Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer immunoediting and resistance to T cell-based immunotherapy

Abstract

Anticancer immunotherapies involving the use of immune-checkpoint inhibitors or adoptive cellular transfer have emerged as new therapeutic pillars within oncology. These treatments function by overcoming or relieving tumour-induced immunosuppression, thereby enabling immune-mediated tumour clearance. While often more effective and better tolerated than traditional and targeted therapies, many patients have innate or acquired resistance to immunotherapies. Cancer immunoediting is the process whereby the immune system can both constrain and promote tumour development, which proceeds through three phases termed elimination, equilibrium and escape. Throughout these phases, tumour immunogenicity is edited, and immunosuppressive mechanisms that enable disease progression are acquired. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this Review, we discuss how a deeper understanding of the mechanisms underlying the cancer immunoediting process can provide insight into the development of resistance to immunotherapies and the strategies that can be used to overcome such resistance.

Key points

  • Cancer immunoediting proceeds through three phases: elimination, equilibrium and escape.

  • Cancer immunoediting occurs during tumour progression but also in patients receiving anticancer immunotherapies.

  • Innate and acquired resistance to immunotherapy are important barriers to treatment effectiveness.

  • The availability of large amounts of new information on the genomic and transcriptomic profile of various human malignancies adds extra depth to our ability to stratify the tumour microenvironment.

  • Tumours can be stratified on the basis of their mutational burden and the presence or absence of a T cell-inflamed gene signature.

  • Immunotherapies should be considered as a therapeutic option in patients who have pre-malignant or dormant tumours that might eventually progress or relapse.

  • The optimal approaches to achieve tumour elimination will involve therapeutic combinations to promote immune activation and T cell priming, suppress immunosuppressive signals in the tumour microenvironment and sustain the presence of T cells within the tumour tissue.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer immunoediting and response to cancer immunotherapy.
Fig. 2: Model for stratifying tumours on the basis of tumour mutational burden and inflammatory gene signatures.
Fig. 3: Essential targets for combination immunotherapies.

Similar content being viewed by others

References

  1. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gettinger, S. et al. Five-year follow-up of nivolumab in previously treated advanced non-small-cell lung cancer: results from the CA209-003 study. J. Clin. Oncol. 36, 1675–1684 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Pages, F. et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27, 5944–5951 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Pages, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    Article  PubMed  Google Scholar 

  10. Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T cell infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uno, T. et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat. Med. 12, 693–698 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeda, K. et al. IFN-gamma is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat. Commun. 8, 14607 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mandai, M. et al. Dual faces of IFNgamma in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin. Cancer Res. 22, 2329–2334 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Chang, C. C. et al. Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J. Biol. Chem. 290, 26562–26575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, K. H. et al. HDAC1 upregulation by NANOG promotes multidrug resistance and a stem-like phenotype in immune edited tumor cells. Cancer Res. 77, 5039–5053 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teng, M. W., Galon, J., Fridman, W. H. & Smyth, M. J. From mice to humans: developments in cancer immunoediting. J. Clin. Invest. 125, 3338–3346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Donnell, J. S., Long, G. V., Scolyer, R. A., Teng, M. W. & Smyth, M. J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat. Rev. 52, 71–81 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsushita, H. et al. Cancer exome analysis reveals a T cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Poschke, I. et al. Identification of a tumor-reactive T cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 5, e1240859 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, C. H., Yelensky, R., Jooss, K. & Chan, T. A. Update on tumor neoantigens and their utility: why it is good to be different. Trends Immunol. 39, 536–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montgomery, R. B., Makary, E., Schiffman, K., Goodell, V. & Disis, M. L. Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res. 65, 650–656 (2005).

    CAS  PubMed  Google Scholar 

  38. Goodell, V. et al. Level of HER-2/neu protein expression in breast cancer may affect the development of endogenous HER-2/neu-specific immunity. Mol. Cancer Ther. 7, 449–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weinstein, J. N. et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lauss, M. et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8, 1738 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Smith, C. & Khanna, R. Adoptive cellular immunotherapy for virus-associated cancers: a new paradigm in personalized medicine. Immunol. Cell Biol. 95, 364–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, C. et al. Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res. 72, 1116–1125 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Duan, F. et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J. Exp. Med. 211, 2231–2248 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, S. et al. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann. Oncol. 29, 1030–1036 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Marty, R., Thompson, W. K., Salem, R. M., Zanetti, M. & Carter, H. Evolutionary pressure against MHC class II binding cancer mutations. Cell 175, 416–428 (2018).

    Article  CAS  Google Scholar 

  52. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Rooij, N. et al. Tumor exome analysis reveals neoantigen-specific T cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31, 439–442 (2013).

    Article  Google Scholar 

  56. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hellmann, M. D. et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33, 843–852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zacharakis, N. et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24, 724–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Angelova, M. et al. Evolution of metastases in space and time under immune selection. Cell 175, 751–765 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Jaffee, E. M. et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 18, 653–706 (2017).

    Article  Google Scholar 

  66. Spira, A. et al. Precancer atlas to drive precision prevention trials. Cancer Res. 77, 1510–1541 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Farrar, J. D. et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J. Immunol. 162, 2842–2849 (1999).

    CAS  PubMed  Google Scholar 

  68. Quesnel, B. Dormant tumor cells as a therapeutic target? Cancer Lett. 267, 10–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Manjili, M. H. The inherent premise of immunotherapy for cancer dormancy. Cancer Res. 74, 6745–6749 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Manjili, M. H. & Payne, K. K. Prospects in cancer immunotherapy: treating advanced stage disease or preventing tumor recurrence? Discov. Med. 19, 427–431 (2015).

    PubMed  Google Scholar 

  71. McLaughlin-Drubin, M. E. & Munger, K. Viruses associated with human cancer. Biochim. Biophys. Acta 1782, 127–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Burd, E. M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 16, 1–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neuveut, C., Wei, Y. & Buendia, M. A. Mechanisms of HBV-related hepatocarcinogenesis. J. Hepatol. 52, 594–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Sigl, V. et al. RANKL/RANK control Brca1 mutation-driven mammary tumors. Cell Res. 26, 761–774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nolan, E. et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat. Med. 22, 933–939 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Patel, S. G. & Ahnen, D. J. Familial colon cancer syndromes: an update of a rapidly evolving field. Curr. Gastroenterol. Rep. 14, 428–438 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chang, K. Lynch syndrome premalignancy upregulates immune checkpoints independently from neoantigen and mutational rates. Cancer Res. 78, 1256 (2018).

    Article  Google Scholar 

  78. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gubin, M. M., Artyomov, M. N., Mardis, E. R. & Schreiber, R. D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest. 125, 3413–3421 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Collins, J. M., Redman, J. M. & Gulley, J. L. Combining vaccines and immune checkpoint inhibitors to prime, expand, and facilitate effective tumor immunotherapy. Expert Rev. Vaccines 17, 697–705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang, A. C. et al. T cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eggermont, A. M. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rozeman, E. A. et al. (Neo-)adjuvant ipilimumab + nivolumab (IPI+NIVO) in palpable stage 3 melanoma — updated relapse free survival (RFS) data from the OpACIN trial and first biomarker analyses. Ann. Oncol. 28, mdx377.008 (2017).

    Google Scholar 

  92. Keung, E. Z., Ukponmwan, E. U., Cogdill, A. P. & Wargo, J. A. The rationale and emerging use of neoadjuvant immune checkpoint blockade for solid malignancies. Ann. Surg. Oncol. 25, 1814–1827 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tetzlaff, M. T. et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann. Oncol. 29, 1861–1868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

    Article  PubMed  Google Scholar 

  95. Petrelli, F. et al. Correlation of pathologic complete response with survival after neoadjuvant chemotherapy in bladder cancer treated with cystectomy: a meta-analysis. Eur. Urol. 65, 350–357 (2014).

    Article  PubMed  Google Scholar 

  96. Park, I. J. et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J. Clin. Oncol. 30, 1770–1776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lorenzen, S. et al. Impact of pathologic complete response on disease-free survival in patients with esophagogastric adenocarcinoma receiving preoperative docetaxel-based chemotherapy. Ann. Oncol. 24, 2068–2073 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Ajani, J. A. et al. Paclitaxel-based chemoradiotherapy in localized gastric carcinoma: degree of pathologic response and not clinical parameters dictated patient outcome. J. Clin. Oncol. 23, 1237–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fehrenbacher, L. et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387, 1837–1846 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Gajewski, T. F. The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin. Oncol. 42, 663–671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ock, C. Y. et al. Pan-cancer immunogenomic perspective on the tumor microenvironment based on PD-L1 and CD8 T-cell infiltration. Clin. Cancer Res. 22, 2261–2270 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra37 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Chen, Y. P. et al. Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: immunotherapeutic implications. Theranostics 7, 3585–3594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Payne, K. K. et al. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells. J. Leukoc. Biol. 100, 625–635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kleffel, S. et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162, 1242–1256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, X. Y. et al. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J. Clin. Invest. 128, 2613–2625 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Blake, S. J., Dougall, W. C., Miles, J. J., Teng, M. W. & Smyth, M. J. Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin. Cancer Res. 22, 5183–5188 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Blake, S. J. et al. Suppression of metastases using a new lymphocyte checkpoint target for cancer immunotherapy. Cancer Discov. 6, 446–459 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Harjunpaa, H. et al. Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity without significantly compromising immune homeostasis. Oncoimmunology 7, e1445949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl Med. 10, eaan3311 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  127. Campoli, M. & Ferrone, S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27, 5869–5885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Seliger, B. The link between MHC class I abnormalities of tumors, oncogenes, tumor suppressor genes, and transcription factors. J. Immunotoxicol. 11, 308–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Hicklin, D. J. et al. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J. Clin. Invest. 101, 2720–2729 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Restifo, N. P. et al. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl Cancer Inst. 88, 100–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Godfrey, D. I., Le Nours, J., Andrews, D. M., Uldrich, A. P. & Rossjohn, J. Unconventional T cell targets for cancer immunotherapy. Immunity 48, 453–473 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Garrido, C. et al. Alterations of HLA class I expression in human melanoma xenografts in immunodeficient mice occur frequently and are associated with higher tumorigenicity. Cancer Immunol. Immunother. 59, 13–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Zeestraten, E. C. et al. Combined analysis of HLA class I, HLA-E and HLA-G predicts prognosis in colon cancer patients. Br. J. Cancer 110, 459–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Gooden, M. et al. HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8(+) T lymphocytes. Proc. Natl Acad. Sci. USA 108, 10656–10661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Morandi, F. & Pistoia, V. Interactions between HLA-G and HLA-E in physiological and pathological conditions. Front. Immunol. 5, 394 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Dunn, G. P. et al. Interferon-gamma and cancer immunoediting. Immunol. Res. 32, 231–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Dighe, A. S., Richards, E., Old, L. J. & Schreiber, R. D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1, 447–456 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Sharma, A. et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer 118, 4354–4362 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Kmieciak, M., Knutson, K. L., Dumur, C. I. & Manjili, M. H. HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur. J. Immunol. 37, 675–685 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kaplan, M. H., Wurster, A. L. & Grusby, M. J. A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J. Exp. Med. 188, 1191–1196 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gao, J. et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl Med. 10, eaar3342 (2018).

    Article  PubMed  CAS  Google Scholar 

  145. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kearney, C. J. et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. 3, eaar3451 (2018).

    Article  PubMed  Google Scholar 

  148. Smyth, M. J., Kelly, J. M., Baxter, A. G., Korner, H. & Sedgwick, J. D. An essential role for tumor necrosis factor in natural killer cell-mediated tumor rejection in the peritoneum. J. Exp. Med. 188, 1611–1619 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lickliter, J. D. et al. Small-molecule Bcl-2 inhibitors sensitise tumour cells to immune-mediated destruction. Br. J. Cancer 96, 600–608 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709–724 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Beavis, P. A. et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl Acad. Sci. USA 110, 14711–14716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Young, A. et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30, 391–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Chen, L. et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 8, 1156–1175 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  155. Triplett, T. A. et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 36, 758–764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Moon, Y. W., Hajjar, J., Hwu, P. & Naing, A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer 3, 51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Cheong, J. E. & Sun, L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy — challenges and opportunities. Trends Pharmacol. Sci. 39, 307–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Johnston, C. J., Smyth, D. J., Dresser, D. W. & Maizels, R. M. TGF-beta in tolerance, development and regulation of immunity. Cell. Immunol. 299, 14–22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. David, J. M. et al. A novel bifunctional anti-PD-L1/TGF-beta Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology 6, e1349589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Strauss, J. et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. Clin. Cancer Res. 24, 1287–1295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, J. et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49, 178–193 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Naito, Y. et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58, 3491–3494 (1998).

    CAS  PubMed  Google Scholar 

  167. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hu-Lieskovan, S., Homet Moreno, B. & Ribas, A. Excluding T cells: is beta-catenin the full story? Cancer Cell 27, 749–750 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bald, T. et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov. 4, 674–687 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Adamus, T. & Kortylewski, M. The revival of CpG oligonucleotide-based cancer immunotherapies. Contemp. Oncol. 22, 56–60 (2018).

    Google Scholar 

  175. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Zitvogel, L., Galluzzi, L., Smyth, M. J. & Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Andtbacka, R. H. et al. Patterns of clinical response with talimogene laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann. Surg. Oncol. 23, 4169–4177 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shrimali, R. K. et al. Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T cell apoptosis. Cancer Immunol. Res. 5, 755–766 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Mlecnik, B. et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl Med. 6, 228–237 (2014).

    Article  CAS  Google Scholar 

  185. Mlecnik, B. et al. Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nagy, J. A., Chang, S. H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31, 311–325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Slaney, C. Y., Kershaw, M. H. & Darcy, P. K. Trafficking of T cells into tumors. Cancer Res. 74, 7168–7174 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Johansson-Percival, A. et al. Intratumoral LIGHT restores pericyte contractile properties and vessel integrity. Cell Rep. 13, 2687–2698 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Zhang, Y. et al. Endocrine vasculatures are preferable targets of an antitumor ineffective low dose of anti-VEGF therapy. Proc. Natl Acad. Sci. USA 113, 4158–4163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chimote, A. A. et al. A defect in KCa3.1 channel activity limits the ability of CD8(+) T cells from cancer patients to infiltrate an adenosine-rich microenvironment. Sci. Signal. 11, eaaq1616 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Guirnalda, P., Wood, L., Goenka, R., Crespo, J. & Paterson, Y. Interferon gamma-induced intratumoral expression of CXCL9 alters the local distribution of T cells following immunotherapy with Listeria monocytogenes. Oncoimmunology 2, e25752 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tauriello, D. V. F. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Mondino, A., Vella, G. & Icardi, L. Targeting the tumor and its associated stroma: one and one can make three in adoptive T cell therapy of solid tumors. Cytokine Growth Factor Rev. 36, 57–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Garcia-Martinez, E. et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 16, 488 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Taniguchi, K. & Karin, M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Kumar, V. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32, 654–668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ugel, S., De Sanctis, F., Mandruzzato, S. & Bronte, V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Invest. 125, 3365–3376 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Condamine, T., Ramachandran, I., Youn, J. I. & Gabrilovich, D. I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 66, 97–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Cook, J. & Hagemann, T. Tumour-associated macrophages and cancer. Curr. Opin. Pharmacol. 13, 595–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Zhang, Q. W. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLOS ONE 7, e50946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fleming, V. et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol. 9, 398 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Glodde, N. et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity 47, 789–802 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Eriksson, E., Wenthe, J., Irenaeus, S., Loskog, A. & Ullenhag, G. Gemcitabine reduces MDSCs, tregs and TGFbeta-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl Med. 14, 282 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Orillion, A. et al. Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 23, 5187–5201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559, 363–369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Su, Y. L., Banerjee, S., White, S. V. & Kortylewski, M. STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity. Int. J. Mol. Sci. 19, 1803 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  223. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kortylewski, M. & Moreira, D. Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol. Immunother. 66, 979–988 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Woods, D. M., Ramakrishnan, R., Sodré, A. L., Berglund, A. & Weber, J. PD-1 blockade induces phosphorylated STAT3 and results in an increase of Tregs with reduced suppressive function. J. Immunol. 198, 56.7 (2017).

    Google Scholar 

  226. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  230. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Shono, Y. & van den Brink, M. R. M. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat. Rev. Cancer 18, 283–295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. D’Aloia, M. M., Zizzari, I. G., Sacchetti, B., Pierelli, L.& Alimandi, M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 9, 282 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Kloss, C. C. et al. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Daher, M. & Rezvani, K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr. Opin. Immunol. 51, 146–153 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of J.S.O’D. has been supported by an Australian Postgraduate Award and a QIMR Berghofer PhD Top-Up Scholarship. The research of M.W.L.T. is supported by a National Health and Medical Research Council of Australia (NHMRC) Project Grant (1098960). The research of M.J.S. is funded by an NHMRC Senior Principal Research Fellowship (1078671) and an NHMRC Program Grant (1132519).

Reviewer information

Nature Reviews Clinical Oncology thanks S. Ferrone, M. Manjili and the other anonymous peer reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to each stage of the preparation of this manuscript for publication.

Corresponding authors

Correspondence to Michele W. L. Teng or Mark J. Smyth.

Ethics declarations

Competing interests

M.W.L.T. has received honoraria from Arcus Biosciences, Boehringer Ingelheim, Bristol-Myers Squib and Merck Sharp and Dohme. The work of M.J.S. is funded by research agreements from Aduro Biotech, Bristol-Myers Squib and Tizona Therapeutics. J.S.O’D. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Donnell, J.S., Teng, M.W.L. & Smyth, M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 16, 151–167 (2019). https://doi.org/10.1038/s41571-018-0142-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0142-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer