Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment resistance in urothelial carcinoma: an evolutionary perspective

Abstract

The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

Key points

  • The emergence of therapy-resistant clones is a critical barrier to cure in patients with urothelial carcinoma.

  • The bulk of mutations in cancer driver genes accumulate early in the evolution of urothelial carcinoma in a pattern characteristic of DNA dC->dU editing enzyme APOBEC3 (APOBEC3)-mediated mutagenesis.

  • APOBEC3-mediated mutagenesis (stochastically) and cisplatin-based chemotherapy (deterministically) shape the evolutionary trajectory of urothelial carcinoma; early branching evolution is subject to clonal selection of APOBEC3-associated mutations following chemotherapy.

  • A high mutational load translates into neoantigenesis, evoking a robust antitumour immune response and higher sensitivity to immune-checkpoint inhibition.

  • As urothelial carcinomas evolve, they exploit several mechanisms of immune evasion, including neoantigen loss, major histocompatibility complex loss, downregulation of immunostimulatory signals, and activation of inhibitory signals.

  • Evolution-targeted therapeutic strategies, such as adaptive therapy and targeting of temporal collateral sensitivity, should be combined with precise tailoring of chemotherapeutic and immunotherapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The APOBEC3 proteins are evolutionary drivers of urothelial carcinoma.
Fig. 2: A conceptual model of the relationship between APOBEC3-induced mutational load and evolutionary fitness in urothelial carcinoma.
Fig. 3: APOBEC3-induced mutagenesis and chemotherapy shape the evolutionary trajectory of urothelial carcinoma.
Fig. 4: The development of immune evasion in urothelial carcinoma.
Fig. 5: Precision targeting of clonal evolution.

Similar content being viewed by others

References

  1. Aragon-Ching, J. B. Challenges and advances in the diagnosis, biology, and treatment of urothelial upper tract and bladder carcinomas. Urol. Oncol. 35, 462–464 (2017).

    PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    PubMed  Google Scholar 

  3. NIH. Cancer stat facts: bladder cancer. National Cancer Institute Surveillance, Epidemiology and End Results Program https://seer.cancer.gov/statfacts/html/urinb.html (2017).

  4. Sridhar, S. S. Evolving treatment of advanced urothelial cancer. J. Oncol. Pract. 13, 309–315 (2017).

    PubMed  Google Scholar 

  5. Sternberg, C. N. et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European organization for research and treatment of cancer protocol no. 30924. J. Clin. Oncol. 19, 2638–2646 (2001).

    CAS  PubMed  Google Scholar 

  6. von der Maase, H. et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J. Clin. Oncol. 18, 3068–3077 (2000).

    PubMed  Google Scholar 

  7. Bellmunt, J. et al. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC intergroup Study 30987. J. Clin. Oncol. 30, 1107–1113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bamias, A. et al. Prospective, open-label, randomized, phase III study of two dose-dense regimens MVAC versus gemcitabine/cisplatin in patients with inoperable, metastatic or relapsed urothelial cancer: a Hellenic cooperative oncology group study (HE 16/03). Ann. Oncol. 24, 1011–1017 (2013).

    CAS  PubMed  Google Scholar 

  9. Alfred Witjes, J. et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 71, 462–475 (2017).

    CAS  PubMed  Google Scholar 

  10. Spiess, P. E. et al. Bladder cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc Netw 15, 1240–1267 (2017).

    PubMed  Google Scholar 

  11. Kamat, A. M. et al. Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma. J. Immunother. Cancer 5, 68 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    CAS  PubMed  Google Scholar 

  13. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Apolo, A. B. et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J. Clin. Oncol. 35, 2117–2124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Massard, C. et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 34, 3119–3125 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma, P. et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 17, 1590–1598 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zibelman, M., Ramamurthy, C. & Plimack, E. R. Emerging role of immunotherapy in urothelial carcinoma-advanced disease. Urol. Oncol. 34, 538–547 (2016).

    CAS  PubMed  Google Scholar 

  19. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    CAS  PubMed  Google Scholar 

  20. Hölzel, M., Bovier, A. & Tüting, T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat. Rev. Cancer 13, 365–376 (2013).

    PubMed  Google Scholar 

  21. Hughes, D. & Andersson, D. I. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat. Rev. Genet. 16, 459–471 (2015).

    CAS  PubMed  Google Scholar 

  22. Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 8, a033415 (2017).

    Google Scholar 

  23. Thomsen, M. B. et al. Spatial and temporal clonal evolution during development of metastatic urothelial carcinoma. Mol. Oncol. 10, 1450–1460 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Amirouchene-Angelozzi, N., Swanton, C. & Bardelli, A. Tumor evolution as a therapeutic target. Cancer Discov. 7, 805–817 (2017).

    Google Scholar 

  25. Greaves, M. Darwin and evolutionary tales in leukemia. The Ham-Wasserman lecture. Hematology Am. Soc. Hematol. Educ. Program 2009, 3–12 (2009).

    Google Scholar 

  26. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Beckman, R. A. Efficiency of carcinogenesis: is the mutator phenotype inevitable? Semin. Cancer Biol. 20, 340–352. (2010).

    CAS  PubMed  Google Scholar 

  28. Yeang, C. H. & Beckman, R. A. Long range personalized cancer treatment strategies incorporating evolutionary dynamics. Biol. Direct 11, 56 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fedele, C., Tothill, R. W. & McArthur, G. A. Navigating the challenge of tumor heterogeneity in cancer therapy. Cancer Discov. 4, 146–148 (2014).

    CAS  PubMed  Google Scholar 

  31. Baym, M. et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science 353, 1147–1151 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Al Mamun, A. A. et al. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338, 1344–1348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Chen, H., Lin, F., Xing, K. & He, X. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat. Commun. 6, 6367 (2015).

    CAS  PubMed  Google Scholar 

  35. Blanes, A., Rubio, J., Sanchez-Carrillo, J. J. & Diaz-Cano, S. J. Coexistent intraurothelial carcinoma and muscle-invasive urothelial carcinoma of the bladder: clonality and somatic down-regulation of DNA mismatch repair. Hum. Pathol. 40, 988–997 (2009).

    CAS  PubMed  Google Scholar 

  36. Nordentoft, I. et al. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep. 7, 1649–1663 (2014).

    CAS  PubMed  Google Scholar 

  37. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, p540–556.e25 (2017).

    Google Scholar 

  38. Faltas, B. M. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat. Genet. 48, 1490–1499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, J. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat. Genet. 48, 600–606 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Warrick, J. I. et al. Tumor evolution and progression in multifocal and paired non-invasive/invasive urothelial carcinoma. Virchows Arch. 466, 297–311 (2015).

    CAS  PubMed  Google Scholar 

  42. Lamy, P. et al. Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res. 76, 5894–5906 (2016).

    CAS  PubMed  Google Scholar 

  43. Cha, E. K. et al. Branched evolution and intratumor heterogeneity of urothelial carcinoma of the bladder. J. Clin. Oncol. 32 (suppl. 4), (2014).

  44. Prandi, D. et al. Unraveling the clonal hierarchy of somatic genomic aberrations. Genome Biol. 15, 439 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 7, a026625 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Venkatesan, S., Birkbak, N. J. & Swanton, C. Constraints in cancer evolution. Biochem. Soc. Trans. 45, 1–13 (2017).

    CAS  PubMed  Google Scholar 

  47. Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer 9, 665–674 (2009).

    CAS  PubMed  Google Scholar 

  48. Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Antal, T., Krapivsky, P. L. & Nowak, M. A. Spatial evolution of tumors with successive driver mutations. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 022705 (2015).

    PubMed  Google Scholar 

  50. Liu, D. et al. Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer. Nat. Commun. 8, 2193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Findlay, J. M. et al. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat. Commun. 7, 11111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moris, A., Murray, S. & Cardinaud, S. AID and APOBECs span the gap between innate and adaptive immunity. Front. Microbiol. 5, 534 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15, 585–598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, Z. et al. Heat shock proteins stimulate APOBEC-3-mediated cytidine deamination in the hepatitis B virus. J. Biol. Chem. 292, 13459–13479 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stenglein, M. D. et al. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat. Struct. Mol. Biol. 17, 222–229 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharma, S. et al. The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme. Sci. Rep. 6, 39100 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sharma, S. et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat. Commun. 6, 6881 (2015).

    CAS  PubMed  Google Scholar 

  65. Kanu, N. et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol. 17, 185 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Ohba, K. et al. In vivo and in vitro studies suggest a possible involvement of HPV infection in the early stage of breast carcinogenesis via APOBEC3B induction. PLoS ONE 9, e97787 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Talluri, S. et al. Apobec family of proteins mediate genomic changes in multiple myeloma by inducing DNA damage and C>T Mutations. Blood 130 (Suppl. 1), 4334 (2017).

    Google Scholar 

  68. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Google Scholar 

  69. McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 7, 283ra254 (2015).

    Google Scholar 

  70. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. McGranahan, N. & Swanton, C. et al. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS  PubMed  Google Scholar 

  72. Boichard, A., Tsigelny, I. F. & Kurzrock, R. High expression of PD-1 ligands is associated with kataegis mutational signature and APOBEC3 alterations. Oncoimmunology 6, e1284719 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Mullane, S. A. et al. Correlation of apobec mRNA expression with overall survival and pd-l1 expression in urothelial carcinoma. Sci. Rep. 6, 27702 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kazanov, M. D. et al. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions. Cell Rep. 13, 1103–1109 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoopes, J. et al. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA REplication. Cell Rep.14, 1273–1282 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Seplyarskiy, V. B. et al. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res. 26, 174–182 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nowarski, R. & Kotler, M. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion. Cancer Res. 73, 3494–3498 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith, H. C., Bennett, R. P., Kizilyer, A., McDougall, W. M. & Prohaska, K. M. Functions and regulation of the APOBEC family of proteins. Semin. Cell Dev. Biol.23, 258–268 (2012).

    CAS  PubMed  Google Scholar 

  79. Avesson, L. & Barry, G. The emerging role of RNA and DNA editing in cancer. Biochim. Biophys. Acta 1845, 308–316 (2014).

    CAS  PubMed  Google Scholar 

  80. Okeoma, C. M., Lovsin, N., Peterlin, B. M. & Ross, S. R. APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 445, 927–930 (2007).

    CAS  PubMed  Google Scholar 

  81. Middlebrooks, C. D. et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat. Genet. 48, 1330–1338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lipinski, K. A. et al. Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer 2, 49–63 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao, B., Hemann, M. T. & Lauffenburger, D. A. Modeling tumor clonal evolution for drug combinations design. Trends Cancer 2, 144–158 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Galluzzi, L. et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 5, e1257 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bellmunt, J. et al. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann. Oncol. 18, 522–528 (2007).

    CAS  PubMed  Google Scholar 

  87. Font, A. et al. BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann. Oncol. 22, 139–144 (2011).

    CAS  PubMed  Google Scholar 

  88. Van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Desai, N. B. et al. Genomic characterization of response to chemoradiation in urothelial bladder cancer. Cancer 122, 3715–3723 (2016).

    CAS  PubMed  Google Scholar 

  90. Plimack, E. R. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur. Urol. 68, 959–967 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Teo, M. Y. et al. DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin. Cancer Res. 23, 3610–3618 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Roos, W. P. et al. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20–33 (2016).

    CAS  PubMed  Google Scholar 

  93. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Seiler, R. et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur. Urol. 72, 544–554 (2017).

    CAS  PubMed  Google Scholar 

  95. Bertheau, P. et al. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med. 4, e90 (2007).

    PubMed  PubMed Central  Google Scholar 

  96. Jovanovic, B. et al. A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III triple-negative breast cancer (TNBC): responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67. Clin. Cancer Res. 23, 4035–4045 (2011).

    Google Scholar 

  97. Dasari, S. & Tchounwou, P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Massari, F. et al. Emerging concepts on drug resistance in bladder cancer: implications for future strategies. Crit. Rev. Oncol. Hematol. 96, 81–90 (2015).

    PubMed  Google Scholar 

  99. Galluzzi, L. et al. Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869–1883 (2012).

    CAS  PubMed  Google Scholar 

  100. Munn, D. H. & Mellor, A. L. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 37, 193–207 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Maleki Vareki, S. et al. Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget 5, 2778–2791 (2014).

    PubMed  Google Scholar 

  102. Afonso, J. et al. CD147 and MCT1-potential partners in bladder cancer aggressiveness and cisplatin resistance. Mol. Carcinog. 54, 1451–1466 (2015).

    CAS  PubMed  Google Scholar 

  103. Tanaka, N. et al. Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation. JCI Insight 1, e83654 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Baras, A. S. et al. Identification and validation of protein biomarkers of response to neoadjuvant platinum chemotherapy in muscle invasive urothelial carcinoma. PLoS ONE 10, e0131245 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Skowron, M. A. et al. Phenotype plasticity rather than repopulation from CD90/CK14+ cancer stem cells leads to cisplatin resistance of urothelial carcinoma cell lines. J. Exp. Clin. Cancer Res. 34, 144 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    CAS  PubMed  Google Scholar 

  107. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    CAS  PubMed  Google Scholar 

  108. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  109. Liu, X. S. & Mardis, E. R. Applications of immunogenomics to cancer. Cell 168, 600–612 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Le, D. T. et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Choudhury, N. J. et al. Low T cell receptor diversity, high somatic mutation burden, and high neoantigen load as predictors of clinical outcome in muscle-invasive bladder cancer. Eur. Urol. Focus 2, 445–452 (2016).

    PubMed  Google Scholar 

  112. Brown, S. D. et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 24, 743–750 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Faltas, B. et al. Generating a neoantigen map of advanced urothelial carcinoma by whole exome sequencing. J. Clin. Oncol. 34, (suppl. 2), (2016).

  114. Haraksingh, R. R. & Snyder, M. P. Impacts of variation in the human genome on gene regulation. J. Mol. Biol. 425, 3970–3977 (2013).

    CAS  PubMed  Google Scholar 

  115. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    CAS  PubMed  Google Scholar 

  116. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    CAS  PubMed  Google Scholar 

  117. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kirsch, I., Vignali, M. & Robins, H. T cell receptor profiling in cancer. Mol. Oncol. 9, 2063–2070 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 14, e1002309 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Nghiem, P. T. et al. PD-1 Blockade with Pembrolizumab in advanced merkel-cell carcinoma. N. Engl. J. Med. 374, 2542–2552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sweis, R. F. et al. Molecular drivers of the non-T cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol. Res. 4, 563–568 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    CAS  PubMed  Google Scholar 

  123. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    CAS  PubMed  Google Scholar 

  124. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. George, S. et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197–204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Van Allen, E. M. et al. Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation. Cancer Immunol. Res. 3, 855–863 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, X. et al. Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res. 77, 839–850 (2017).

    CAS  PubMed  Google Scholar 

  130. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Korpal, M. et al. Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer. Nat. Commun. 8, 103 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Kardos, J. et al. Claudin-low bladder tumors are immune infiltrated and actively immune suppressed. JCI Insight 1, e85902 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. Hendrickx, W. et al. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 6, e1253654 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jiménez-Sánchez, A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938 (2017). e920.

    PubMed  PubMed Central  Google Scholar 

  138. Reuben, A. et al. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom. Med. https://doi.org/10.1038/s41525-017-0013-8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    CAS  PubMed  Google Scholar 

  140. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    CAS  PubMed  Google Scholar 

  141. Russo, M. et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 6, 147–153 (2016).

    CAS  PubMed  Google Scholar 

  142. Wang, S., Gao, D. & Chen, Y. The potential of organoids in urological cancer research. Nat. Rev. Urol. 14, 401–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Barlow, L., Meyer, R., Shelkey, E., Faltas, B. & Rubin, M. Integrin signaling modulation demonstrates potential therapeutic strategy in bladder cancer using three-dimensional organoid culture. Cancer Res 77 (suppl. 13), (2017).

  145. Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra324 (2016).

    Google Scholar 

  146. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Szabados, B. et al. Response rate to chemotherapy after immune checkpoint inhibition in metastatic urothelial cancer. Eur. Urol. 73, 149–152 (2017).

    PubMed  Google Scholar 

  149. Beckman, R. A. & Loeb, L. A. Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair. 56, 7–15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, M. et al. First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G. ACS Chem. Biol. 7, 506–517 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Olson, M. E. et al. Small molecule APOBEC3G DNA cytosine deaminase inhibitors based on a 4-amino-1,2,4-triazole-3-thiol scaffold. ChemMedChem 8, 112–117 (2013).

    CAS  PubMed  Google Scholar 

  152. Petrylak, D. P. et al. A multicohort phase I study of ramucirumab (R) plus pembrolizumab (P): interim safety and clinical activity in patients with urothelial carcinoma. J. Clin. Oncol. 35 (suppl. 6), (2017).

  153. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  154. Langer, C. J. et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 17, 1497–1508 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Galsky, M. D. et al. Phase 2 Trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of dna damage response gene mutations on outcomes. Eur. Urol. 73, 751–759 (2018).

  156. Petrylak, D. P. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial. Lancet 390, 2266–2277 (2017).

    CAS  PubMed  Google Scholar 

  157. Apollo, A. B. et al. A phase II study of cabozantinib in patients (pts) with relapsed or refractory metastatic urothelial carcinoma (mUC). J. Clin. Oncol. 34 (suppl. 15), (2016).

  158. Long, M. et al. Ibrutinib treatment improves T cell number and function in CLL patients. J. Clin. Invest. 127, 3052–3064 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Jiao, S. et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 23, 3711–3720 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sharma, P. et al. Efficacy and safety of nivolumab plus ipilimumab in metastatic urothelial carcinoma: first results from the phase I/II CheckMate 032 study. J. Immunother Cancer 4 (suppl. 2), (2016).

  161. Chism, D. D. Urothelial carcinoma of the bladder and the rise of immunotherapy. J. Natl Compr. Canc Netw 15, 1277–1284 (2017).

    CAS  PubMed  Google Scholar 

  162. Smith, D. C. et al. Epacadostat plus pembrolizumab in patients with advanced urothelial carcinoma: preliminary phase I/II results of ECHO-202/KEYNOTE-037. J. Clin. Oncol. 35 (suppl. 15), 4503 (2017).

  163. Luke, J. J. et al. Preliminary antitumor and immunomodulatory activity of BMS-986205, an optimized indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, in combination with nivolumab in patients with advanced cancers [abstract 041]. 32nd Annual Meeting of the Society for Immunotherapy of Cancer (2017).

  164. Hundal, J. et al. Cancer immunogenomics: computational neoantigen identification and vaccine design. Cold Spring Harb. Symp. Quant. Biol. 81, 105–111 (2016).

    PubMed  Google Scholar 

  165. Zhang, X., Sharma, P. K., Peter Goedegebuure, S. & Gillanders, W. E. Personalized cancer vaccines: targeting the cancer mutanome. Vaccine 35, 1094–1100 (2017).

    CAS  PubMed  Google Scholar 

  166. Woller, N. et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T cell responses. Mol. Ther. 23, 1630–1640 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 6, 226ra232 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors thank S. Maleki Vareki, Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada, for his diligent proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Bishoy M. Faltas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrial.gov: https://clinicaltrials.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlachostergios, P.J., Faltas, B.M. Treatment resistance in urothelial carcinoma: an evolutionary perspective. Nat Rev Clin Oncol 15, 495–509 (2018). https://doi.org/10.1038/s41571-018-0026-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0026-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer