Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Somatic and germline genomics in paediatric acute lymphoblastic leukaemia

Abstract

Advances in genomic research and risk-directed therapy have led to improvements in the long-term survival and quality of life outcomes of patients with childhood acute lymphoblastic leukaemia (ALL). The application of next-generation sequencing technologies, especially transcriptome sequencing, has resulted in the identification of novel molecular subtypes of ALL with prognostic and therapeutic implications, as well as cooperative mutations that account for much of the heterogeneity in clinical responses observed among patients with specific ALL subtypes. In addition, germline genetic variants have been shown to influence the risk of developing ALL and/or the responses of non-malignant and leukaemia cells to therapy; shared pathways for drug activation and metabolism are implicated in treatment-related toxicity and drug sensitivity or resistance, depending on whether the genetic changes are germline, somatic or both. Indeed, although once considered a non-hereditary disease, genomic investigations of familial and sporadic ALL have revealed a growing number of genetic alterations or conditions that predispose individuals to the development of ALL and treatment-related second cancers. The identification of these genetic alterations holds the potential to direct genetic counselling, testing and possibly monitoring for the early detection of ALL and other cancers. Herein, we review these advances in our understanding of the genomic landscape of childhood ALL and their clinical implications.

Key points

  • Application of next-generation sequencing methods, especially transcriptome sequencing, has resulted in the discovery of many novel genetic rearrangements and mutations with prognostic and therapeutic implications in patients with acute lymphoblastic leukaemia (ALL).

  • A growing number of genetic conditions that predispose patients to develop ALL have been identified.

  • Pathogenic germline variants and common somatic mutations associated with ALL can affect the same genes (for example, PAX5, ETV6 and IKZF1).

  • Germline genetic variants influence the risk of developing ALL as well as the cellular response to anti-leukaemic therapy.

  • Germline genetic polymorphisms are usually retained in leukaemia cells; thus, they can affect drug responses in not only the non-malignant tissues of the host but also the leukaemia cells and, therefore, can affect the toxicities and anti-leukaemic activity of treatment.

  • Leukaemia cell genotype, pharmacogenetics and early treatment response assessed by minimal residual disease measurements should be used in concert to direct the treatment of patients with ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Improvements in the overall survival of paediatric patients with ALL over time with the evolution of treatment.
Fig. 2: Estimated frequencies of specific genetic subtypes of childhood ALL.
Fig. 3: Germline and somatic pharmacogenomics of thiopurine sensitivity in children with ALL.

Similar content being viewed by others

References

  1. Pui, C.-H., Yang, J. J., Bhakta, N. & Rodriguez-Galindo, C. Global efforts toward the cure of childhood acute lymphoblastic leukaemia. Lancet Child Adolesc. Health 2, 440–454 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    PubMed  Google Scholar 

  4. Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Moriyama, T., Relling, M. V. & Yang, J. J. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood 125, 3988–3995 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Malkin, D., Nichols, K. E., Zelley, K. & Schiffman, J. D. Predisposition to pediatric and hematologic cancers: a moving target. Am. Soc. Clin. Oncol. Educ. Book https://doi.org/10.14694/EdBook_AM.2014.34.e44 (2014).

    Article  PubMed  Google Scholar 

  8. Pui, C. H. & Evans, W. E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 354, 166–178 (2006).

    CAS  PubMed  Google Scholar 

  9. Roberts, K. G. & Mullighan, C. G. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat. Rev. Clin. Oncol. 12, 344–357 (2015).

    CAS  PubMed  Google Scholar 

  10. Pui, C. H., Roberts, K. G., Yang, J. J. & Mullighan, C. G. Philadelphia chromosome-like acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk. 17, 464–470 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Den Boer, M. L. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 10, 125–134 (2009).

    Google Scholar 

  12. Harrison, C. J. et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 28, 1015–1021 (2014).

    CAS  PubMed  Google Scholar 

  13. Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    CAS  PubMed  Google Scholar 

  14. Zhang, J. et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 48, 1481–1489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yasuda, T. et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat. Genet. 48, 569–574 (2016).

    CAS  PubMed  Google Scholar 

  16. Lilljebjorn, H. et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B cell precursor acute lymphoblastic leukaemia. Nat. Commun. 7, 11790 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Liu, Y. F. et al. Genomic profiling of adult and pediatric B cell acute lymphoblastic leukemia. EBioMedicine 8, 173–183 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Gu, Z. et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat. Commun. 7, 13331 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirabayashi, S. et al. ZNF384-related fusion genes define a subgroup of childhood B cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 102, 118–129 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Qian, M. et al. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Res. 27, 185–195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zaliova, M. et al. ETV6/RUNX1-like acute lymphoblastic leukemia: a novel B cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype. Genes Chromosomes Cancer 56, 608–616 (2017).

    CAS  PubMed  Google Scholar 

  22. Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211–1218 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu, S. et al. Whole-genome noncoding sequence analysis in T cell acute lymphoblastic leukemia identifies oncogene enhancer mutations. Blood 129, 3264–3268 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iacobucci, I. & Mullighan, C. G. Genetic basis of acute lymphoblastic leukemia. J. Clin. Oncol. 35, 975–983 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Veer, A. et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 123, 1691–1698 (2014).

    PubMed  Google Scholar 

  27. Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Stanulla, M. et al. IKZF1(plus) defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J. Clin. Oncol. 36, 1240–1249 (2018).

    CAS  PubMed  Google Scholar 

  29. Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeoh, A. E. J. et al. Intensifying treatment of childhood B-lymphoblastic leukemia with IKZF1 deletion reduces relapse and improves overall survival: results of malaysia-singapore ALL 2010 study. J. Clin Oncol. 36, 2726–2735 (2018).

    CAS  PubMed  Google Scholar 

  31. Roberts, K. G. et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J. Clin. Oncol. 32, 3012–3020 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jenkinson, S. et al. Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T cell acute lymphoblastic leukemia patients treated on the MRC UKALL 2003 trial. Leukemia 27, 41–47 (2013).

    CAS  PubMed  Google Scholar 

  33. Gutierrez, A. et al. High frequency of PTEN, PI3K, and AKT abnormalities in T cell acute lymphoblastic leukemia. Blood 114, 647–650 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Petit, A. et al. Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T cell acute lymphoblastic leukemia. Blood 131, 289–300 (2018).

    CAS  PubMed  Google Scholar 

  35. Pui, C. H. et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with response-adapted therapy. Leukemia 31, 333–339 (2017).

    PubMed  Google Scholar 

  36. Cazzaniga, G. et al. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T cell receptor and BCR/ABL1 methodologies. Haematologica 103, 107–115 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Connor, D. et al. Genotype-specific minimal residual disease interpretation improves stratification in pediatric acute lymphoblastic leukemia. J. Clin. Oncol. 36, 34–43 (2018).

    PubMed  Google Scholar 

  38. Mullighan, C. G. et al. Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood 126, 2896–2899 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Porter, C. C. et al. Recommendations for surveillance for children with leukemia-predisposing conditions. Clin. Cancer Res. 23, e14–e22 (2017).

    PubMed  Google Scholar 

  40. McGee, R. B. & Nichols, K. E. Introduction to cancer genetic susceptibility syndromes. Hematology Am. Soc. Hematol. Educ. Program 2016, 293–301 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Godley, L. A. & Shimamura, A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood 130, 424–432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Feurstein, S., Drazer, M. W. & Godley, L. A. Genetic predisposition to leukemia and other hematologic malignancies. Semin. Oncol. 43, 598–608 (2016).

    CAS  PubMed  Google Scholar 

  43. Auer, F. et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547 G>A. Leukemia 28, 1136–1138 (2014).

    CAS  PubMed  Google Scholar 

  44. Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45, 1226–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Moriyama, T. et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 16, 1659–1666 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Noetzli, L. et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 47, 535–538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Topka, S. et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLOS Genet. 11, e1005262 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Churchman, M. L. et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell 33, 937–948 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    CAS  PubMed  Google Scholar 

  50. Matthias, P. & Rolink, A. G. Transcriptional networks in developing and mature B cells. Nat. Rev. Immunol. 5, 497–508 (2005).

    CAS  PubMed  Google Scholar 

  51. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  52. Urbanek, P., Wang, Z. Q., Fetka, I., Wagner, E. F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    CAS  PubMed  Google Scholar 

  53. Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007).

    CAS  PubMed  Google Scholar 

  54. Kuiper, R. P. et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21, 1258–1266 (2007).

    CAS  PubMed  Google Scholar 

  55. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    CAS  PubMed  Google Scholar 

  56. Nebral, K. et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23, 134–143 (2009).

    CAS  PubMed  Google Scholar 

  57. Zhang, M. Y. et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat. Genet. 47, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, L. C. et al. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 12, 2392–2402 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Green, S. M., Coyne, H. J. 3rd, McIntosh, L. P. & Graves, B. J. DNA binding by the ETS protein TEL (ETV6) is regulated by autoinhibition and self-association. J. Biol. Chem. 285, 18496–18504 (2010).

  60. Olsson, L. & Johansson, B. Ikaros and leukaemia. Br. J. Haematol. 169, 479–491 (2015).

    CAS  PubMed  Google Scholar 

  61. Martinelli, G. et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J. Clin. Oncol. 27, 5202–5207 (2009).

    CAS  PubMed  Google Scholar 

  62. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    CAS  PubMed  Google Scholar 

  63. Roberts, K. G. et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J. Clin. Oncol. 35, 394–401 (2017).

    PubMed  Google Scholar 

  64. Kuehn, H. S. et al. Loss of B cells in patients with heterozygous mutations in IKAROS. N. Engl. J. Med. 374, 1032–1043 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshida, N. et al. Germline IKAROS mutation associated with primary immunodeficiency that progressed to T cell acute lymphoblastic leukemia. Leukemia 31, 1221–1223 (2017).

    CAS  PubMed  Google Scholar 

  66. McKinnon, P. J. ATM and the molecular pathogenesis of ataxia telangiectasia. Annu. Rev. Pathol. 7, 303–321 (2012).

    CAS  PubMed  Google Scholar 

  67. Morrell, D., Cromartie, E. & Swift, M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J. Natl Cancer Inst. 77, 89–92 (1986).

    CAS  PubMed  Google Scholar 

  68. Suarez, F. et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J. Clin. Oncol. 33, 202–208 (2015).

    PubMed  Google Scholar 

  69. Taylor, A. M., Metcalfe, J. A., Thick, J. & Mak, Y. F. Leukemia and lymphoma in ataxia telangiectasia. Blood 87, 423–438 (1996).

    CAS  PubMed  Google Scholar 

  70. Gatti, R. & Perlman, S. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  71. Murphy, R. C. et al. Malignancies in pediatric patients with ataxia telangiectasia. Pediatr. Radiol. 29, 225–230 (1999).

    CAS  PubMed  Google Scholar 

  72. Sandoval, C., Schantz, S., Posey, D. & Swift, M. Parotid and thyroid gland cancers in patients with ataxia-telangiectasia. Pediatr. Hematol. Oncol. 18, 485–490 (2001).

    CAS  PubMed  Google Scholar 

  73. Swift, M., Morrell, D., Massey, R. B. & Chase, C. L. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N. Engl. J. Med. 325, 1831–1836 (1991).

    CAS  PubMed  Google Scholar 

  74. van Os, N. J. et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin. Genet. 90, 105–117 (2016).

    PubMed  Google Scholar 

  75. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    CAS  PubMed  Google Scholar 

  76. Hoyer, K. K. et al. Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma. Proc. Natl Acad. Sci. USA 99, 14392–14397 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Roos, J. et al. Expression of TCL1 in hematologic disorders. Pathobiology 69, 59–66 (2001).

    CAS  PubMed  Google Scholar 

  78. Varon, R., Demuth, I. & Chrzanowska, K. H. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  79. Chrzanowska, K. H., Gregorek, H., Dembowska-Baginska, B., Kalina, M. A. & Digweed, M. Nijmegen breakage syndrome (NBS). Orphanet J. Rare Dis. 7, 13 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. Wolska-Kusnierz, B. et al. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options - a retrospective analysis. J. Clin. Immunol. 35, 538–549 (2015).

    CAS  PubMed  Google Scholar 

  81. Nichols, K. E., Malkin, D., Garber, J. E., Fraumeni, J. F. Jr & Li, F. P. Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol. Biomarkers Prev. 10, 83–87 (2001).

    CAS  PubMed  Google Scholar 

  82. Comeaux, E. Q. & Mullighan, C. G. TP53 mutations in hypodiploid acute lymphoblastic leukemia. Cold Spring Harb. Perspect. Med. 7, a026286 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Qian, M. et al. TP53 germline variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukemia in children. J. Clin. Oncol. 36, 591–599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tabori, U. et al. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin. Cancer Res. 23, e32–e37 (2017).

    PubMed  Google Scholar 

  86. Wimmer, K. et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J. Med. Genet. 51, 355–365 (2014).

    CAS  PubMed  Google Scholar 

  87. Kohlmann, W. & Gruber, S. B. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 2004).

  88. Lavoine, N. et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J. Med. Genet. 52, 770–778 (2015).

    CAS  PubMed  Google Scholar 

  89. Vasen, H. F. et al. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium “Care for CMMR-D” (C4CMMR-D). J. Med. Genet. 51, 283–293 (2014).

    CAS  PubMed  Google Scholar 

  90. Ripperger, T. & Schlegelberger, B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur. J. Med. Genet. 59, 133–142 (2016).

    PubMed  Google Scholar 

  91. Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).

    CAS  PubMed  Google Scholar 

  92. Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. Cell 171, 1042–1056 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Westdorp, H. et al. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome. Cancer Lett. 403, 159–164 (2017).

    CAS  PubMed  Google Scholar 

  94. Toledano, S. R. & Lange, B. J. Ataxia-telangiectasia and acute lymphoblastic leukemia. Cancer 45, 1675–1678 (1980).

    CAS  PubMed  Google Scholar 

  95. Sandoval, C. & Swift, M. Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med. Pediatr. Oncol. 31, 491–497 (1998).

    CAS  PubMed  Google Scholar 

  96. Eyre, J. A., Gardner-Medwin, D. & Summerfield, G. P. Leukoencephalopathy after prophylactic radiation for leukaemia in ataxia telangiectasia. Arch. Dis. Child 63, 1079–1080 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yanofsky, R. A. et al. Ataxia-telangiectasia: atypical presentation and toxicity of cancer treatment. Can. J. Neurol. Sci. 36, 462–467 (2009).

    PubMed  Google Scholar 

  98. Schulz, E. et al. Germline mutations in the DNA damage response genes BRCA1, BRCA2, BARD1 and TP53 in patients with therapy related myeloid neoplasms. J. Med. Genet. 49, 422–428 (2012).

    CAS  PubMed  Google Scholar 

  99. Churpek, J. E. et al. Inherited mutations in cancer susceptibility genes are common among survivors of breast cancer who develop therapy-related leukemia. Cancer 122, 304–311 (2016).

    CAS  PubMed  Google Scholar 

  100. Lage, H. & Dietel, M. Involvement of the DNA mismatch repair system in antineoplastic drug resistance. J. Cancer Res. Clin. Oncol. 125, 156–165 (1999).

    CAS  PubMed  Google Scholar 

  101. Olivera Harris, M. et al. Mismatch repair-dependent metabolism of O6-methylguanine-containing DNA in Xenopus laevis egg extracts. DNA Repair (Amst.) 28, 1–7 (2015).

    CAS  Google Scholar 

  102. Shinsato, Y. et al. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma. Oncotarget 4, 2261–2270 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Stritzelberger, J., Distel, L., Buslei, R., Fietkau, R. & Putz, F. Acquired temozolomide resistance in human glioblastoma cell line U251 is caused by mismatch repair deficiency and can be overcome by lomustine. Clin. Transl Oncol. 20, 508–516 (2018).

    CAS  PubMed  Google Scholar 

  104. Bardelli, A. et al. Carcinogen-specific induction of genetic instability. Proc. Natl Acad. Sci. USA 98, 5770–5775 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fink, D., Aebi, S. & Howell, S. B. The role of DNA mismatch repair in drug resistance. Clin. Cancer Res. 4, 1–6 (1998).

    CAS  PubMed  Google Scholar 

  106. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Moriyama, T. et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat. Genet. 48, 367–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nishii, R. et al. Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood 131, 2466–2474 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Meyer, J. A. et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat. Genet. 45, 290–294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang, J. J. et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J. Clin. Oncol. 33, 1235–1242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Moriyama, T. et al. The effects of inherited NUDT15 polymorphisms on thiopurine active metabolites in Japanese children with acute lymphoblastic leukemia. Pharmacogenet. Genomics 27, 236–239 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tanaka, Y. et al. Interaction between NUDT15 and ABCC4 variants enhances intolerability of 6-mercaptopurine in Japanese patients with childhood acute lymphoblastic leukemia. Pharmacogenomics J. 18, 275–280 (2018).

    CAS  PubMed  Google Scholar 

  113. Tanaka, Y. et al. Multidrug resistance protein 4 (MRP4) polymorphisms impact the 6-mercaptopurine dose tolerance during maintenance therapy in Japanese childhood acute lymphoblastic leukemia. Pharmacogenomics J. 15, 380–384 (2015).

    CAS  PubMed  Google Scholar 

  114. Li, B. et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat. Med. 21, 563–571 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tzoneva, G. et al. Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia. Nature 553, 511–514 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Morten Tulstrup, M. G. et al. NT5C2 germline variants alter thiopurine metabolism and are associated with acquired NT5C2 relapse mutations in childhood acute lymphoblastic leukaemia. Leukemia https://doi.org/10.1038/s41375-018-0245-3 (2018).

    Article  PubMed  Google Scholar 

  117. Vitellius, G., Trabado, S., Bouligand, J., Delemer, B. & Lombès, M. Pathophysiology of glucocorticoid signaling. Ann. Endocrinol. (Paris) 79, 98–106 (2018).

    Google Scholar 

  118. Kamdem, L. K. et al. Genetic predictors of glucocorticoid-induced hypertension in children with acute lymphoblastic leukemia. Pharmacogenet. Genomics 18, 507–514 (2008).

    CAS  PubMed  Google Scholar 

  119. Karol, S. E. et al. Genetics of glucocorticoid-associated osteonecrosis in children with acute lymphoblastic leukemia. Blood 126, 1770–1776 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. French, D. et al. A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 111, 4496–4499 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Karol, S. E. et al. Genetic risk factors for the development of osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood 127, 558–564 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Janke, L. J. et al. Primary epiphyseal arteriopathy in a mouse model of steroid-induced osteonecrosis. Am. J. Pathol. 183, 19–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawedia, J. D. et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 117, 2340–2347 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Paugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat. Genet. 47, 607–614 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Marke, R. et al. Tumor suppressor IKZF1 mediates glucocorticoid resistance in B cell precursor acute lymphoblastic leukemia. Leukemia 30, 1599–1603 (2016).

    CAS  PubMed  Google Scholar 

  127. Fernandez, C. A. et al. HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood 124, 1266–1276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, C. Clinical utility and implications of asparaginase antibodies in acute lymphoblastic leukemia. Leukemia 26, 2303–2309 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kutszegi, N. et al. HLA-DRB1*07:01-HLA-DQA1*02:01-HLA-DQB1*02:02 haplotype is associated with a high risk of asparaginase hypersensitivity in acute lymphoblastic leukemia. Haematologica 102, 1578–1586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, C. et al. Clinical and genetic risk factors for acute pancreatitis in patients with acute lymphoblastic leukemia. J. Clin. Oncol. 34, 2133–2140 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Witt, H. et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat. Genet. 45, 1216–1220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lanvers-Kaminsky, C. Asparaginase pharmacology: challenges still to be faced. Cancer Chemother. Pharmacol. 79, 439–450 (2017).

    CAS  PubMed  Google Scholar 

  133. Nakamura, A. et al. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc. Natl Acad. Sci. USA 115, E7776–E7785 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Diouf, B. et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313, 815–823 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Stock, W. et al. An inherited genetic variant in CEP72 promoter predisposes to vincristine-induced peripheral neuropathy in adults with acute lymphoblastic leukemia. Clin. Pharmacol. Ther. 101, 391–395 (2017).

    CAS  PubMed  Google Scholar 

  136. Blanco, J. G. et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J. Clin. Oncol. 30, 1415–1421 (2012).

    CAS  PubMed  Google Scholar 

  137. Pui, C.-H. et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J. Clin. Oncol. 33, 2938–2948 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Seif, A. E. Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet. 204, 227–244 (2011).

    PubMed  Google Scholar 

  140. German, J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet. Cytogenet. 93, 100–106 (1997).

    CAS  PubMed  Google Scholar 

  141. Quinn, E. & Nichols, K. E. Cancer predisposition syndromes associated with myeloid malignancy. Semin. Hematol. 54, 115–122 (2017).

    PubMed  Google Scholar 

  142. Sanz, M. M., German, J. & Cunniff, C. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  143. Maloney, K. W., Taub, J. W., Ravindranath, Y., Roberts, I. & Vyas, P. Down syndrome preleukemia and leukemia. Pediatr. Clin. North Am. 62, 121–137 (2015).

    PubMed  Google Scholar 

  144. Zwaan, M. C., Reinhardt, D., Hitzler, J. & Vyas, P. Acute leukemias in children with Down syndrome. Pediatr. Clin. North Am. 55, 53–70 (2008).

    PubMed  Google Scholar 

  145. Xavier, A. C., Ge, Y. & Taub, J. Unique clinical and biological features of leukemia in Down syndrome children. Expert Rev. Hematol. 3, 175–186 (2010).

    CAS  PubMed  Google Scholar 

  146. Mezei, G., Sudan, M., Izraeli, S. & Kheifets, L. Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol. 38, 479–489 (2014).

    PubMed  Google Scholar 

  147. Latger-Cannard, V. et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J. Rare Dis. 11, 49 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Song, W. J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166–175 (1999).

    CAS  PubMed  Google Scholar 

  149. Churpek, J. E. et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 126, 2484–2490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. West, A. H., Godley, L. A. & Churpek, J. E. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann. NY Acad. Sci 1310, 111–118 (2014).

    CAS  PubMed  Google Scholar 

  151. Kutler, D. I. et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 101, 1249–1256 (2003).

    CAS  PubMed  Google Scholar 

  152. Alter, B. P., Greene, M. H., Velazquez, I. & Rosenberg, P. S. Cancer in Fanconi anemia. Blood 101, 2072 (2003).

    CAS  PubMed  Google Scholar 

  153. Rosenberg, P. S., Greene, M. H. & Alter, B. P. Cancer incidence in persons with Fanconi anemia. Blood 101, 822–826 (2003).

    CAS  PubMed  Google Scholar 

  154. Alter, B. P. Fanconi anemia and the development of leukemia. Best Pract. Res. Clin. Haematol. 27, 214–221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mehta, P. A. & Tolar, J. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  156. Stiller, C. A., Chessells, J. M. & Fitchett, M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br. J. Cancer 70, 969–972 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Friedman, J. M. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  158. Chang, T. Y., Dvorak, C. C. & Loh, M. L. Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Blood 124, 2487–2497 (2014).

    CAS  PubMed  Google Scholar 

  159. Niemeyer, C. M. RAS diseases in children. Haematologica 99, 1653–1662 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Cave, H. et al. Acute lymphoblastic leukemia in the context of RASopathies. Eur. J. Med. Genet. 59, 173–178 (2016).

    PubMed  Google Scholar 

  161. Allanson, J. E. & Roberts, A. E. in GeneReviews (eds Adam, M. P. et al.) (University of Washington,1993).

Download references

Acknowledgements

The work of the authors is supported by US National Cancer Institute (NCI) grants CA21765 (to C.-H.P., K.E.N. and J.J.Y), R21 AI113490 (to K.E.N.) and P50 GM115279 (to C.-H.P. and J.J.Y.). C.-H.P., K.E.N. and J.J.Y. also receive support from the American Lebanese Syrian Associated Charities (ALSAC).

Review criteria

The information presented in this Review was compiled by searching PubMed for articles published between 1 January 2007 and 31 July 2018. The search terms used include “pediatric acute lymphoblastic leukaemia” in association with “germline mutations”, “somatic mutations”, “genotype” or “targeted therapy”. Selected relevant articles were reviewed, and references were checked for additional material, when appropriate. Only articles published in English were considered.

Reviewer information

Nature Reviews Clinical Oncology thanks G. Basso, A. Biondi, G. Henze and M. Stanulla for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.-H.P., K.E.N. and J.J.Y. contributed equally to all stages of the preparation of this manuscript.

Corresponding author

Correspondence to Ching-Hon Pui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pui, CH., Nichols, K.E. & Yang, J.J. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat Rev Clin Oncol 16, 227–240 (2019). https://doi.org/10.1038/s41571-018-0136-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0136-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer