOCS 3 expression in human melanoma cell lines. Melanoma Res. 15, 481–488 (2005).

  238. Lesinski, G. B. et al. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells. BMC Cancer 10, 142 (2010).

  239. Huang, F.-J. et al. Molecular basis for the critical role of suppressor of cytokine signaling-1 in melanoma brain metastasis. Cancer Res. 68, 9634–9642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Murtas, D. et al. IRF-1 responsiveness to IFN-γ predicts different cancer immune phenotypes. Br. J. Cancer 109, 76–82 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.E.F. acknowledges grant support from the NIH (5P01 CA163222 and 2R01 AR043369) and the Dr Miriam and Sheldon G. Adelson Medical Research Foundation. K.T.F. acknowledges grant support from the Dr Miriam and Sheldon G. Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for the article, discussions of content and writing and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Keith T. Flaherty.

Ethics declarations

Competing interests

D.E.F. has a financial interest associated with Soltego, which was reviewed and is currently managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. K.T.F. serves on the Board of Directors of Clovis Oncology, Loxo Oncology, Strata Oncology and Vivid Biosciences; serves on the Corporate Advisory Boards of PIC Therapeutics and X4 Pharmaceuticals; serves on the Scientific Advisory Boards of Adaptimmune, Aeglea, Amgen, Apricity, Arch Oncology, Array BioPharma, Asana, Fog Pharma, Fount, Neon Therapeutics, Oncoceutics, Sanofi, Shattuck Labs, Tolero and Tvardi; and is a consultant to Bristol-Myers Squibb, Boston Biomedical, Cell Medica, Checkmate, Debiopharm, Genentech, Merck, Novartis, Pierre Fabre, Takeda and Verastem. X.B. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Fisher, D.E. & Flaherty, K.T. Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol 16, 549–562 (2019). https://doi.org/10.1038/s41571-019-0204-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0204-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing