Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy

Abstract

Recognizing that the transformative effects of immunotherapy are currently limited to a minority of patients with cancer, research efforts are increasingly focused on expanding and enhancing clinical responses by combining immunotherapies; the repurposing of existing drugs is an attractive approach, given their well-characterized safety and pharmacokinetic profiles. Receptor activator of nuclear factor-κB (RANK) and the RANK ligand (RANKL) were initially described in the context of T cell–dendritic cell interactions; however, the discovery of an obligate role of RANK signalling in osteoclastogenesis led to the development of the anti-RANKL antibody denosumab for antiresorptive indications, including bone metastases. Randomized clinical trials and post-marketing surveillance studies have established the acceptable safety profile of denosumab. More recently, several case reports involving patients with advanced-stage melanoma have described remarkable responses following concurrent treatment with denosumab and immune-checkpoint inhibitors. Randomized trials assessing similar combinations in patients with melanoma or renal cell carcinoma are now underway. Herein, we discuss the hallmark clinical trials of denosumab in light of possible immunological effects of this agent. We highlight the role of immune cells as sources of RANK and RANKL in the tumour microenvironment and review data on RANKL inhibition in mouse models of cancer. Finally, we describe hypothetical immune-related mechanisms of action, which could be assessed in clinical trials of immune-checkpoint inhibitors and denosumab in patients with cancer.

Key points

  • Receptor activator of nuclear factor-κB ligand (RANKL) and its cognate receptor, RANK, are expressed by distinct immune cells in the tumour microenvironment (TME) and might also be expressed in tumour cells, the stroma, and non-malignant tissues.

  • Accumulating observational and preclinical evidence suggests that RANKL–RANK interactions between cells in the TME have immunosuppressive effects.

  • Endogenous inhibitors of RANKL include soluble osteoprotegerin (OPG) and leucine-rich repeat-containing G protein-coupled receptor 4; pharmacological inhibitors include denosumab (a monoclonal antibody) and an OPG–Fc fusion protein (discontinued from clinical development after phase I trials).

  • Denosumab is FDA approved for indications including the prevention of skeletal-related events arising from bone metastases in cancer; however, several trials are now testing the immune anticancer activities of denosumab, including as a partner to immune-checkpoint inhibitors.

  • Among immune cells infiltrating human or mouse cancers, RANK can be expressed on immature dendritic cells, immunosuppressive M2-type macrophages, myeloid-derived suppressor cells, and natural killer cells, whereas CD8+ and CD4+ T cells (including regulatory T cells) can express RANKL.

  • Possible mechanisms whereby RANKL inhibition could improve the effects of immune-checkpoint inhibition in cancer include interruption of an immunosuppressive myeloid–lymphocyte axis, cross-modulation of the TME, and interruption of central tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RANKL–RANK interaction and its inhibitors.
Fig. 2: Expression of RANK and RANKL in the TME and locoregional lymph nodes.
Fig. 3: Inflammatory or tolerogenic consequences of RANK ligation on myeloid cells and DCs are context dependent.
Fig. 4: Proposed mechanisms by which RANKL inhibition can improve antitumour immunity.

Similar content being viewed by others

References

  1. O’Donnell, J. S., Long, G. V., Scolyer, R. A., Teng, M. W. & Smyth, M. J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat. Rev. 52, 71–81 (2017).

    PubMed  Google Scholar 

  2. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Glodde, N. et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity 47, 789–802.e9 (2017).

    CAS  PubMed  Google Scholar 

  6. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    CAS  PubMed  Google Scholar 

  8. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Strauss, J. et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin. Cancer Res. 15, 1287–1295 (2018).

    Google Scholar 

  11. Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    CAS  PubMed  Google Scholar 

  12. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    CAS  PubMed  Google Scholar 

  13. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).

    CAS  PubMed  Google Scholar 

  14. Lacey, D. L. et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401–419 (2012).

    CAS  PubMed  Google Scholar 

  15. Kotsopoulos, J., Singer, C. & Narod, S. A. Can we prevent BRCA1-associated breast cancer by RANKL inhibition? Breast Cancer Res. Treat. 161, 11–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Nolan, E. et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat. Med. 22, 933–939 (2016).

    CAS  PubMed  Google Scholar 

  17. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    CAS  PubMed  Google Scholar 

  18. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    CAS  PubMed  Google Scholar 

  19. Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    CAS  PubMed  Google Scholar 

  20. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo, J. et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat. Med. 22, 539–546 (2016).

    CAS  PubMed  Google Scholar 

  22. Boyce, B. F. & Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 473, 139–146 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dougall, W. C. & Chaisson, M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev. 25, 541–549 (2006).

    CAS  PubMed  Google Scholar 

  24. Dougall, W. C. et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Smyth, M. J., Yagita, H. & McArthur, G. A. Combination anti-CTLA-4 and anti-RANKL in metastatic melanoma. J. Clin. Oncol. 34, e104–e106 (2016).

    CAS  PubMed  Google Scholar 

  26. Bostwick, A. D., Salama, A. K. & Hanks, B. A. Rapid complete response of metastatic melanoma in a patient undergoing ipilimumab immunotherapy in the setting of active ulcerative colitis. J. Immunother. Cancer 3, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Dougall, W. C. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin. Cancer Res. 18, 326–335 (2012).

    CAS  PubMed  Google Scholar 

  28. Rodan, G. A. & Fleisch, H. A. Bisphosphonates: mechanisms of action. J. Clin. Invest. 97, 2692–2696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jobke, B., Milovanovic, P., Amling, M. & Busse, B. Bisphosphonate-osteoclasts: changes in osteoclast morphology and function induced by antiresorptive nitrogen-containing bisphosphonate treatment in osteoporosis patients. Bone 59, 37–43 (2014).

    CAS  PubMed  Google Scholar 

  30. Stopeck, A. T. et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J. Clin. Oncol. 28, 5132–5139 (2010).

    CAS  PubMed  Google Scholar 

  31. Fizazi, K. et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Henry, D. H. et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 29, 1125–1132 (2011).

    CAS  PubMed  Google Scholar 

  33. Raje, N. S. et al. Impact of denosumab (DMB) compared with zoledronic acid (ZA) on renal function in the treatment of myeloma bone disease. J. Clin. Oncol. 35, (15 suppl.), Abstr. 8005 (2017).

    Google Scholar 

  34. Doshi, S. et al. Denosumab dose selection for patients with bone metastases from solid tumors. Clin. Cancer Res. 18, 2648–2657 (2012).

    CAS  PubMed  Google Scholar 

  35. Dougall, W. C., Holen, I. & Gonzalez Suarez, E. Targeting RANKL in metastasis. Bonekey Rep. 3, 519 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. de Groot, A. F., Appelman-Dijkstra, N. M., van der Burg, S. H. & Kroep, J. R. The anti-tumor effect of RANKL inhibition in malignant solid tumors - a systematic review. Cancer Treat. Rev. 62, 18–28 (2018).

    PubMed  Google Scholar 

  37. Scagliotti, G. V. et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J. Thorac. Oncol. 7, 1823–1829 (2012).

    CAS  PubMed  Google Scholar 

  38. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02129699 (2018).

  39. Gnant, M. et al. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386, 433–443 (2015).

    CAS  PubMed  Google Scholar 

  40. Gnant, M. et al. The impact of adjuvant denosumab on disease-free survival: results from 3,425 postmenopausal patients of the ABCSG-18 trial. Cancer Res. 76, Abstr. S2-02 (2016).

  41. Gnant, M. et al. Adjuvant denosumab in early breast cancer: disease-free survival analysis of 3,425 postmenopausal patients in the ABCSG-18 trial. J. Clin. Oncol. 36, Abstr. 500 (2018).

    Google Scholar 

  42. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01077154 (2018).

  43. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2012).

    CAS  PubMed  Google Scholar 

  44. Palmerini, E. et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): for how long? Eur. J. Cancer 76, 118–124 (2017).

    CAS  PubMed  Google Scholar 

  45. Rutkowski, P. et al. Neoadjuvant denosumab treatment of locally advanced giant cell tumor of bone (GCTB). J. Clin. Oncol. 35, 11026–11026 (2017).

    Google Scholar 

  46. Chawla, S. et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 14, 901–908 (2013).

    CAS  PubMed  Google Scholar 

  47. Roux, S. et al. RANK (receptor activator of nuclear factor kappa B) and RANK ligand are expressed in giant cell tumors of bone. Am. J. Clin. Pathol. 117, 210–216 (2002).

    CAS  PubMed  Google Scholar 

  48. Thomas, D. M. & Skubitz, K. M. Giant cell tumour of bone. Curr. Opin. Oncol. 21, 338–344 (2009).

    PubMed  Google Scholar 

  49. Atkins, G. J. et al. RANK Expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J. Bone. Miner. Res. 21, 1339–1349 (2006).

    CAS  PubMed  Google Scholar 

  50. Schramek, D. et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468, 98–102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez-Suarez, E. et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  52. Sigl, V. et al. RANKL/RANK control Brca1 mutation-driven mammary tumors. Cell Res. 26, 761–774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03382574 (2018).

  54. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01864798 (2018).

  55. Nguyen, B. et al. D-BEYOND: a window of opportunity trial evaluating denosumab, a RANK-ligand (RANKL) inhibitor and its biological effects in young pre-menopausal women diagnosed with early breast cancer. Cancer Res. 78, Abstr. CT101 (2018).

    Google Scholar 

  56. Rao, S. et al. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer. Genes Dev. 31, 2099–2112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Branstetter, D. RANK and RANK ligand (RANKL) expression in primary lung cancer [abstract]. World Conference on Lung Cancer https://library.iaslc.org/search-speaker?search_speaker=14360 (2013).

  58. Faget, J., Contat, C., Zangger, N., Peters, S. & Meylan, E. RANKL signaling sustains primary tumor growth in genetically engineered mouse models of lung adenocarcinoma. J. Thorac. Oncol. 13, 387–398 (2017).

    PubMed  Google Scholar 

  59. Branstetter, D. G. et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin. Cancer Res. 18, 4415–4424 (2012).

    CAS  PubMed  Google Scholar 

  60. Liede, A. et al. An observational study of concomitant immunotherapies and denosumab in patients with advanced melanoma or lung cancer. Oncoimmunology https://doi.org/10.1080/2162402X.2018.1480301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    PubMed  Google Scholar 

  65. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    CAS  PubMed  Google Scholar 

  68. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    CAS  PubMed  Google Scholar 

  69. Gettinger, S. et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 2980–2987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    CAS  PubMed  Google Scholar 

  71. Ribas, A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600–1609 (2016).

    CAS  PubMed  Google Scholar 

  72. Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Khozin, S. et al. Characteristics of real-world metastatic non-small cell lung cancer patients treated with nivolumab and pembrolizumab during the year following approval. Oncologist 23, 328–336 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cowey, C. L. et al. Real-world treatment outcomes in patients with metastatic Merkel cell carcinoma treated with chemotherapy in the USA. Future Oncol. 13, 1699–1710 (2017).

    CAS  PubMed  Google Scholar 

  75. Angela, Y., Gutzmer, R., Satzger, I., Oberndörfer, F. & Tolk, H. Kombination von denosumab und checkpoin inhibitoren - eine retrospektive analyse von 10 patienten mit metastasierenden melanom und knochenmetastasen [poster]. Arbeitsgemeinschaft Dermatol. Onkol. (ADO) 15, P13 (2017).

  76. McClung, M. R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    CAS  PubMed  Google Scholar 

  77. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    CAS  PubMed  Google Scholar 

  78. Bone, H. G. et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 5, 513–523 (2017).

    CAS  PubMed  Google Scholar 

  79. Watts, N. B. et al. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos. Int. 23, 327–337 (2012).

    CAS  PubMed  Google Scholar 

  80. Golden, W. et al. Findings from denosumab (prolia®) postmarketing safety surveillance for serious infections [abstract 918]. Ann. Rheum. Dis. 74, 1204 (2015).

    Google Scholar 

  81. Fizazi, K. et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J. Clin. Oncol. 27, 1564–1571 (2009).

    CAS  PubMed  Google Scholar 

  82. Lipton, A. et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007).

    CAS  PubMed  Google Scholar 

  83. Curtis, J. R. et al. Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol. 67, 1456–1464 (2015).

    CAS  PubMed  Google Scholar 

  84. von Keyserlingk, C. et al. Clinical efficacy and safety of denosumab in postmenopausal women with low bone mineral density and osteoporosis: a meta-analysis. Semin. Arthritis Rheum. 41, 178–186 (2011).

    Google Scholar 

  85. Lipton, A. et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur. J. Cancer 48, 3082–3092 (2012).

    CAS  PubMed  Google Scholar 

  86. Bekker, P. J. et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 19, 1059–1066 (2004).

    CAS  PubMed  Google Scholar 

  87. Rossini, M. et al. Effects of denosumab on peripheral lymphocyte subpopulations. Endocrine 53, 857–859 (2016).

    CAS  PubMed  Google Scholar 

  88. Ominsky, M. S. et al. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone 49, 162–173 (2011).

    CAS  PubMed  Google Scholar 

  89. Josien, R. et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med. 191, 495–502 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell–specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Totsuka, T. et al. RANK-RANKL signaling pathway is critically involved in the function of CD4+CD25+ regulatory T cells in chronic colitis. J. Immunol. 182, 6079–6087 (2009).

    CAS  PubMed  Google Scholar 

  92. Guerrini, M. M. & Takayanagi, H. The immune system, bone and RANKL. Arch. Biochem. Biophys. 561, 118–123 (2014).

    CAS  PubMed  Google Scholar 

  93. Danks, L. & Takayanagi, H. Immunology and bone. J. Biochem. 154, 29–39 (2013).

    CAS  PubMed  Google Scholar 

  94. Williamson, E., Bilsborough, J. M. & Viney, J. L. Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: impact on tolerance induction. J. Immunol. 169, 3606–3612 (2002).

    CAS  PubMed  Google Scholar 

  95. Loser, K. et al. Epidermal RANKL controls regulatory T cell numbers via activation of dendritic cells. Nat. Med. 12, 1372–1379 (2006).

    CAS  PubMed  Google Scholar 

  96. Meng, Y. H. et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 8, e3105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Barbaroux, J. B., Beleut, M., Brisken, C., Mueller, C. G. & Groves, R. W. Epidermal receptor activator of NF-kappaB ligand controls Langerhans cells numbers and proliferation. J. Immunol. 181, 1103–1108 (2008).

    CAS  PubMed  Google Scholar 

  98. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  99. Demoulin, S. A. et al. Cervical (pre)neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion. Oncoimmunology 4, e1008334 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Bachmann, M. F. et al. TRANCE, a tumor necrosis factor family member critical for CD40 ligand–independent T helper cell activation. J. Exp. Med. 189, 1025–1031 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wiethe, C., Dittmar, K., Doan, T., Lindenmaier, W. & Tindle, R. Enhanced effector and memory CTL responses generated by incorporation of receptor activator of NF-κB (RANK)/RANK ligand costimulatory molecules into dendritic cell immunogens expressing a human tumor-specific antigen. J. Immunol. 171, 4121–4130 (2003).

    CAS  PubMed  Google Scholar 

  102. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    CAS  PubMed  Google Scholar 

  103. Tran Janco, J. M., Lamichhane, P., Karyampudi, L. & Knutson, K. L. Tumor-infiltrating dendritic cells in cancer pathogenesis. J. Immunol. 194, 2985–2991 (2015).

    PubMed  Google Scholar 

  104. Kambayashi, Y. et al. The possible interaction between receptor activator of nuclear factor kappa-B ligand expressed by extramammary paget cells and its ligand on dermal macrophages. J. Invest. Dermatol. 135, 2547–2550 (2015).

    CAS  PubMed  Google Scholar 

  105. Fujimura, T. et al. Receptor activator of NF-kappaB ligand promotes the production of CCL17 from RANK+ M2 macrophages. J. Invest. Dermatol. 135, 2884–2887 (2015).

    CAS  PubMed  Google Scholar 

  106. Sawant, A. et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res. 73, 672–682 (2013).

    CAS  PubMed  Google Scholar 

  107. Danilin, S. et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 1, 1484–1494 (2012).

    PubMed  PubMed Central  Google Scholar 

  108. Zhuang, J. et al. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+ myeloid-derived suppressor cells. PLOS One 7, e48871 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, H. et al. Human osteoclasts are inducible immunosuppressive cells in response to T cell–Derived IFN-γ and CD40 ligand in vitro. J. Bone Miner. Res. 29, 2666–2675 (2014).

    CAS  PubMed  Google Scholar 

  110. Li, H. et al. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116, 210–217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kiesel, J. R., Buchwald, Z. S. & Aurora, R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J. Immunol. 182, 5477–5487 (2009).

    CAS  PubMed  Google Scholar 

  112. An, G. et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 128, 1590–1603 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pearse, R. N. et al. Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc. Natl Acad. Sci. USA 98, 11581–11586 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Giuliani, N., Bataille, R., Mancini, C., Lazzaretti, M. & Barillé, S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98, 3527–3533 (2001).

    CAS  PubMed  Google Scholar 

  115. Roux, S. et al. RANK (receptor activator of nuclear factor-kappaB) and RANKL expression in multiple myeloma. Br. J. Haematol. 117, 86–92 (2002).

    CAS  PubMed  Google Scholar 

  116. Schmiedel, B. J. et al. RANKL expression, function, and therapeutic targeting in multiple myeloma and chronic lymphocytic leukemia. Cancer Res. 73, 683–694 (2013).

    CAS  PubMed  Google Scholar 

  117. Kaplan, R. N., Rafii, S. & Lyden, D. Preparing the “soil”: the premetastatic niche. Cancer Res. 66, 11089–11093 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Abe, M. et al. Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104, 2484–2491 (2004).

    CAS  PubMed  Google Scholar 

  119. Schmiedel, B. J. et al. Receptor activator for NF-kappaB ligand in acute myeloid leukemia: expression, function, and modulation of NK cell immunosurveillance. J. Immunol. 190, 821–831 (2013).

    CAS  PubMed  Google Scholar 

  120. Taylor, C. R. et al. Distribution of RANK and RANK ligand in normal human tissues as determined by an optimized immunohistochemical method. Appl. Immunohistochem. Mol. Morphol. 25, 299–307 (2017).

    CAS  PubMed  Google Scholar 

  121. Irshad, S. et al. RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res. 77, 1083–1096 (2017).

    CAS  PubMed  Google Scholar 

  122. Renema, N., Navet, B., Heymann, M.-F., Lezot, F. & Heymann, D. RANK–RANKL signalling in cancer. Biosci. Rep. 36, e00366 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Zhau, H. E. et al. Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin. Exp. Metastasis 25, 601–610 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, J. et al. In vivo real-time imaging of TGF-beta-induced transcriptional activation of the RANK ligand gene promoter in intraosseous prostate cancer. Prostate 59, 360–369 (2004).

    CAS  PubMed  Google Scholar 

  125. Mikami, S. et al. Increased RANKL expression is related to tumour migration and metastasis of renal cell carcinomas. J. Pathol. 218, 530–539 (2009).

    CAS  PubMed  Google Scholar 

  126. Sasaki, A. et al. Receptor activator of nuclear factor-kappaB ligand (RANKL) expression in hepatocellular carcinoma with bone metastasis. Ann. Surg. Oncol. 14, 1191–1199 (2007).

    PubMed  Google Scholar 

  127. Cao, Y., Zhu, J., Jia, P. & Zhao, Z. scRNASeqDB: a database for RNA-seq based gene expression profiles in human single cells. Genes 8, E368 (2017).

    PubMed  Google Scholar 

  128. Blake, S. J. & Teng, M. W. Role of IL-17 and IL-22 in autoimmunity and cancer. Actas Dermosifiliogr. 105 (Suppl. 1), 41–50 (2014).

    PubMed  Google Scholar 

  129. Glatzer, T. et al. RORgammat(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity 38, 1223–1235 (2013).

    CAS  PubMed  Google Scholar 

  130. Kuang, D. M. et al. B7-H1-expressing antigen-presenting cells mediate polarization of protumorigenic Th22 subsets. J. Clin. Invest. 124, 4657–4667 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Carrega, P. et al. NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat. Commun. 6, 8280 (2015).

    CAS  PubMed  Google Scholar 

  133. Bando, J. K. et al. The tumor necrosis factor superfamily member RANKL suppresses effector cytokine production in group 3 innate lymphoid cells. Immunity 48, 1208–1219.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chevalier, M. F. et al. ILC2-modulated T cell–to-MDSC balance is associated with bladder cancer recurrence. J. Clin. Invest. 127, 2916–2929 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Trabanelli, S. et al. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat. Commun. 8, 593 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Palafox, M. et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 72, 2879–2888 (2012).

    CAS  PubMed  Google Scholar 

  137. Wang, R. et al. Regulation of activation-induced receptor activator of NF-κB ligand (RANKL) expression in T cells. Eur. J. Immunol. 32, 1090–1098 (2002).

    CAS  PubMed  Google Scholar 

  138. Hochweller, K. & Anderton, S. M. Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo. Eur. J. Immunol. 35, 1086–1096 (2005).

    CAS  PubMed  Google Scholar 

  139. Branstetter, D. RANK and RANK Ligand (RANKL) expression in primary human lung cancer [abstract]. International Association for the Study of Lung Cancer https://library.iaslc.org/search-speaker?search_speaker=14360 (2013).

  140. Yoldi, G. et al. RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation. Cancer Res. 76, 5857–5869 (2016).

    CAS  PubMed  Google Scholar 

  141. Ahern, E. et al. Co-administration of RANKL and CTLA4 antibodies enhances lymphocyte-mediated anti-tumor immunity in mice. Clin. Cancer Res. 23, 5789–5801 (2017).

    CAS  PubMed  Google Scholar 

  142. Ahern, E. et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. Oncoimmunology 7, e1431088 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470, 548–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Coleman, R. et al. Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat. Rev. 34, 629–639 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Rogers, A. & Eastell, R. Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J. Clin. Endocrinol. Metab. 90, 6323–6331 (2005).

    CAS  PubMed  Google Scholar 

  146. Blair, J. M., Zhou, H., Seibel, M. J. & Dunstan, C. R. Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat. Clin. Pract. Clin. Oncol. 3, 41–49 (2006).

    CAS  Google Scholar 

  147. Mountzios, G. et al. Abnormal bone remodeling process is due to an imbalance in the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin (OPG) axis in patients with solid tumors metastatic to the skeleton. Acta Oncol. 46, 221–229 (2007).

    CAS  PubMed  Google Scholar 

  148. Jung, K. et al. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int. J. Cancer 111, 783–791 (2004).

    CAS  PubMed  Google Scholar 

  149. Leeming, D. J. et al. The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastases in breast, prostate, or lung cancer patients. Cancer Epidemiol. Biomarkers Prev. 15, 32–38 (2006).

    CAS  PubMed  Google Scholar 

  150. Jung, K. et al. Serum osteoprotegerin and receptor activator of nuclear factor-kappa B ligand as indicators of disturbed osteoclastogenesis in patients with prostate cancer. J. Urol. 170, 2302–2305 (2003).

    PubMed  Google Scholar 

  151. Terpos, E. et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102, 1064–1069 (2003).

    CAS  PubMed  Google Scholar 

  152. Vitovski, S., Phillips, J. S., Sayers, J. & Croucher, P. I. Investigating the interaction between osteoprotegerin and receptor activator of NF-kappaB or tumor necrosis factor-related apoptosis-inducing ligand: evidence for a pivotal role for osteoprotegerin in regulating two distinct pathways. J. Biol. Chem. 282, 31601–31609 (2007).

    CAS  PubMed  Google Scholar 

  153. Trofimov, S., Pantsulaia, I., Kobyliansky, E. & Livshits, G. Circulating levels of receptor activator of nuclear factor-kappaB ligand/osteoprotegerin/macrophage-colony stimulating factor in a presumably healthy human population. Eur. J. Endocrinol. 150, 305–311 (2004).

    CAS  PubMed  Google Scholar 

  154. Schett, G. et al. Soluble rankl and risk of nontraumatic fracture. JAMA 291, 1108–1113 (2004).

    CAS  PubMed  Google Scholar 

  155. Hofbauer, L. C., Schoppet, M., Schuller, P., Viereck, V. & Christ, M. Effects of oral contraceptives on circulating osteoprotegerin and soluble RANK ligand serum levels in healthy young women. Clin. Endocrinol. 60, 214–219 (2004).

    CAS  Google Scholar 

  156. Tanos, T. et al. Progesterone/RANKL is a major regulatory axis in the human breast. Sci. Transl. Med. 5, 182ra155 (2013).

    Google Scholar 

  157. Asselin-Labat, M.-L. et al. Control of mammary stem cell function by steroid hormone signalling. Nature 465, 798 (2010).

    CAS  PubMed  Google Scholar 

  158. Streicher, C. et al. Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci. Rep. 7, 6460 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Martin, A. et al. Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association. Bone 75, 96–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Martin, A. et al. Estrogens and androgens inhibit association of RANKL with the pre-osteoblast membrane through post-translational mechanisms. J. Cell. Physiol. 232, 3798–3807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Bakhru, P. et al. Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity. JCI Insight 2, e93265 (2017).

    PubMed Central  Google Scholar 

  163. Salmon, H. et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Khan, I. S. et al. Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance. J. Exp. Med. 211, 761–768 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lopes, N., Vachon, H., Marie, J. & Irla, M. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol. Med. 9, 835–851 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sun, M. & Fink, P. J. A. New class of reverse signaling costimulators belongs to the TNF family. J. Immunol. 179, 4307–4312 (2007).

    CAS  PubMed  Google Scholar 

  167. Secchiero, P. et al. Role of the RANKL/RANK system in the induction of interleukin-8 (IL-8) in B chronic lymphocytic leukemia (B-CLL) cells. J. Cell. Physiol. 207, 158–164 (2006).

    CAS  PubMed  Google Scholar 

  168. Chen, N. J., Huang, M. W. & Hsieh, S. L. Enhanced secretion of IFN-gamma by activated Th1 cells occurs via reverse signaling through TNF-related activation-induced cytokine. J. Immunol. 166, 270–276 (2001).

    CAS  PubMed  Google Scholar 

  169. Zhang, S. et al. Osteoclast regulation of osteoblasts via RANKRANKL reverse signal transduction in vitro. Mol. Med. Rep. 16, 3994–4000 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kamijo, S. et al. Amelioration of bone loss in collagen-induced arthritis by neutralizing anti-RANKL monoclonal antibody. Biochem. Biophys. Res. Commun. 347, 124–132 (2006).

    CAS  PubMed  Google Scholar 

  171. Smyth, M. J. et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol. 176, 1582–1587 (2006).

    CAS  PubMed  Google Scholar 

  172. Santini, D. et al. Expression pattern of receptor activator of NFkappaB (RANK) in a series of primary solid tumors and related bone metastases. J. Cell. Physiol. 226, 780–784 (2011).

    CAS  PubMed  Google Scholar 

  173. Santini, D. et al. Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLOS One 6, e19234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Cross, S. S. et al. Expression of receptor activator of nuclear factor kappabeta ligand (RANKL) and tumour necrosis factor related, apoptosis inducing ligand (TRAIL) in breast cancer, and their relations with osteoprotegerin, oestrogen receptor, and clinicopathological variables. J. Clin. Pathol. 59, 716–720 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Van Poznak, C. et al. Expression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast tumours. J. Clin. Pathol. 59, 56–63 (2006).

    PubMed  PubMed Central  Google Scholar 

  176. Farrugia, A. N. et al. Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res. 63, 5438–5445 (2003).

    CAS  PubMed  Google Scholar 

  177. Trager, U. et al. The immune response to melanoma is limited by thymic selection of self-antigens. PLOS One 7, e35005 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Malchow, S. et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339, 1219–1224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Metzger, T. C. & Anderson, M. S. Control of central and peripheral tolerance by Aire. Immunol. Rev. 241, 89–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Rossi, S. W. et al. RANK signals from CD4(+)3(-) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 204, 1267–1272 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Roberts, N. A. et al. Rank signaling links the development of invariant γδ T cell progenitors and aire+ medullary epithelium. Immunity 36, 427–437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

    CAS  PubMed  Google Scholar 

  183. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    CAS  PubMed  Google Scholar 

  184. Gray, D., Abramson, J., Benoist, C. & Mathis, D. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J. Exp. Med. 204, 2521–2528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Gray, D. H. D. et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108, 3777–3785 (2006).

    CAS  PubMed  Google Scholar 

  186. Fletcher, A. L., Acton, S. E. & Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat. Rev. Immunol. 15, 350–361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Brendolan, A. & Caamano, J. Mesenchymal cell differentiation during lymph node organogenesis. Front. Immunol. 3, https://doi.org/10.3389/fimmu.2012.00381 (2012).

  188. Sugiyama, M. et al. Expression pattern changes and function of RANKL during mouse lymph node microarchitecture development. Int. Immunol. 24, 369–378 (2012).

    CAS  PubMed  Google Scholar 

  189. Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    CAS  PubMed  Google Scholar 

  190. Kim, D. et al. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member trance. J. Exp. Med. 192, 1467–1478 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Randall, T. D., Carragher, D. M. & Rangel-Moreno, J. Development of secondary lymphoid organs. Annu. Rev. Immunol. 26, 627–650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17, 823–833 (2002).

    CAS  PubMed  Google Scholar 

  193. Hess, E. et al. RANKL induces organized lymph node growth by stromal cell proliferation. J. Immunol. 188, 1245–1254 (2012).

    CAS  PubMed  Google Scholar 

  194. Katakai, T. et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol. 181, 6189–6200 (2008).

    CAS  PubMed  Google Scholar 

  195. Luan, X. et al. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J. Immunol. 189, 245–252 (2012).

    CAS  PubMed  Google Scholar 

  196. Lam, J., Nelson, C. A., Ross, F. P., Teitelbaum, S. L. & Fremont, D. H. Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J. Clin. Invest. 108, 971–979 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Wada, T., Nakashima, T., Hiroshi, N. & Penninger, J. M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25 (2006).

    CAS  PubMed  Google Scholar 

  198. Wong, B. R., Josien, R. & Choi, Y. TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J. Leukoc. Biol. 65, 715–724 (1999).

    CAS  PubMed  Google Scholar 

  199. Nelson, C. A., Warren, J. T., Wang, M. W. H., Teitelbaum, S. L. & Fremont, D. H. RANKL employs distinct binding modes to engage RANK and the OPG decoy receptor. Structure 20, 1971–1982 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    CAS  PubMed  Google Scholar 

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03280667 (2018).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03161756 (2018).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02900469 (2018).

  204. Australian and New Zealand Clinical Trials Registry. Pre-Operative programmed death-1 (PD1) checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC) (POPCORN) - a trial for patients with resectable NSCLC. ANZCTR https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375442&isReview=true (2018).

  205. Borstkanker Onderzoek Group. Studieoverzicht - 2017-02 PERIDENO. Borstkanker Onderzoek Group https://www.boogstudycenter.nl/studie/287/perideno.html (2017).

Download references

Acknowledgements

The work of E.A. has been supported by a University of Queensland Australian Postgraduate Award. The work of M.J.S. has been supported by a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellowship (grant 1078671), an NHMRC Program Grant (grant 1132519), and The Cancer Council of Queensland (grant 1102242). The work of M.W.L.T. has been supported by a New Concept Grant funded by It’s a Bloke Thing through the Prostate Cancer Foundation of Australia’s Research Program.

Reviewer information

Nature Reviews Clinical Oncology thanks B. Boyle, F. Saad and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

E.A. researched data for the article, E.A., W.C.D., and M.W.L.T made substantial contributions to discussions of content and writing the manuscript, and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michele W. L. Teng.

Ethics declarations

Competing interests

M.J.S. has received research funding from Aduro Biotech, Bristol-Myers Squibb, and Tizona Therapeutics. W.C.D. has received speaker’s honoraria from Amgen. M.W.L.T. has received speaker’s honoraria from Arcus Biosciences, Boehringer Ingelheim, and MSD. E.A. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahern, E., Smyth, M.J., Dougall, W.C. et al. Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nat Rev Clin Oncol 15, 676–693 (2018). https://doi.org/10.1038/s41571-018-0095-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0095-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer