Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liquid biopsy and minimal residual disease — latest advances and implications for cure

Abstract

Liquid biopsy has been introduced as a new diagnostic concept predicated on the analysis of circulating tumour cells (CTCs) or circulating tumour-derived factors, in particular, cell-free tumour DNA (ctDNA). Highly sensitive liquid biopsy assays have been developed that can now be applied to detect and characterize minimal residual disease (MRD), which reflects the presence of tumour cells disseminated from the primary lesion to distant organs in patients who lack any clinical or radiological signs of metastasis or residual tumour cells left behind after local therapy that eventually lead to local recurrence. This application is the new frontier of liquid biopsy analyses, which are challenged by the very low concentrations of CTCs and ctDNA in blood samples. In this Review, we discuss the key technologies that can be used to detect and characterize CTCs in surveillance of MRD and provide a brief overview of similar roles of ctDNA analyses. We then focus on the current clinical data on the use of CTCs and ctDNA in the detection and monitoring of MRD and in obtaining information on therapeutic targets and resistance mechanisms relevant to the management of individual patients with cancer.

Key points

  • Minimal residual disease (MRD) can be defined as cancer persisting in a patient after treatment that cannot be detected with current medical imaging modalities and is, therefore, an occult stage of cancer progression.

  • Liquid biopsy approaches based on the detection of small numbers of circulating tumour cells (CTCs) or minute amounts of circulating cell-free tumour DNA (ctDNA) now enable MRD detection in patients with various malignancies.

  • CTC detection at primary diagnosis of cancer predicts an unfavourable prognosis and is, therefore, applicable to risk stratification strategies beyond the current approaches to tumour staging.

  • Monitoring of CTCs and ctDNA during post-surgical follow-up assessments can enable the detection of disease relapse many months earlier than is possible with current radiological imaging procedures.

  • Further characterization of CTCs and ctDNA can provide insights into the molecular evolution of MRD during tumour progression, with implications for therapy to delay or even prevent metastatic relapse.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Technologies for CTC and ctDNA enrichment, detection and characterization.
Fig. 2: Methods of ctDNA detection.
Fig. 3: Therapeutic targets and resistance mechanisms.
Fig. 4: Therapeutic strategies depending on dynamic changes in tumour burden in patients with cancer.

References

  1. 1.

    Pan, H. et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    Article  Google Scholar 

  2. 2.

    Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J. Clin. Oncol. 36, 1631–1641 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Donaldson, J. & Park, B. H. Circulating tumor DNA: measurement and clinical utility. Annu. Rev. Med. 69, 223–234 (2018).

    CAS  PubMed  Google Scholar 

  4. 4.

    Heitzer, E., Ulz, P. & Geigl, J. B. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 61, 112–123 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    CAS  PubMed  Google Scholar 

  6. 6.

    Alix-Panabieres, C., Mader, S. & Pantel, K. Epithelial-mesenchymal plasticity in circulating tumor cells. J. Mol. Med. 95, 133–142 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Ohnaga, T., Takei, Y., Nagata, T. & Shimada, Y. Highly efficient capture of cancer cells expressing EGFR by microfluidic methods based on antigen-antibody association. Sci. Rep. 8, 12005 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Thege, F. I. et al. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Lab. Chip 14, 1775–1784 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    El-Heliebi, A. et al. In situ detection and quantification of AR-V7, AR-FL, PSA, and KRAS point mutations in circulating tumor cells. Clin. Chem. 64, 536–546 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Santana, S. M., Liu, H., Bander, N. H., Gleghorn, J. P. & Kirby, B. J. Immunocapture of prostate cancer cells by use of anti-PSMA antibodies in microdevices. Biomed. Microdevices 14, 401–407 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hyun, K. A., Lee, T. Y., Lee, S. H. & Jung, H. I. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Biosens. Bioelectron. 67, 86–92 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Wu, L. L. et al. Chip-assisted single-cell biomarker profiling of heterogeneous circulating tumor cells using multifunctional nanospheres. Anal. Chem. 90, 10518–10526 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Paoletti, C. et al. Heterogeneous estrogen receptor expression in circulating tumor cells suggests diverse mechanisms of fulvestrant resistance. Mol. Oncol. 10, 1078–1085 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Coumans, F. A., van Dalum, G., Beck, M. & Terstappen, L. W. Filtration parameters influencing circulating tumor cell enrichment from whole blood. PLOS ONE 8, e61774 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Clawson, G. A. et al. Circulating tumor cells in melanoma patients. PLOS ONE 7, e41052 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sun, N., Li, X., Wang, Z., Li, Y. & Pei, R. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method. Biosens. Bioelectron. 102, 157–163 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Kim, T. H., Yoon, H. J., Stella, P. & Nagrath, S. Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells. Biomicrofluidics 8, 064117 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Huang, C., Smith, J. P., Saha, T. N., Rhim, A. D. & Kirby, B. J. Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis. Biomicrofluidics 8, 044107 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gascoyne, P. R. & Shim, S. Isolation of circulating tumor cells by dielectrophoresis. Cancers 6, 545–579 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sarioglu, A. F. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12, 685–691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gkountela, S. et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98–112 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Heitzer, E. et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 73, 2965–2975 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Abonnenc, M. et al. Programmable interactions of functionalized single bioparticles in a dielectrophoresis-based microarray chip. Anal. Chem. 85, 8219–8224 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Peeters, D. J. et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br. J. Cancer 108, 1358–1367 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bhagwat, N. et al. An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci. Rep. 8, 5035 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mastoraki, S. et al. ESR1 methylation: a liquid biopsy-based epigenetic assay for the follow-up of patients with metastatic breast cancer receiving endocrine treatment. Clin. Cancer Res. 24, 1500–1510 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Soler, A., Cayrefourcq, L., Mazel, M. & Alix-Panabieres, C. EpCAM-independent enrichment and detection of viable circulating tumor cells using the EPISPOT assay. Methods Mol. Biol. 1634, 263–276 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Ramirez, J. M. et al. Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin. Chem. 60, 214–221 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Deneve, E. et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin. Chem. 59, 1384–1392 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Kuske, A. et al. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci. Rep. 6, 39736 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Eyer, K. et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 35, 977–982 (2017).

    CAS  Google Scholar 

  32. 32.

    Gasch, C. et al. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin. Chem. 59, 252–260 (2013).

    CAS  PubMed  Google Scholar 

  33. 33.

    Carter, L. et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat. Med. 23, 114–119 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lohr, J. G. et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32, 479–484 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Babayan, A. et al. Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget 8, 56066–56080 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Muller, C. et al. Hematogenous dissemination of glioblastoma multiforme. Sci. Transl Med. 6, 247ra101 (2014).

    PubMed  Google Scholar 

  37. 37.

    Yates, D. R. et al. Quantitative RT-PCR analysis of PSA and prostate-specific membrane antigen mRNA to detect circulating tumor cells improves recurrence-free survival nomogram prediction after radical prostatectomy. Prostate 72, 1382–1388 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Strati, A., Kasimir-Bauer, S., Markou, A., Parisi, C. & Lianidou, E. S. Comparison of three molecular assays for the detection and molecular characterization of circulating tumor cells in breast cancer. Breast Cancer Res. 15, R20 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Gorges, T. M. et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin. Chem. 62, 1504–1515 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Gasch, C. et al. Heterogeneity of miR-10b expression in circulating tumor cells. Sci. Rep. 5, 15980 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sinkala, E. et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun. 8, 14622 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Franzen, B. et al. A fine-needle aspiration-based protein signature discriminates benign from malignant breast lesions. Mol. Oncol. 12, 1415–1428 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    CAS  PubMed  Google Scholar 

  45. 45.

    Hodgkinson, C. L. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20, 897–903 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Zhang, L. et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl Med. 5, 180ra48 (2013).

    PubMed  Google Scholar 

  47. 47.

    Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Alix-Panabieres, C. et al. Molecular portrait of metastasis-competent circulating tumor cells in colon cancer reveals the crucial role of genes regulating energy metabolism and DNA repair. Clin. Chem. 63, 700–713 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Cayrefourcq, L. et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 75, 892–901 (2015).

    CAS  PubMed  Google Scholar 

  50. 50.

    Fischer, J. C. et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl Acad. Sci. USA 110, 16580–16585 (2013).

    CAS  PubMed  Google Scholar 

  51. 51.

    Gorges, T. M. et al. Enumeration and molecular characterization of tumor cells in lung cancer patients using a novel in vivo device for capturing circulating tumor cells. Clin. Cancer Res. 22, 2197–2206 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Pantel, K. & Alix-Panabieres, C. Functional studies on viable circulating tumor cells. Clin. Chem. 62, 328–334 (2016).

    CAS  PubMed  Google Scholar 

  53. 53.

    Alix-Panabieres, C., Bartkowiak, K. & Pantel, K. Functional studies on circulating and disseminated tumor cells in carcinoma patients. Mol. Oncol. 10, 443–449 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Soler, A. et al. Autologous cell lines from circulating colon cancer cells captured from sequential liquid biopsies as model to study therapy-driven tumor changes. Sci. Rep. 8, 15931 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2018).

    Google Scholar 

  56. 56.

    Abbosh, C., Birkbak, N. J. & Swanton, C. Early stage NSCLC — challenges to implementing ctDNA-based screening and MRD detection. Nat. Rev. Clin. Oncol. 15, 577–586 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Riethdorf, S. et al. Prognostic impact of circulating tumor cells for breast cancer patients treated in the neoadjuvant “Geparquattro” trial. Clin. Cancer Res. 23, 5384–5393 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Bidard, F. C. et al. Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. J. Natl Cancer Inst. 110, 560–567 (2018).

    PubMed  Google Scholar 

  59. 59.

    Janni, W. J. et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin. Cancer Res. 22, 2583–2593 (2016).

    CAS  PubMed  Google Scholar 

  60. 60.

    Rack, B. et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J. Natl Cancer Inst. 106, dju066 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Yokobori, T. et al. Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 73, 2059–2069 (2013).

    CAS  PubMed  Google Scholar 

  62. 62.

    Effenberger, K. E. et al. Improved risk stratification by circulating tumor cell counts in pancreatic cancer. Clin. Cancer Res. 24, 2844–2850 (2018).

    CAS  PubMed  Google Scholar 

  63. 63.

    Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl Med. 7, 302ra133 (2015).

    PubMed  Google Scholar 

  64. 64.

    Trapp, E. et al. Presence of circulating tumor cells in high-risk early breast cancer during follow-up and prognosis. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djy152 (2018).

    Article  Google Scholar 

  65. 65.

    Sparano, J. et al. Association of circulating tumor cells with late recurrence of estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 4, 1700–1706 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Goodman, C. R. et al. Association of circulating tumor cell status with benefit of radiotherapy and survival in early-stage breast cancer. JAMA Oncol. 4, e180163 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Bidard, F. C. et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 15, 406–414 (2014).

    PubMed  Google Scholar 

  68. 68.

    Heller, G. et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: a comparison with prostate-specific antigen across five randomized phase III clinical trials. J. Clin. Oncol. 36, 572–580 (2018).

    CAS  PubMed  Google Scholar 

  69. 69.

    Ignatiadis, M. et al. Trastuzumab versus observation for HER2 nonamplified early breast cancer with circulating tumor cells (EORTC 90091–10093, BIG 1–12, Treat CTC): a randomized phase II trial. Ann. Oncol. 29, 1777–1783 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Georgoulias, V. et al. Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19mRNA-positive circulating tumor cells: results of a randomized phase II study. Ann. Oncol. 23, 1744–1750 (2012).

    CAS  PubMed  Google Scholar 

  71. 71.

    van Dalum, G. et al. Importance of circulating tumor cells in newly diagnosed colorectal cancer. Int. J. Oncol. 46, 1361–1368 (2015).

    PubMed  Google Scholar 

  72. 72.

    Krebs, M. G. et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29, 1556–1563 (2011).

    PubMed  Google Scholar 

  73. 73.

    Hou, J. M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 30, 525–532 (2012).

    PubMed  Google Scholar 

  74. 74.

    Aggarwal, C. et al. Circulating tumor cells as a predictive biomarker in patients with small cell lung cancer undergoing chemotherapy. Lung Cancer 112, 118–125 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lindsay, C. R. et al. A prospective examination of circulating tumor cell profiles in non-small-cell lung cancer molecular subgroups. Ann. Oncol. 28, 1523–1531 (2017).

    CAS  PubMed  Google Scholar 

  76. 76.

    Scher, H. I. et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur. Urol. 71, 874–882 (2017).

    CAS  PubMed  Google Scholar 

  77. 77.

    Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    PubMed  Google Scholar 

  78. 78.

    Chen, Y. H. et al. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. NPJ Breast Cancer 3, 24 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 7, 1034–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Riva, F. et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin. Chem. 63, 691–699 (2017).

    CAS  PubMed  Google Scholar 

  81. 81.

    Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl Med. 8, 346ra92 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Ng, S. B. et al. Individualised multiplexed circulating tumour DNA assays for monitoring of tumour presence in patients after colorectal cancer surgery. Sci. Rep. 7, 40737 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Scholer, L. V. et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin. Cancer Res. 23, 5437–5445 (2017).

    CAS  PubMed  Google Scholar 

  84. 84.

    Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7, 1394–1403 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Kuang, Y. et al. Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin. Cancer Res. 15, 2630–2636 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Nakamura, T. et al. A noninvasive system for monitoring resistance to epidermal growth factor receptor tyrosine kinase inhibitors with plasma DNA. J. Thorac. Oncol. 6, 1639–1648 (2011).

    PubMed  Google Scholar 

  89. 89.

    Taniguchi, K. et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin. Cancer Res. 17, 7808–7815 (2011).

    CAS  PubMed  Google Scholar 

  90. 90.

    Douillard, J. Y. et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br. J. Cancer 110, 55–62 (2014).

    CAS  PubMed  Google Scholar 

  91. 91.

    QIAGEN. therascreen® EGFR RGQ PCR kit instructions for use (handbook). FDA https://www.accessdata.fda.gov/cdrh_docs/pdf12/P120022c.pdf (2013).

  92. 92.

    Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Mostert, B. et al. KRAS and BRAF mutation status in circulating colorectal tumor cells and their correlation with primary and metastatic tumor tissue. Int. J. Cancer 133, 130–141 (2013).

    CAS  PubMed  Google Scholar 

  94. 94.

    Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra24 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 21, 827 (2015).

    CAS  PubMed  Google Scholar 

  96. 96.

    Jiang, Y., Palma, J. F., Agus, D. B., Wang, Y. & Gross, M. E. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem. 56, 1492–1495 (2010).

    PubMed  Google Scholar 

  97. 97.

    Wyatt, A. W. et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2, 1598–1606 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Meric-Bernstam, F. et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-2275 (2019).

    Article  PubMed  Google Scholar 

  99. 99.

    Schneck, H. et al. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol. Oncol. 7, 976–986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Neves, R. P. et al. Genomic high-resolution profiling of single CKpos/CD45neg flow-sorting purified circulating tumor cells from patients with metastatic breast cancer. Clin. Chem. 60, 1290–1297 (2014).

    CAS  PubMed  Google Scholar 

  101. 101.

    Pestrin, M. et al. Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients. Mol. Oncol. 9, 749–757 (2015).

    CAS  PubMed  Google Scholar 

  102. 102.

    Polzer, B. et al. Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol. Med. 6, 1371–1386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Gasch, C. et al. Frequent detection of PIK3CA mutations in single circulating tumor cells of patients suffering from HER2-negative metastatic breast cancer. Mol. Oncol. 10, 1330–1343 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Schiavon, G. et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl Med. 7, 313ra182 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    O’Leary, B. et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat. Commun. 9, 896 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Shaw, J. A. et al. Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high circulating tumor cell counts. Clin. Cancer Res. 23, 88–96 (2017).

    CAS  PubMed  Google Scholar 

  109. 109.

    Guttery, D. S. et al. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer. Clin. Chem. 61, 974–982 (2015).

    CAS  PubMed  Google Scholar 

  110. 110.

    Chu, D. et al. ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin. Cancer Res. 22, 993–999 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    O’Leary, B. et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 8, 1390–1403 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Villanueva, J., Vultur, A. & Herlyn, M. Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options. Cancer Res. 71, 7137–7140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Long, G. V. et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol. 17, 1743–1754 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Sakaizawa, K. et al. Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br. J. Cancer 106, 939–946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    CAS  PubMed  Google Scholar 

  116. 116.

    Pailler, E. et al. Method for semi-automated microscopy of filtration-enriched circulating tumor cells. BMC Cancer 16, 477 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Pailler, E. et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 31, 2273–2281 (2013).

    PubMed  Google Scholar 

  118. 118.

    Pailler, E. et al. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer. Ann. Oncol. 26, 1408–1415 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    CAS  PubMed  Google Scholar 

  120. 120.

    Danila, D. C. et al. TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration-resistant prostate cancer patients treated with abiraterone acetate. Eur. Urol. 60, 897–904 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Steinestel, J. et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget https://doi.org/10.18632/oncotarget.3925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Thadani-Mulero, M. et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 74, 2270–2282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Antonarakis, E. S. et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 1, 582–591 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Nakazawa, M. et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann. Oncol. 26, 1859–1865 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Onstenk, W. et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur. Urol. 68, 939–945 (2015).

    CAS  PubMed  Google Scholar 

  127. 127.

    Scher, H. I. et al. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. 4, 1179–1186 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Miyamoto, D. T. et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349, 1351–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Maurer, T. et al. PSMA theranostics using PET and subsequent radioguided surgery in recurrent prostate cancer. Clin. Genitourin. Cancer 14, e549–e552 (2016).

    PubMed  Google Scholar 

  130. 130.

    Ristau, B. T., O’Keefe, D. S. & Bacich, D. J. The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research. Urol. Oncol. 32, 272–279 (2014).

    PubMed  Google Scholar 

  131. 131.

    Ahmadzadehfar, H. et al. Predictors of overall survival in metastatic castration-resistant prostate cancer patients receiving [(177)Lu]Lu-PSMA-617 radioligand therapy. Oncotarget 8, 103108–103116 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Babayan, A. et al. Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. PLOS ONE 8, e75038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Paoletti, C. et al. Development of circulating tumor cell-endocrine therapy index in patients with hormone receptor-positive breast cancer. Clin. Cancer Res. 21, 2487–2498 (2015).

    CAS  PubMed  Google Scholar 

  134. 134.

    Fehm, T. et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res. Treat. 124, 403–412 (2010).

    CAS  PubMed  Google Scholar 

  135. 135.

    Wang, C. H., Chang, C. J., Yeh, K. Y., Chang, P. H. & Huang, J. S. The prognostic value of HER2-positive circulating tumor cells in breast cancer patients: a systematic review and meta-analysis. Clin. Breast Cancer 17, 341–349 (2017).

    CAS  PubMed  Google Scholar 

  136. 136.

    Philips, G. K. & Atkins, M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int. Immunol. 27, 39–46 (2015).

    CAS  PubMed  Google Scholar 

  137. 137.

    Mittendorf, E. A. et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2, 361–370 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Mazel, M. et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol. Oncol. 9, 1773–1782 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Nicolazzo, C. et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor nivolumab. Sci. Rep. 6, 31726 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Strati, A. et al. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann. Oncol. 28, 1923–1933 (2017).

    CAS  PubMed  Google Scholar 

  141. 141.

    Cabel, L. et al. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat. Rev. Clin. Oncol. 15, 639–650 (2018).

    CAS  PubMed  Google Scholar 

  142. 142.

    Mohme, M., Riethdorf, S. & Pantel, K. Circulating and disseminated tumour cells — mechanisms of immune surveillance and escape. Nat. Rev. Clin. Oncol. 14, 155–167 (2017).

    CAS  PubMed  Google Scholar 

  143. 143.

    Pantel, K. & Hayes, D. F. Disseminated breast tumour cells: biological and clinical meaning. Nat. Rev. Clin. Oncol. 15, 129–131 (2018).

    PubMed  Google Scholar 

  144. 144.

    Ulz, P. et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat. Genet. 48, 1273–1278 (2016).

    CAS  Google Scholar 

  145. 145.

    Guo, N. et al. Circulating tumor DNA detection in lung cancer patients before and after surgery. Sci. Rep. 6, 33519 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Alix-Panabieres, C. & Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6, 479–491 (2016).

    CAS  PubMed  Google Scholar 

  147. 147.

    Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Fernandez-Cuesta, L. et al. Identification of circulating tumor DNA for the early detection of small-cell lung cancer. EBioMedicine 10, 117–123 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Krimmel, J. D. et al. Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues. Proc. Natl Acad. Sci. USA 113, 6005–6010 (2016).

    CAS  PubMed  Google Scholar 

  152. 152.

    Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Kato, S., Lippman, S. M., Flaherty, K. T. & Kurzrock, R. The conundrum of genetic “drivers” in benign conditions. J. Natl Cancer Inst. 108, djw036 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nat. Genet. 33, 19–20 (2003).

    CAS  PubMed  Google Scholar 

  155. 155.

    Bardelli, A. & Pantel, K. Liquid biopsies, what we do not know (yet). Cancer Cell 31, 172–179 (2017).

    CAS  PubMed  Google Scholar 

  156. 156.

    Gao, X. L., Zhang, M., Tang, Y. L. & Liang, X. H. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther. 10, 5219–5228 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Reimers for her assistance in designing figure 4. The authors received support from the German Cancer Aid Fund (Deutsche Krebshilfe); DFG (Deutsche Forschungsgemeinschaft); the French National Institute of Cancer (INCa); CANCER-ID, an Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115749, resources of which are composed of financial contribution from the European Union’s Seventh Framework Program (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies’ in-kind contributions; and the European Liquid Biopsies Academy (ELBA) Innovative Training Networks (ITN) Horizon 2020 project H2020-MSCA-ITN-2017 (Towards widespread clinical application of blood-based diagnostic tools).

Competing interests

K.P. and C.A.-P. have ongoing patent applications related to circulating tumour cells. K.P. has received honoraria from Agena, Novartis, Roche and Sanofi and research funding from European Federation of Pharmaceutical Industries and Associations (EFPIA) partners (Angle, Menarini and Servier) of the CANCER-ID programme of the European Union–EFPIA Innovative Medicines Initiative. C.A.-P. has received honoraria from Janssen.

Reviewer information

Nature Reviews Clinical Oncology thanks J.-Y. Pierga and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Both authors made substantial contributions to all stages of the preparation of this manuscript.

Corresponding author

Correspondence to Klaus Pantel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BloodPAC: https://www.bloodpac.org/

CANCER-ID: https://www.cancer-id.eu/

ClinicalTrials.gov database: https://clinicaltrials.gov/

ELBA: https://elba.uni-plovdiv.bg/

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pantel, K., Alix-Panabières, C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat Rev Clin Oncol 16, 409–424 (2019). https://doi.org/10.1038/s41571-019-0187-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing