Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hyperprogressive disease: recognizing a novel pattern to improve patient management

Abstract

Anti-PD-1/PD-L1 monoclonal antibodies have substantially improved the overall survival of a subset of patients across multiple solid tumour types, but other patients can have a deterioration of their disease as a result of such therapies. This paradoxical phenomenon is defined as hyperprogression. In this Review, we present the available evidence of hyperprogressive disease following immune-checkpoint inhibition, the pathophysiological hypotheses that might explain hyperprogressive disease and the current challenges for patient management in routine clinical settings. Finally, we also discuss how the risk of hyperprogressive disease should be taken into account in clinical decisions involving immune-checkpoint inhibition.

Key points

  • Hyperprogressive disease is a paradoxical acceleration of tumour growth kinetics after the initiation of treatment with anti-PD-1/PD-L1 agents, but it has also been reported in patients receiving other treatments.

  • The incidence of hyperprogressive disease observed across different solid tumour types is variable (~10%); no consistent predictor of hyperprogressive disease has been reported thus far.

  • Possible explanations as to why PD-1/PD-L1 blockade might paradoxically lead to hyperprogressive disease include the expansion of PD-1+ regulatory T cells, exhaustion of compensatory T cells, modulation of pro-tumorigenic immune cell subsets, activation of aberrant inflammation or activation of oncogenic signalling.

  • Most of the current immune-related response criteria are designed to identify pseudoprogression but not hyperprogression; implementation of an early disease assessment tool and the integration of pretreatment tumour kinetics is crucial to improving the evaluation of patients receiving anti-PD-1/PD-L1 antibodies.

  • The evaluation of tumour biopsy samples obtained at the time of tumour growth acceleration will be key to evaluating the biological mechanisms underlying hyperprogressive disease, to interrogate the immunological nature of this phenomenon and to identify the best therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acceleration of tumour growth after starting therapy with an anti-PD-1 antibody.
Fig. 2: Crossing survival curves in clinical trials.
Fig. 3: Evaluation of tumour response using RECISTv1.1 or integrating tumour kinetics.
Fig. 4: Biological hypotheses for immune-checkpoint-related hyperprogressive disease.
Fig. 5: Proposed assessment methods of progressive tumours under immune-checkpoint inhibition.

Similar content being viewed by others

References

  1. Larkin, J. et al. Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J. Clin. Oncol. 36, 383–390 (2018).

    CAS  PubMed  Google Scholar 

  2. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017).

    PubMed  Google Scholar 

  3. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    CAS  PubMed  Google Scholar 

  4. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Powles, T. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 391, 748–757 (2018).

    CAS  PubMed  Google Scholar 

  8. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    CAS  PubMed  Google Scholar 

  9. Bohnsack, O., Ludajic, K. & Hoos, A. Adaptation of the immune-related response criteria: irRECIST. Ann. Oncol. 25 (Suppl. 4), iv361–iv372 (2014).

    Google Scholar 

  10. Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Hodi, F. S. et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J. Clin. Oncol. 34, 1510–1517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tazdait, M. et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 88, 38–47 (2018).

    CAS  PubMed  Google Scholar 

  13. Champiat, S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920–1928 (2017).

    CAS  PubMed  Google Scholar 

  14. Kato, S. et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23, 4242–4250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Saâda-Bouzid, E. et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 28, 1605–1611 (2017).

    PubMed  Google Scholar 

  16. Ferrara, R. et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.3676 (2018).

    Google Scholar 

  17. Zuazo-Ibarra, M. et al. Highly differentiated CD4 T cells unequivocally identify primary resistance and risk of hyperprogression to PD-L1/PD-1 immune checkpoint blockade in lung cancer. bioRxiv https://doi.org/10.1101/320176 (2018).

    Article  Google Scholar 

  18. Kanai, O., Fujita, K., Okamura, M., Nakatani, K. & Mio, T. Severe exacerbation or manifestation of primary disease related to nivolumab in non-small-cell lung cancer patients with poor performance status or brain metastases. Ann. Oncol. 27, 1354–1356 (2016).

    CAS  PubMed  Google Scholar 

  19. Chubachi, S. et al. A case of non-small cell lung cancer with possible ‘disease flare’ on nivolumab treatment. Case Rep. Oncol. Med. 2016, 1075641–1075643 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Yoshida, T., Furuta, H. & Hida, T. Risk of tumor flare after nivolumab treatment in patients with irradiated field recurrence. Med. Oncol. 34, 34 (2017).

    PubMed  Google Scholar 

  21. Kobari, Y. et al. Rapid progressive disease after nivolumab therapy in three patients with metastatic renal cell carcinoma. In Vivo 31, 769–771 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Weiss, G. J. et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. Clin. Cancer Res. 23, 5074–5081 (2017).

    CAS  PubMed  Google Scholar 

  23. Forschner, A. et al. Genomics of immunotherapy-associated hyperprogressors-letter. Clin. Cancer Res. 23, 6374–6375 (2017).

    PubMed  Google Scholar 

  24. Groisberg, R. et al. Characteristics and outcomes of patients with advanced sarcoma enrolled in early phase immunotherapy trials. J. Immunother. Cancer 5, 100 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Faure, M. et al. Hyperprogressive disease in anorectal melanoma treated by PD-1 inhibitors. Front. Immunol. 9, 797 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Ratner, L., Waldmann, T. A., Janakiram, M. & Brammer, J. E. Rapid progression of adult T-Cell leukemia-lymphoma after PD-1 inhibitor therapy. N. Engl. J. Med. 378, 1947–1948 (2018).

    PubMed  Google Scholar 

  27. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Peters, S. et al. OA03.05 analysis of early survival in patients with advanced non-squamous NSCLC treated with nivolumab versus docetaxel in CheckMate 057. J. Thorac. Oncol. 12, S253 (2017).

    Google Scholar 

  29. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilkerson, J. et al. Estimation of tumour regression and growth rates during treatment in patients with advanced prostate cancer: a retrospective analysis. Lancet Oncol. 18, 143–154 (2017).

    PubMed  Google Scholar 

  31. Stein, W. D. et al. Analyzing the pivotal trial that compared sunitinib and IFN-α in renal cell carcinoma, using a method that assesses tumor regression and growth. Clin. Cancer Res. 18, 2374–2381 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stein, W. D. et al. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: the growth rate constant as an indicator of therapeutic efficacy. Clin. Cancer Res. 17, 907–917 (2011).

    CAS  PubMed  Google Scholar 

  33. Ferté, C. et al. Tumor growth rate is an early indicator of antitumor drug activity in phase I clinical trials. Clin. Cancer Res. 20, 246–252 (2014).

    PubMed  Google Scholar 

  34. Ferté, C. et al. Tumor growth rate provides useful information to evaluate sorafenib and everolimus treatment in metastatic renal cell carcinoma patients: an integrated analysis of the TARGET and RECORD phase 3 trial data. Eur. Urol. 65, 713–720 (2014).

    PubMed  Google Scholar 

  35. Ferte, C., Koscielny, S. & Soria, J. C. TGR analysis in phase I clinical trials—response. Clin. Cancer Res. 20, 2497–2497 (2014).

    PubMed  Google Scholar 

  36. Gomez-Roca, C. et al. Tumour growth rates and RECIST criteria in early drug development. Eur. J. Cancer 47, 2512–2516 (2011).

    PubMed  Google Scholar 

  37. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  38. Demicheli, R., Retsky, M. W., Hrushesky, W. J. M., Baum, M. & Gukas, I. D. The effects of surgery on tumor growth: a century of investigations. Ann. Oncol. 19, 1821–1828 (2008).

    CAS  PubMed  Google Scholar 

  39. Lagadec, C., Vlashi, E., Donna, Della, L., Dekmezian, C. & Pajonk, F. Radiation-induced reprogramming of breast cancer cells. Stem Cells 30, 833–844 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, J. J. & Tannock, I. F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat. Rev. Cancer 5, 516–525 (2005).

    CAS  PubMed  Google Scholar 

  41. Bourhis, J. et al. Rapid tumour cell proliferation after induction chemotherapy in oropharyngeal cancer. Laryngoscope 104, 468–472 (1994).

    CAS  PubMed  Google Scholar 

  42. Tarnawski, R. et al. How fast is repopulation of tumour cells during the treatment gap? Int. J. Radiat. Oncol. Biol. Phys. 54, 229–236 (2002).

    PubMed  Google Scholar 

  43. Barton, M. B., Keane, T. J., Gadalla, T. & Maki, E. The effect of treatment time and treatment interruption on tumour control following radical radiotherapy of laryngeal cancer. Radiother. Oncol. 23, 137–143 (1992).

    CAS  PubMed  Google Scholar 

  44. Fyles, A., Keane, T. J., Barton, M. & Simm, J. The effect of treatment duration in the local control of cervix cancer. Radiother. Oncol. 25, 273–279 (1992).

    CAS  PubMed  Google Scholar 

  45. Maciejewski, B. & Majewski, S. Dose fractionation and tumour repopulation in radiotherapy for bladder cancer. Radiother. Oncol. 21, 163–170 (1991).

    CAS  PubMed  Google Scholar 

  46. Sun, Y. et al. Treatment-induced damage to the tumor micro- environment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18, 1359–1368 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

    CAS  PubMed  Google Scholar 

  48. Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15, 366–381 (2018).

    Google Scholar 

  49. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Andrews, M. C. et al. BRAF inhibitor-driven tumor proliferation in a KRAS-mutated colon carcinoma is not overcome by MEK1/2 inhibition. J. Clin. Oncol. 31, e448–e451 (2013).

    Google Scholar 

  52. Boussemart, L. et al. Secondary tumors arising in patients undergoing BRAF inhibitor therapy exhibit increased BRAF-CRAF heterodimerization. Cancer Res. 76, 1476–1484 (2016).

    CAS  PubMed  Google Scholar 

  53. Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367, 2316–2321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Grey, A. et al. Progression of KRAS mutant pancreatic adenocarcinoma during vemurafenib treatment in a patient with metastatic melanoma. Intern. Med. J. 44, 597–600 (2014).

    CAS  PubMed  Google Scholar 

  55. Novik, A. V. et al. Vemurafenib-induced progression of breast cancer: a case report and review of the literature. Target Oncol. 11, 235–238 (2015).

    Google Scholar 

  56. Mellema, W. W., Burgers, S. A. & Smit, E. F. Tumor flare after start of RAF inhibition in KRAS mutated NSCLC: A case report. Lung Cancer 87, 201–203 (2015).

    PubMed  Google Scholar 

  57. Riely, G. J. et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin. Cancer Res. 13, 5150–5155 (2007).

    CAS  PubMed  Google Scholar 

  58. Chaft, J. E. et al. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin. Cancer Res. 17, 6298–6303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, H.-J. et al. Disease flare after EGFR tyrosine kinase inhibitor cessation predicts poor survival in patients with non-small cell lung cancer. Pathol. Oncol. Res. 19, 833–838 (2013).

    CAS  PubMed  Google Scholar 

  60. Pop, O., Pirvu, A., Toffart, A.-C. & Moro-Sibilot, D. Disease flare after treatment discontinuation in a patient with EML4-ALK lung cancer and acquired resistance to crizotinib. J. Thorac. Oncol. 7, e1–e2 (2012).

    PubMed  Google Scholar 

  61. Kuriyama, Y. et al. Disease flare after discontinuation of crizotinib in anaplastic lymphoma kinase-positive lung cancer. Case Rep. Oncol. 6, 430–433 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. Yang, J.-J. et al. Clinical modes of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non-small cell lung cancer. Lung Cancer 79, 33–39 (2013).

    PubMed  Google Scholar 

  63. Ramirez-Tirado, L.-A. et al. Characteristics of progression to tyrosine kinase inhibitors predict overall survival in patients with advanced non-small cell lung cancer harboring an EGFR mutation. J. Thorac. Dis. 10, 2166–2178 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Ebos, J. M. L. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 210–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wolter, P., Beuselinck, B., Pans, S. & Schöffski, P. Flare-up: an often unreported phenomenon nevertheless familiar to oncologists prescribing tyrosine kinase inhibitors. Acta Oncol. 48, 621–624 (2009).

    CAS  PubMed  Google Scholar 

  66. Desar, I. M. E. et al. The reverse side of the victory: flare up of symptoms after discontinuation of sunitinib or sorafenib in renal cell cancer patients. A report of three cases. Acta Oncol. 48, 927–931 (2009).

    PubMed  Google Scholar 

  67. Iacovelli, R. et al. Evidence and clinical relevance of tumor flare in patients who discontinue tyrosine kinase inhibitors for treatment of metastatic renal cell carcinoma. Eur. Urol. 68, 154–160 (2015).

    PubMed  Google Scholar 

  68. Powles, T. et al. A prospective evaluation of VEGF-targeted treatment cessation in metastatic clear cell renal cancer. Ann. Oncol. 24, 2098–2103 (2013).

    CAS  PubMed  Google Scholar 

  69. Tanigawa, T. et al. Tumors sharply increased after ceasing pazopanib therapy for a patient with advanced uterine leiomyosarcoma: experience of tumor flare. Case Rep. Obstetr. Gynecol. 2017, 4801650–4801654 (2017).

    Google Scholar 

  70. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Griffioen, A. W. et al. Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin. Cancer Res. 18, 3961–3971 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharpe, K. et al. The effect of VEGF-targeted therapy on biomarker expression in sequential tissue from patients with metastatic clear cell renal cancer. Clin. Cancer Res. 19, 6924–6934 (2013).

    CAS  PubMed  Google Scholar 

  73. Norden, A. D. et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70, 779–787 (2008).

    CAS  PubMed  Google Scholar 

  74. di Tomaso, E. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of ‘rebound’ revascularization as mode of escape. Cancer Res. 71, 19–28 (2011).

    PubMed  PubMed Central  Google Scholar 

  75. Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J. Clin. Oncol. 29, 83–88 (2011).

    CAS  PubMed  Google Scholar 

  76. de Gramont, A. et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol. 13, 1225–1233 (2012).

    PubMed  Google Scholar 

  77. Strannegård, Ö. & Thorén, F. B. Opposing effects of immunotherapy in melanoma using multisubtype interferon-alpha - can tumor immune escape after immunotherapy accelerate disease progression? Oncoimmunology 5, e1091147 (2016).

    PubMed  Google Scholar 

  78. Eggermont, A. M. M. et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J. Clin. Oncol. 30, 3810–3818 (2012).

    CAS  PubMed  Google Scholar 

  79. Korte, W., Jost, C., Cogliatti, S., Hess, U. & Cerny, T. Accelerated progression of multiple myeloma during anti-CD20 (Rituximab) therapy. Ann. Oncol. 10, 1249–1250 (1999).

    CAS  PubMed  Google Scholar 

  80. Ozgüroglu, M. & Turna, H. Rituximab-induced tumor progression: does it really happen? Med. Oncol. 21, 205–206 (2004).

    PubMed  Google Scholar 

  81. Alexander, J. L., Gillespie, P. J. & Edelstyn, G. A. Serial bone scanning using technetium 99 m diphosphonate in patients undergoing cyclical combination chemotherapy for advanced breast cancer. Clin. Nucl. Med. 1, 13 (1976).

    Google Scholar 

  82. Plotkin, D., Lechner, J. J., Jung, W. E. & Rosen, P. J. Tamoxifen flare in advanced breast cancer. JAMA 240, 2644–2646 (1978).

    CAS  PubMed  Google Scholar 

  83. Clarysse, A. Hormone-induced tumor flare. Eur. J. Cancer Clin. Oncol. 21, 545–547 (1985).

    CAS  PubMed  Google Scholar 

  84. Vogel, C. L., Schoenfelder, J., Shemano, I., Hayes, D. F. & Gams, R. A. Worsening bone scan in the evaluation of antitumor response during hormonal therapy of breast cancer. J. Clin. Oncol. 13, 1123–1128 (1995).

    CAS  PubMed  Google Scholar 

  85. Pollen, J. J., Witztum, K. F. & Ashburn, W. L. The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am. J. Roentgenol 142, 773–776 (1984).

    CAS  PubMed  Google Scholar 

  86. McNamara, M. A. & George, D. J. Pain, PSA flare, and bone scan response in a patient with metastatic castration-resistant prostate cancer treated with radium-223, a case report. BMC Cancer 15, 371 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Coleman, R. E. et al. Bone scan flare predicts successful systemic therapy for bone metastases. J. Nuclear Med. 29, 1354–1359 (1988).

    CAS  Google Scholar 

  88. Schneider, J. A. et al. Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer. J. Nuclear Med. 35, 1748–1752 (1994).

    CAS  Google Scholar 

  89. Gillespie, P. J., Alexander, J. L. & Edelstyn, G. A. Changes in 87mSr concentractions in skeletal metastases in patients responding to cyclical combination chemotherapy for advanced breast cancer. J. Nucl. Med. 16, 191–193 (1975).

    CAS  Google Scholar 

  90. Lemieux, J., Guimond, J., Laberge, F., St-Pierre, C. & Cormier, Y. The bone scan flare phenomenon in non-small-cell lung cancer. Clin. Nucl. Med. 27, 486–489 (2002).

    PubMed  Google Scholar 

  91. Amoroso, V. et al. Osteoblastic flare in a patient with advanced gastric cancer after treatment with pemetrexed and oxaliplatin: implications for response assessment with RECIST criteria. BMC Cancer 7, 205–204 (2007).

    Google Scholar 

  92. Chao, H.-S. et al. Bone scan flare phenomenon in non-small-cell lung cancer patients treated with gefitinib. Clin. Nucl. Med. 34, 346–349 (2009).

    PubMed  Google Scholar 

  93. Sugawara, Y. et al. Healing focal ‘flare’ phenomenon after radiotherapy in a bone metastasis from bladder cancer. Clin. Nucl. Med. 30, 672–673 (2005).

    PubMed  Google Scholar 

  94. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Syn, N. L., Teng, M. W. L., Mok, T. S. K. & Soo, R. A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18, e731–e741 (2017).

    PubMed  Google Scholar 

  96. Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    CAS  PubMed  Google Scholar 

  101. Gershon, R. K. et al. Contrasuppression. A novel immunoregulatory activity. J. Exp. Med. 153, 1533–1546 (1981).

    CAS  PubMed  Google Scholar 

  102. Barnaba, V. & Schinzari, V. Induction, control, and plasticity of Treg cells: The immune regulatory network revised? Eur. J. Immunol. 43, 318–322 (2013).

    CAS  PubMed  Google Scholar 

  103. Lehner, T. Special regulatory T cell review: the resurgence of the concept of contrasuppression in immunoregulation. Immunology 123, 40–44 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Grinberg-Bleyer, Y. et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J. Clin. Invest. 120, 4558–4568 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bulliard, Y. et al. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Marabelle, A. et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Invest. 123, 2447–2463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Asano, T. et al. PD-1 modulates regulatory T cell homeostasis during low-dose IL-2 therapy. Blood 129, 2186–2197 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Montler, R. et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin. Trans. Immunol. 5, e70 (2016).

    Google Scholar 

  110. Lowther, D. E. et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 1, 1–23 (2016).

    Google Scholar 

  111. Franceschini, D. et al. PD-L1 negatively regulates CD4+CD25+Foxp3+Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J. Clin. Invest. 119, 551–564 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Peligero, C. et al. PD-L1 blockade differentially impacts regulatory T Cells from HIV-infected individuals depending on plasma viremia. PLOS Pathog. 11, e1005270 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Ellestad, K. K., Thangavelu, G., Ewen, C. L., Boon, L. & Anderson, C. C. PD-1 is not required for natural or peripherally induced regulatory T cells: Severe autoimmunity despite normal production of regulatory T cells. Eur. J. Immunol. 44, 3560–3572 (2014).

    CAS  PubMed  Google Scholar 

  114. Moorman, J. P. et al. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection. J. Immunol. 189, 755–766 (2012).

    CAS  PubMed  Google Scholar 

  115. Wei, T. et al. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am. J. Cancer Res. 5, 2190–2201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor- infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Karim, R. et al. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+T-cell infiltration and survival of patients with cervical carcinoma. Clin. Cancer Res. 15, 6341–6347 (2009).

    CAS  PubMed  Google Scholar 

  118. Skoulidis, F. et al. STK11/LKB1 co-mutations to predict for de novo resistance to PD-1/PD-L1 axis blockade in KRAS-mutant lung adenocarcinoma. J. Clin. Oncol. 35, 9016–9016 (2017).

    Google Scholar 

  119. Koyama, S. et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T cell activity in the lung tumor microenvironment. Cancer Res. 76, 999–1008 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang, K. et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 548, 602–606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Fridman, W.-H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  122. Rifa’i, M. et al. CD8+CD122+regulatory T cells recognize activated T cells via conventional MHC class I–αβTCR interaction and become IL-10-producing active regulatory cells. Int. Immunol. 20, 937–947 (2008).

    PubMed  Google Scholar 

  123. Zozulya, A. L., Ortler, S., Fabry, Z., Sandor, M. & Wiendl, H. The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAE. Eur. J. Immunol. 39, 1536–1543 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Filaci, G. et al. CD8+CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J. Immunol. 179, 4323–4334 (2007).

    CAS  PubMed  Google Scholar 

  125. Sage, P. T., Francisco, L. M., Carman, C. V. & Sharpe, A. H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2012).

    PubMed  PubMed Central  Google Scholar 

  126. Cully, M. Autoimmunity: LKB1 helps Treg cells battle exhaustion. Nat. Rev. Immunol. 17, 592–593 (2017).

    CAS  PubMed  Google Scholar 

  127. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+T cells. J. Exp. Med. 212, 1125–1137 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Huang, R.-Y., Francois, A., McGray, A. R., Miliotto, A. & Odunsi, K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology 6, e1249561 (2017).

    PubMed  Google Scholar 

  129. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  130. Kahan, S. M., Wherry, E. J. & Zajac, A. J. T cell exhaustion during persistent viral infections. Virology 479–480, 180–193 (2015).

    PubMed  Google Scholar 

  131. Pentcheva-Hoang, T., Egen, J. G., Wojnoonski, K. & Allison, J. P. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21, 401–413 (2004).

    CAS  PubMed  Google Scholar 

  132. Karunarathne, D. S. et al. Programmed death-1 ligand 2-mediated regulation of the PD-L1 to PD-1 axis is essential for establishing CD4(+) T cell immunity. Immunity 45, 333–345 (2016).

    CAS  PubMed  Google Scholar 

  133. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    CAS  PubMed  Google Scholar 

  134. Kuipers, H. et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+T cell activation. Eur. J. Immunol. 36, 2472–2482 (2006).

    CAS  PubMed  Google Scholar 

  135. Lamichhane, P. et al. IL-10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer. Cancer Res. 77, 6667–6678 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sun, Z. et al. IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+T cells. Cancer Res. 75, 1635–1644 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu, X. et al. Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol. Res. 5, 17–28 (2017).

    CAS  PubMed  Google Scholar 

  138. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    CAS  PubMed  Google Scholar 

  139. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Peng, W. et al. PD-1 blockade enhances T cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res. 72, 5209–5218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mandai, M. et al. Dual faces of IFNγ in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin. Cancer Res. 22, 2329–2334 (2016).

    CAS  PubMed  Google Scholar 

  142. Huang, B. et al. Gr-1+CD115+immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T cell anergy in tumor-bearing host. Cancer Res. 66, 1123–1131 (2006).

    CAS  PubMed  Google Scholar 

  143. Baban, B. et al. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J. Immunol. 183, 2475–2483 (2009).

    CAS  PubMed  Google Scholar 

  144. Spranger, S. et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl Med. 5, 200ra116 (2013).

    PubMed  PubMed Central  Google Scholar 

  145. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sakai, S. et al. CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLOS Pathog. 12, e1005667 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Lázár-Molnár, E. et al. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc. Natl Acad. Sci. USA 107, 13402–13407 (2010).

    PubMed  PubMed Central  Google Scholar 

  149. McAlees, J. W. et al. Differential control of CD4 +T cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. Eur. J. Immunol. 45, 1019–1029 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Dulos, J. et al. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J. Immunother. 35, 169–178 (2012).

    CAS  PubMed  Google Scholar 

  151. Akbay, E. A. et al. Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J. Thorac. Oncol. 12, 1268–1279 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Kargl, J. et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat. Commun. 8, 1–11 (2017).

    Google Scholar 

  153. Fielding, C. A. et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J. Immunol. 181, 2189–2195 (2008).

    CAS  PubMed  Google Scholar 

  154. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763–776 (2012).

    CAS  PubMed  Google Scholar 

  155. Koenen, H. J. P. M. et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    CAS  PubMed  Google Scholar 

  156. Wartewig, T. et al. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552, 121–125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ludin, A. & Zon, L. I. Cancer immunotherapy: the dark side of PD-1 receptor inhibition. Nature 552, 41–42 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kleffel, S. et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. 162, 1242–1256 (2015).

    CAS  Google Scholar 

  159. Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Dong, Z.-Y. et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 23, 3012–3024 (2017).

    CAS  PubMed  Google Scholar 

  161. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Bourcier, C. et al. Constitutive ERK activity induces downregulation of tristetraprolin, a major protein controlling interleukin8/CXCL8 mRNA stability in melanoma cells. Am. J. Physiol. Cell Physiol. 301, C609–618 (2011).

    CAS  PubMed  Google Scholar 

  163. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013).

    CAS  PubMed  Google Scholar 

  164. Plimack, E. R. et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol. 18, 212–220 (2017).

    CAS  PubMed  Google Scholar 

  165. Ettinger, D. S. et al. NCCN guidelines insights: non-small cell lung cancer, version 4.2016. J. Natl Compr. Canc. Netw. 14, 255–264 (2016).

    PubMed  Google Scholar 

  166. Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nishino, M., Ramaiya, N. H., Hatabu, H. & Hodi, F. S. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 14, 655–668 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    CAS  PubMed  Google Scholar 

  171. Dijkstra, K. K., Voabil, P., Schumacher, T. N. & Voest, E. E. Genomics- and transcriptomics-based patient selection for cancer treatment with immune checkpoint inhibitors. JAMA Oncol. 2, 1490–1495 (2016).

    PubMed  Google Scholar 

  172. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Hasegawa, T., Uno, H. & Wei, L.-J. Nivolumab in nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 374, 492–493 (2016).

    PubMed  Google Scholar 

  174. Uno, H. et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 32, 2380–2385 (2014).

    PubMed  PubMed Central  Google Scholar 

  175. A’Hern, R. P. Restricted mean survival time: an obligatory end point for time-to-event analysis in cancer trials? J. Clin. Oncol. 34, 3474–3476 (2016).

    PubMed  Google Scholar 

  176. Penault-Llorca, F. et al. Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol. 27, 2809–2815 (2009).

    CAS  PubMed  Google Scholar 

  177. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003).

    CAS  PubMed  Google Scholar 

  178. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Karagiannis, G. S. et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Transl Med. 9, eaan0026 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Gilbert, L. A. & Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Fridman, W. H., Zitvogel, L., Fridman, C. S. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to N. Chaput, S. Ammari, A. Hollebecque and S. Postel-Vinay (all at Gustave Roussy, Villejuif, France) for helpful discussions. S.C. receives funding support from the Philanthropia Fondation.

Reviewer information

Nature Reviews Clinical Oncology thanks A. Goodman, M. A. Postow and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of manuscript preparation.

Corresponding authors

Correspondence to Jean-Charles Soria or Charles Ferté.

Ethics declarations

Competing interests

S.C. has received honoraria from AstraZeneca, BMS, Janssen, MSD, Novartis and Roche. B.B. has received institutional grants for clinical and translational research from AstraZeneca, BMS, Boehringer-Ingelheim, Inivata, Lilly, Loxo, OncoMed, Onxeo, OSE Pharma, Pfizer, Roche-Genentech, Sanofi-Aventis and Servier. J-.C.S. has received honoraria from MedImmune/AstraZeneca, Pierre Fabre, Roche, Sanofi, Servier and Tarveda, and became a full-time employee of Medimmune/AstraZeneca after this article was commissioned. C.F. became a full-time employee of Medimmune/AstraZeneca after this article was commissioned. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RELATED LINKS

TumourGrowthRate: https://github.com/chferte/TumorGrowthRate/blob/master/TGR_calculator.R

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Champiat, S., Ferrara, R., Massard, C. et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat Rev Clin Oncol 15, 748–762 (2018). https://doi.org/10.1038/s41571-018-0111-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0111-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research