Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Time to abandon single-site irradiation for inducing abscopal effects

Abstract

Considerable interest is being directed toward combining immune-checkpoint inhibition (ICI) with radiotherapy to improve response rates to ICI, which have been disappointingly low at around 15–30% among patients with advanced-stage cancers other than melanoma. Since a case report published in 2012, in which authors described the resolution of metastatic disease after irradiation of a single lesion in a patient who had been receiving ICI, hundreds of clinical trials have been launched with the aim of testing the safety and/or efficacy of radiotherapy in combination with immunotherapy, nearly all of which use this single-site irradiation, or ‘abscopal’, approach. However, emerging preclinical and clinical evidence suggests that this approach likely produces suboptimal results. In this Perspective, we describe this evidence and provide a biological rationale supporting the abandonment of the single-site abscopal approach. We instead advocate exploring comprehensive irradiation of multiple/all lesions in order to enhance the likelihood of obtaining meaningful clinical outcomes — if such a clinical synergy between radiation and ICI does exist — before the failure of the current, single-site approach leads to the potential premature and inappropriate abandonment of radiotherapy in combination with ICI altogether.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radiation activates the host immune system.
Fig. 2: Irradiation of all disease sites, rather than just one.
Fig. 3: Multisite radiation is safe and feasible with state-of-the-art radiotherapy techniques.

Similar content being viewed by others

References

  1. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Seiwert, T. Y. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 17, 956–965 (2016).

    CAS  PubMed  Google Scholar 

  3. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hellmann, M. D. et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 18, 31–41 (2017).

    CAS  PubMed  Google Scholar 

  9. Demaria, S., Golden, E. B. & Formenti, S. C. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 1, 1325–1332 (2015).

    PubMed  Google Scholar 

  10. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004). This reference (and reference 17, from the same group) helped to provide the basis for describing the biological mechanism by which radiation potentiates and enhances an immunological antitumour response.

    PubMed  Google Scholar 

  11. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalbasi, A., June, C. H., Haas, N. & Vapiwala, N. Radiation and immunotherapy: a synergistic combination. J. Clin. Invest. 123, 2756–2763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activates non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015). This report helped to further establish the biological mechanisms of synergy between radiation and ICI, and how synergy between them can differ depending on the biological mechanisms of the agents used. This report drew attention to the importance of the timing and/or sequencing of selected combinations.

    CAS  PubMed  Google Scholar 

  14. Pardoll, D. & Allison, J. Cancer immunotherapy: breaking the barriers to harvest the crop. Nat. Med. 10, 887–892 (2004).

    CAS  PubMed  Google Scholar 

  15. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  16. Andrews, M. C. & Wargo, J. A. Immunotherapy resistance: the answers lie ahead — not in front — of us. J. Immunother. Cancer. 5, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  19. Verbrugge, I. et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 72, 3163–3174 (2012).

    CAS  PubMed  Google Scholar 

  20. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Gameiro, S. R. et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T cell killing. Oncotarget 5, 403 (2014).

    PubMed  Google Scholar 

  23. Golden, E. B., Pellicciotta, I., Demaria, S., Barcellos-Hoff, M. H. & Formenti, S. C. The convergence of radiation and immunogenic cell death signaling pathways. Front. Oncol. 2, 88 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Akashi, M., Hachiya, M., Koeffler, H. P. & Suzuki, G. Irradiation increases levels of GM-CSF through RNA stabilization which requires an AU-rich region in cancer cells. Biochem. Biophys. Res. Comm. 189, 986–993 (1992).

    CAS  PubMed  Google Scholar 

  25. Kim, J. Y. et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp. Mol. Med. 38, 474–484 (2006).

    CAS  PubMed  Google Scholar 

  26. Torihata, H. et al. Irradiation up-regulates CD80 expression through two different mechanisms in spleen B cells, B lymphoma cells, and dendritic cells. Immunology 112, 219–227 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsai, M. H. et al. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res. 67, 3845–3852 (2007).

    CAS  PubMed  Google Scholar 

  28. Filatenkov, A. et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin. Cancer Res. 21, 3727–3739 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stamell, E. F., Wolchok, J. D., Gnjatic, S., Lee, N. Y. & Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85, 293–295 (2013).

    PubMed  Google Scholar 

  30. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012). The abscopal effect was first described by R. H. Mole in 1953, although this seminal case report from Memorial Sloan Kettering Cancer Center reignited attention on the potential clinical scalability of immune-checkpoint inhibitors to induce abscopal effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hiniker, S. M., Chen, D. S. & Knox, S. J. Abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 2035–2036 (2012).

    CAS  PubMed  Google Scholar 

  32. Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A. & Formenti, S. C. An abscopal response to radiation and ipilimumab in a patient with metastatic non–small cell lung cancer. Cancer Immunol. Res. 1, 365–372 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Crittenden, M. et al. Current clinical trials testing combinations of immunotherapy and radiation. Semin. Radiat. Oncol. 25, 54–64 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014). This first phase III trial testing the efficacy of radiotherapy in combination with anti-CTLA-4 immunotherapy showed negative results when only a single bony metastasis was targeted with radiotherapy. These findings suggest either that single-site irradiation or anti-CTLA4 antibodies are not an optimal approach for patients with prostate cancer. However, subgroup analyses showed that patients who did benefit had favourable prognostic factors and a lower disease burden (oligometastatic disease), suggesting that radiotherapy might be optimal when used in patients with smaller disease burdens.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Luke, J. J. et al. Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J. Clin. Oncol. 36, 1611–1618 (2018). Data from this study demonstrated that irradiation of one or a few lesions within a larger disease burden leads to response rates similar to those of historical results obtained with immunotherapy alone. These data suggest that, rather than using subtotal irradiation (irradiation of only one or a few sites), a new strategy should be adopted. In our opinion, that strategy should be comprehensive, multisite radiotherapy with immunotherapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gomez, D. R. et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 17, 1672–1682 (2016). This crucial report from a phase II randomized trial showed that consolidative radiotherapy alone offers independent benefits (in terms of prolonged progression-free survival and time to new metastases) for patients with oligometastatic disease. These findings confirm the safety of a consolidative approach and provide a clinical rationale for such an approach in appropriately selected patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, A. C. et al. T cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017). Using an IFNγ-related gene assay, these investigators showed that invigoration and continuation of an immune response prompted by immune-checkpoint inhibitors is related to disease burden. Specifically, the lower the burden, the greater the response to anti-PD-1 antibodies in patients with melanoma. This finding provides further support for the suggestion that reducing disease burden to the greatest possible extent could help to optimize responses to ICI, a strategy that could be achieved using radiation of all sites, but not with single-site abscopal approaches.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mole, R. H. Whole body irradiation — radiobiology or medicine? Br. J. Radiol. 26, 234–241 (1953).

    CAS  PubMed  Google Scholar 

  39. Mikuriya, S. et al. Study of abscopal effect and cellular infiltration of tumor nests using less-fractionated, large-dose radiation [Japanese]. Gan No Rinsho 33, 1239–1252 (1987).

    CAS  PubMed  Google Scholar 

  40. Finkelstein, S. E. et al. Serial assessment of lymphocytes and apoptosis in the prostate during coordinated intraprostatic dendritic cell injection and radiotherapy. Immunotherapy 4, 373–382 (2012).

    CAS  PubMed  Google Scholar 

  41. Antoniades, J., Brady, L. W. & Lightfoot, D. A. Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int. J. Radiat. Oncol. Biol. Phys. 2, 141–147 (1977).

    CAS  PubMed  Google Scholar 

  42. Rees, G. J. Abscopal regression in lymphoma: a mechanism in common with total body irradiation? Clin. Radiol. 32, 475–480 (1981).

    CAS  PubMed  Google Scholar 

  43. Nobler, M. P. The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation. Radiology 93, 410–412 (1969).

    CAS  PubMed  Google Scholar 

  44. Sham, R. L. The abscopal effect and chronic lymphocytic leukemia. Am. J. Med. 98, 307–308 (1995).

    CAS  PubMed  Google Scholar 

  45. Mikuriya, S. et al. Pathologic and immunologic analysis for a case with carcinoma of aberrant breast of the axilla showed “abscopal effect” after the radiotherapy (author’s translation) [Japanese]. Nihon Gan Chiryo Gakkai Shi 13, 406–413 (1978).

    CAS  PubMed  Google Scholar 

  46. Rees, G. J. & Ross, C. M. Abscopal regression following radiotherapy for adenocarcinoma. Br. J. Radiol. 56, 63–66 (1983).

    CAS  PubMed  Google Scholar 

  47. Nakanishi, M. et al. Abscopal effect on hepatocellular carcinoma. Am. J. Gastroenterol. 103, 1320–1321 (2008).

    PubMed  Google Scholar 

  48. Cotter, S. E. et al. Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: potential role of induced antitumor immunity. Arch. Dermatol. 147, 870–872 (2011).

    PubMed  Google Scholar 

  49. Ishiyama, H. et al. Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier? Clin. Genitourin. Cancer. 10, 196–198 (2012).

    PubMed  Google Scholar 

  50. Takaya, M. et al. Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma — a case report. Anticancer Res. 27, 499–503 (2007).

    PubMed  Google Scholar 

  51. Okuma, K. et al. Abscopal effect of radiation on lung metastases of hepatocellular carcinoma: a case report. J. Med. Case Rep. 5, 111 (2011).

    PubMed  PubMed Central  Google Scholar 

  52. Okwan-Duodu, D. et al. Role of radiation therapy as immune activator in the era of modern immunotherapy for metastatic malignant melanoma. Am. J. Clin. Oncol. 38, 119–125 (2015).

    CAS  PubMed  Google Scholar 

  53. Tsui, J. M., Mihalcioiu, C. & Cury, F. L. Abscopal effect in a stage IV melanoma patient who progressed on pembrolizumab. Cureus 10, e2238 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Chicas-Sett, R., Morales-Orue, I., Rodriguez-Abreu, D. & Lara-Jimenez, P. Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: a systematic review. Clin. Transl Radiat. Oncol. 9, 5–11 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Deipolyi, A. R. et al. Abscopal effect after radioembolization for metastatic breast cancer in the setting of immunotherapy. J. Vasc. Interv. Radiol. 29, 432–433 (2018).

    PubMed  Google Scholar 

  56. Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer. 18, 313–322 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Joe, M. B. et al. Radiation generates an abscopal response and complete resolution of metastatic squamous cell carcinoma of the anal canal: a case report. J. Gastrointest. Oncol. 8, E84 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Leung, H. W., Wang, S. Y., Jin-Jhih, H. & Chan, A. L. Abscopal effect of radiation on bone metastases of breast cancer: a case report. Cancer Biol. Ther. 19, 20–24 (2018).

    PubMed  Google Scholar 

  59. Ebner, D. K., Kamada, T. & Yamada, S. Abscopal effect in recurrent colorectal cancer treated with carbon-ion radiation therapy: 2 case reports. Adv. Radiat. Oncol. 2, 333 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Xie, G., Gu, D., Zhang, L., Chen, S. & Wu, D. A rapid and systemic complete response to stereotactic body radiation therapy and pembrolizumab in a patient with metastatic renal cell carcinoma. Cancer Biol. Ther. 18, 547–551 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharabi, A. et al. Exceptional response to nivolumab and stereotactic body radiation therapy (SBRT) in neuroendocrine cervical carcinoma with high tumor mutational burden: management considerations from the center for personalized cancer therapy at UC San Diego Moores Cancer Center. Oncologist 22, 631–637 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Sato, H. et al. An abscopal effect in a case of concomitant treatment of locally and peritoneally recurrent gastric cancer using adoptive T-cell immunotherapy and radiotherapy. Clin. Case Rep. 5, 380–384 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Shi, F., Wang, X., Teng, F., Kong, L. & Yu, J. Abscopal effect of metastatic pancreatic cancer after local radiotherapy and granulocyte-macrophage colony-stimulating factor therapy. Cancer Biol. Ther. 18, 137–141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cong, Y., Shen, G., Wu, S. & Hao, R. Abscopal regression following SABR for non-small-cell-lung cancer: a case report. Cancer Biol. Ther. 18, 1–3 (2017).

    PubMed  Google Scholar 

  65. Orton, A., Wright, J., Buchmann, L., Randall, L. & Hitchcock, Y. J. A case of complete abscopal response in high-grade pleiomorphic sarcoma treated with radiotherapy alone. Cureus 8, e821 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Gomes, J. R. et al. Analysis of the abscopal effect with anti-PD1 therapy in patients with metastatic solid tumors. J. Immunother. 39, 367–372 (2016).

    Google Scholar 

  67. Barton, S. M. et al. Abscopal effect in congenital fibrosarcoma with novel EML4-NTRK3 fusion. Int. J. Radiat. Oncol. Biol. Phys. 96, S87 (2016).

    Google Scholar 

  68. Carvalho, R. F. et al. Abscopal effect in patients with metastatic melanoma treated with checkpoint inhibitors (anti-CTLA-4 and anti-PD1): a retrospective analysis of a single institution. Int. J. Radiat. Oncol. Biol. Phys. 96, S159 (2016).

    Google Scholar 

  69. Nakajima, K. et al. The abscopal effect in patients with multiple metastases treated with combination of dendritic cell-based immunotherapy and focal radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 96, E570–E571 (2016).

    Google Scholar 

  70. Michot, J. M. et al. Abscopal effect in a Hodgkin lymphoma patient treated by an anti-programmed death 1 antibody. Eur. J. Cancer. 66, 91–94 (2016).

    PubMed  Google Scholar 

  71. Van de Walle, M., Demol, J., Staelens, L. & Rottey, S. Abscopal effect in metastatic renal cell carcinoma. Acta Clin. Belg. 72, 245–249 (2017).

    PubMed  Google Scholar 

  72. Saba, R., Saleem, N. & Peace, D. Long-term survival consequent on the abscopal effect in a patient with multiple myeloma. BMJ Case Rep. 2016, bcr2016215237 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Lock, M. et al. Abscopal effects: case report and emerging opportunities. Cureus 7, e344 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Panje, C. & Guckenberger, M. Abscopal responses of local radiotherapy combined with systemic immunotherapy in patients with metastatic solid tumors [German]. Strahlenther. Onkol. 192, 72–74 (2016).

    PubMed  Google Scholar 

  75. Chandra, R. A. et al. A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology 4, e1046028 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Golden, E. B. et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 16, 795–803 (2015).

    CAS  PubMed  Google Scholar 

  77. Thallinger, C. et al. Abscopal effect in the treatment of malignant melanoma [German]. Hautarzt 66, 545–548 (2015).

    CAS  PubMed  Google Scholar 

  78. Brix, N., Tiefenthaller, A., Anders, H., Belka, C. & Lauber, K. Abscopal, immunological effects of radiotherapy: narrowing the gap between clinical and preclinical experiences. Immunol. Rev. 280, 249–279 (2017).

    CAS  PubMed  Google Scholar 

  79. Abuodeh, Y., Venkat, P. & Kim, S. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer 40, 25–37 (2016).

    PubMed  Google Scholar 

  80. Nikitina, E. Y. & Gabrilovich, D. I. Combination of γ-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int. J. Cancer. 94, 825–833 (2001).

    CAS  PubMed  Google Scholar 

  81. Dewan, M. Z. et al. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin. Cancer Res. 18, 6668–6678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vatner, R. E., Cooper, B. T., Vanpouille-Box, C., Demaria, S. & Formenti, S. C. Combinations of immunotherapy and radiation in cancer therapy. Front. Oncol. 4, 325 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Demaria, S., Vanpouille-Box, C., Formenti, S. C. & Adams, S. The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncoimmunology 2, e25997 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Demaria, S., Pilones, K. A., Formenti, S. C. & Dustin, M. L. Exploiting the stress response to radiation to sensitize poorly immunogenic tumors to anti-CTLA-4 treatment. Oncoimmunology 2, e23127 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. Yasuda, K., Nirei, T., Tsuno, N. H., Nagawa, H. & Kitayama, J. Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci. 102, 1257–1263 (2011).

    CAS  PubMed  Google Scholar 

  86. Shiraishi, K. et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1α. Clin. Cancer Res. 14, 1159–1166 (2008).

    CAS  PubMed  Google Scholar 

  87. Akutsu, Y. et al. Combination of direct intratumoral administration of dendritic cells and irradiation induces strong systemic antitumor effect mediated by GRP94/gp96 against squamous cell carcinoma in mice. Int. J. Oncol. 31, 509–515 (2007).

    CAS  PubMed  Google Scholar 

  88. Grass, G. D., Krishna, N. & Kim, S. The immune mechanisms of abscopal effect in radiation therapy. Curr. Probl. Cancer. 40, 10–24 (2016).

    PubMed  Google Scholar 

  89. Bernstein, M. B., Krishnan, S., Hodge, J. W. & Chang, J. Y. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat. Rev. Clin. Oncol. 13, 516–524 (2016). This comprehensive summary of how radiation can potentiate the immune system and best be coupled with ICI argued that, from a preclinical perspective, applying local-site radiotherapy with ICI might bolster ICI systemic effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gaipl, U. S. et al. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6, 597–610 (2014).

    CAS  PubMed  Google Scholar 

  91. Schaue, D. & McBride, W. H. Links between innate immunity and normal tissue radiobiology. Radiat. Res. 173, 406–417 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, X. & Niedermann, G. Abscopal effects with hypofractionated schedules extending into the effector phase of the tumor-specific T cell response. Int. J. Radiat. Oncol. Biol. Phys. 101, 63–73 (2018).

    PubMed  Google Scholar 

  93. Frey, B. et al. Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front. Immunol. 8, 231 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Marciscano, A. E. et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin. Cancer Res. 24, 5058–5071 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Hellevik, T. & Martinez-Zubiaurre, I. Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front. Oncol. 4, 1 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Ganss, R., Ryschich, E., Klar, E., Arnold, B. & Hämmerling, G. J. Combination of T cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res. 62, 1462–1470 (2002).

    CAS  PubMed  Google Scholar 

  97. Matsumura, S. et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 181, 3099–3107 (2008).

    CAS  PubMed  Google Scholar 

  98. Liang, H. et al. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell–mediated killing. J. Immunol. 190, 5874–5881 (2013).

    CAS  PubMed  Google Scholar 

  99. Persa, E. et al. The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett. 368, 252–261 (2015).

    CAS  PubMed  Google Scholar 

  100. Vatner, R. E. & Formenti, S. C. Myeloid-derived cells in tumors: effects of radiation. Semin. Radiat. Oncol. 25, 18–27 (2015).

    PubMed  Google Scholar 

  101. Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y. et al. Variations of circulating endothelial progenitor cells and transforming growth factor-beta-1 (TGF-β1) during thoracic radiotherapy are predictive for radiation pneumonitis. Radiat. Oncol. 8, 189 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004).

    CAS  PubMed  Google Scholar 

  104. Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Chakraborty, M. et al. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T cell killing. Cancer Res. 64, 4328–4337 (2004).

    CAS  PubMed  Google Scholar 

  107. Chang, J. Y. et al. Phase II randomized clinical trial comparing immunotherapy plus stereotactic ablative radiotherapy (I-SABR) versus SABR alone for stage I, selected stage IIa or isolated lung parenchymal recurrent non-small cell lung cancer: I-SABR. J. Clin. Oncol. 36 (Suppl.), TPS8580 (2018).

    Google Scholar 

  108. Tang, C. et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin. Cancer Res. 23, 1388–1396 (2017). Analysis of data from a subset of patients revealing that the location of the irradiated tumour (lung versus liver) is important for eliciting an immune response, raising the issue of tumour-specific and site-specific heterogeneity dictating the likelihood of eliciting antitumour immune priming and responses. Specifically, successful activation of multiple tumour–microenvironment interfaces would require the irradiation of multiple sites, and the optimal response would come from all-site irradiation, because every site would be a target of radiotherapy.

    CAS  PubMed  Google Scholar 

  109. Garnett, C. T. et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 64, 7985–7994 (2004).

    CAS  PubMed  Google Scholar 

  110. Chakraborty, M. et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol. 170, 6338–6347 (2003).

    CAS  PubMed  Google Scholar 

  111. Schaue, D., Ratikan, J. A., Iwamoto, K. S. & McBride, W. H. Maximizing tumor immunity with fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys. 83, 1306–1310 (2012).

    CAS  PubMed  Google Scholar 

  112. Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lugade, A. A. et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 174, 7516–7523 (2005).

    CAS  PubMed  Google Scholar 

  114. Heppner, G. H. & Shekhar, M. Tumor heterogeneity is fundamental to the tumor ecosystem. Oncology 28, 780–781 (2014).

    PubMed  Google Scholar 

  115. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).

    CAS  PubMed  Google Scholar 

  116. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta Rev. Cancer. 1805, 105–117 (2010).

    CAS  Google Scholar 

  117. Easwaran, H., Tsai, H. C. & Baylin, S. B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell. 54, 716–727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. D’Urso, C. M. et al. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J. Clin. Invest. 87, 284–292 (1991).

    PubMed  PubMed Central  Google Scholar 

  120. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wong, A. C. et al. Clinical and molecular markers of long-term survival after oligometastasis-directed stereotactic body radiotherapy. Cancer 122, 2242–2250 (2016).

    CAS  PubMed  Google Scholar 

  122. Salama, J. K. et al. An initial report of a radiation dose-escalation trial in patients with one to five sites of metastatic disease. Clin. Cancer Res. 14, 5255–5259 (2008).

    CAS  PubMed  Google Scholar 

  123. Inoue, T. et al. Clinical outcomes of stereotactic brain and/or body radiotherapy for patients with oligometastatic lesions. Jpn J. Clin. Oncol. 40, 788–794 (2010).

    PubMed  Google Scholar 

  124. Pfannschmidt, J. & Dienemann, H. Surgical treatment of oligometastatic non-small cell lung cancer. Lung Cancer 69, 251–258 (2010).

    PubMed  Google Scholar 

  125. Khan, A. J. et al. Long term disease-free survival resulting from combined modality management of patients presenting with oligometastatic, non-small cell lung carcinoma. Radiother. Oncol. 81, 163–167 (2006).

    PubMed  Google Scholar 

  126. Sheu, T. et al. Propensity score–matched analysis of comprehensive local therapy for oligometastatic non-small cell lung cancer that did not progress after front-line chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 90, 850–857 (2014).

    PubMed  Google Scholar 

  127. Iyengar, P. et al. Consolidative radiotherapy for limited metastatic non–small-cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol. 4, e173501–e173501 (2018).

    PubMed  Google Scholar 

  128. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer. 9, 239 (2009).

    CAS  PubMed  Google Scholar 

  129. Takayama, T. et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356, 802–807 (2000).

    CAS  PubMed  Google Scholar 

  130. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017). This report from the PACIFIC trial provides further support for the success of radiotherapy and immunotherapy when radiation is used to treat existing gross disease. This study draws on the concept that using radiotherapy to treat all gross disease might be required to fully bolster ICI. It also lends clinical credence to the concept that micrometastases might be easier for the immune system to clear when all gross disease is irradiated.

    CAS  PubMed  Google Scholar 

  131. Beer, T. M. et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 35, 40–47 (2017).

    CAS  PubMed  Google Scholar 

  132. Alley, E. W. et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 18, 623–630 (2017).

    CAS  PubMed  Google Scholar 

  133. Hansen, A. R. et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann. Oncol. 29, 1807–1813 (2018).

    CAS  PubMed  Google Scholar 

  134. Frenel, J.-S. et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1–positive cervical cancer: results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol. 35, 4035–4041 (2017).

    CAS  PubMed  Google Scholar 

  135. Mehnert, J. M. et al. Pembrolizumab for patients with PD-L1–positive advanced carcinoid or pancreatic neuroendocrine tumors: results from the KEYNOTE-028 study [abstract 427O]. Ann. Oncol. 28, v142–v157 (2017).

    Google Scholar 

  136. Ott, P. A. et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J. Clin. Oncol. 35, 3823–3829 (2017).

    CAS  PubMed  Google Scholar 

  137. Bang, Y. J. et al. Safety and efficacy of pembrolizumab (MK-3475) in patients (pts) with advanced biliary tract cancer: interim results of KEYNOTE-028 [abstract 525]. Eur. J. Cancer 51, S112 (2015).

    Google Scholar 

  138. Cohen, R. B. et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: findings of the phase 1b KEYNOTE-028 study. Am. J. Clin. Oncol. https://doi.org/10.1097/COC.0000000000000429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Matulonis, U. A. et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: interim results from the phase 2 KEYNOTE-100 study. J. Clin. Oncol. 36, S5511 (2018).

    Google Scholar 

  140. Doi, T. et al. Safety and antitumor activity of the anti–programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma. J. Clin. Oncol. 36, 61–67 (2018).

    CAS  PubMed  Google Scholar 

  141. Ott, P. A. et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1–positive endometrial cancer: results from the KEYNOTE-028 study. J. Clin. Oncol. 35, 2535–2541 (2017).

    CAS  PubMed  Google Scholar 

  142. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Theelen, W. et al. Randomized phase II study of pembrolizumab after SBRT versus pembrolizumab alone in patients with advanced NSCLC, preliminary results [PUB013]. J. Thorac. Oncol. 12, S1453 (2017).

    Google Scholar 

  144. McBride, S. M. et al. A phase II randomized trial of nivolumab with stereotactic body radiotherapy (SBRT) versus nivolumab alone in metastatic (M1) head and neck squamous cell carcinoma (HNSCC). J. Clin. Oncol. 36, S6009 (2018).

    Google Scholar 

  145. Moreno, V. et al. Cemiplimab, a human monoclonal anti-PD-1, alone or in combination with radiotherapy: phase 1 NSCLC expansion cohorts [abstract MA04.01]. Presented at the 19th IASLC World Conference on Lung Cancer in Toronto, Canada (23–26 Sep 2018).

  146. US Department of Health & Human Services. Common terminology criteria for adverse events (CTCAE) v4.03. NIH.gov https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_5×7.pdf (2010).

  147. Hwang, W. L., Pike, L. R., Royce, T. J., Mahal, B. A. & Loeffler, J. S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 15, 477–494 (2018).

    PubMed  Google Scholar 

  148. Qin, R. et al. Safety and efficacy of radiation therapy in advanced melanoma patients treated with ipilimumab. Int. J. Radiat. Oncol. Biol. Phys. 96, 72–77 (2016).

    CAS  PubMed  Google Scholar 

  149. Aboudaram, A. et al. Concurrent radiotherapy for patients with metastatic melanoma and receiving anti-programmed-death 1 therapy: a safe and effective combination. Melanoma Res. 27, 485–491 (2017).

    CAS  PubMed  Google Scholar 

  150. Barker, C. A. et al. Concurrent radiotherapy and ipilimumab immunotherapy for patients with melanoma. Cancer Immunol. Res. 1, 92–98 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Diao, K. et al. Combination ipilimumab and radiosurgery for brain metastases: tumor, edema, and adverse radiation effects. J. Neurosurg. https://doi.org/10.3171/2017.7.JNS171286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Patel, K. R. et al. Ipilimumab and stereotactic radiosurgery versus stereotactic radiosurgery alone for newly diagnosed melanoma brain metastases. Am. J. Clin. Oncol. 40, 444–450 (2017).

    CAS  PubMed  Google Scholar 

  153. Williams, N. L. et al. Phase 1 study of ipilimumab combined with whole brain radiation therapy or radiosurgery for melanoma patients with brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 99, 22–30 (2017).

    CAS  PubMed  Google Scholar 

  154. Martin, A. M. et al. Immunotherapy and symptomatic radiation necrosis in patients with brain metastases treated with stereotactic radiation. JAMA Oncol. 4, 1123–1124 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Colaco, R. J., Martin, P., Kluger, H. M., Yu, J. B. & Chiang, V. L. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J. Neurosurg. 125, 17–23 (2016).

    CAS  PubMed  Google Scholar 

  156. Welsh, J. W. et al. Phase 2 5-arm trial of ipilimumab plus lung or liver stereotactic radiation for patients with advanced malignancies. Int. J. Radiat. Oncol. Biol. Phys. 99, 1315 (2017).

    Google Scholar 

  157. Fan, Q., Nanduri, A., Mazin, S. & Zhu, L. Emission guided radiation therapy for lung and prostate cancers: a feasibility study on a digital patient. Med. Phys. 39, 7140–7152 (2012).

    PubMed  PubMed Central  Google Scholar 

  158. Fan, Q. et al. Toward a planning scheme for emission guided radiation therapy (EGRT): FDG based tumor tracking in a metastatic breast cancer patient. Med. Phys. 40, 081708 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. Yang, J., Yamamoto, T., Mazin, S. R., Graves, E. E. & Keall, P. J. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: a phantom study. Med. Phys. 41, 021718 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Wang, H. et al. Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy. Phys. Med. Biol. 50, 2887 (2005).

    CAS  PubMed  Google Scholar 

  161. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS  PubMed  Google Scholar 

  164. Darby, S. C. et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 368, 987–998 (2013).

    CAS  PubMed  Google Scholar 

  165. Chang, J. Y. et al. Stereotactic ablative radiation therapy for centrally located early stage or isolated parenchymal recurrences of non-small cell lung cancer: how to fly in a “no fly zone”. Int. J. Radiat. Oncol. Biol. Phys. 88, 1120–1128 (2014).

    PubMed  Google Scholar 

  166. Hobbs, B. P. & Landin, R. Bayesian basket trial design with exchangeability monitoring. Stat. Med. 37, 3557–3572 (2018).

    PubMed  Google Scholar 

  167. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported in part by Cancer Center Support (Core) Grant CA016672 from the National Institutes of Health to The University of Texas MD Anderson Cancer Center, and by the Joan and Herb Kelleher Charitable Foundation. The authors gratefully acknowledge the editorial contributions of C. F. Wogan, MS, ELS, of the MD Anderson Division of Radiation Oncology in developing this report.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Joe Y. Chang.

Ethics declarations

Competing interests

J.Y.C. reports receiving financial support from Varian for travel to meetings in the past 3 years, grants from Bristol-Myers Squibb, being a shareholder of Global Oncology One (in unrelated work), and participating in advisory scientific discussions supported by AstraZeneca. E.D.B. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, E.D., Chang, J.Y. Time to abandon single-site irradiation for inducing abscopal effects. Nat Rev Clin Oncol 16, 123–135 (2019). https://doi.org/10.1038/s41571-018-0119-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0119-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing