Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding covalency in molecular f-block compounds from the synergy of spectroscopy and quantum chemistry

Abstract

One of the most intensely studied areas of f-block chemistry is the nature of the bonds between the f-element and another species, and in particular the role played by covalency. Computational quantum chemical methods have been at the forefront of this research for decades and have a particularly valuable role, given the radioactivity of the actinide series. The very strong agreement that has recently emerged between theory and the results of a range of spectroscopic techniques not only facilitates deeper insight into the experimental data, but it also provides confidence in the conclusions from the computational studies. These synergies are shining new light on the nature of the f element–other element bond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation of the calculated 77Se NMR chemical shifts with the QTAIM delocalization index.
Fig. 2: X-ray absorption and emission process in uranyl.
Fig. 3: Magnetic circular dichroism spectroscopy of pentavalent uranium hexachloride.

Similar content being viewed by others

References

  1. Winter, M. J. Chemical Bonding 2nd edn (Oxford Univ. Press, 2016).

  2. Aspinall, H. C. f-Block Chemistry (Oxford Univ. Press, 2020).

  3. Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    Article  CAS  Google Scholar 

  5. Kaltsoyannis, N. Transuranic computational chemistry. Chem. Eur. J. 24, 2815–2825 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Kerridge, A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem. Commun. 53, 6685–6695 (2017).

    Article  CAS  Google Scholar 

  7. Su, J. et al. Energy-degeneracy-driven covalency in actinide bonding. J. Am. Chem. Soc. 140, 17977–17984 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, E. et al. Emergence of the structure-directing role of f-orbital overlap-driven covalency. Nat. Commun. 10, 634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor, R. J. (ed.) Reprocessing and Recycling of Spent Nuclear Fuel (Elsevier, 2015).

  10. Chandrasekar, A. & Ghanty, T. K. Uncovering heavy actinide covalency: implications for minor actinide partitioning. Inorg. Chem. 58, 3744–3753 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Oher, H. et al. Influence of the first coordination of uranyl on its luminescence properties: a study of uranyl binitrate with N,N-dialkyl amide DEHiBA and water. Inorg. Chem. 61, 890–901 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Tolu, D., Guillaumont, D. & de la Lande, A. Irradiation of plutonium tributyl phosphate complexes by ionizing alpha particles: a computational study. J. Phys. Chem. A 127, 7045–7057 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Fletcher, L. S. et al. Next-generation 3,3-alkoxyBTPs as complexants for minor actinide separation from lanthanides: a comprehensive separations, spectroscopic, and DFT study. Inorg. Chem. 63, 4819–4827 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Streit, M. & Ingold, F. Nitrides as a nuclear fuel option. J. Eur. Ceram. Soc. 25, 2687–2692 (2005).

    Article  CAS  Google Scholar 

  15. King, D. M. et al. Isolation and characterization of a uranium(VI)-nitride triple bond. Nat. Chem. 5, 482–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Jones, S., Boxall, C., Maher, C. & Taylor, R. A review of the reprocessability of uranium nitride based fuels. Prog. Nucl. Energy 165, 104917 (2023).

    Article  CAS  Google Scholar 

  17. Jensen, F. Introduction to Computational Chemistry 3rd edn (Wiley, 2016).

  18. Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P. & Bursten, B. E. in The Chemistry of the Actinide and Transactinide Elements 3rd edn (eds Morss, L. R. et al.) 1893–2012 (Springer, 2006).

  19. Kaltsoyannis, N. & Kerridge, A. in The Chemical Bond: Fundamental Aspects of Chemical Bonding (eds Frenking, G. & Shaik, S.) 337–356 (Wiley-VCH, 2014).

  20. Hayton, T. W. & Kaltsoyannis, N. in Experimental and Theoretical Approaches to Actinide Chemistry (eds Gibson, J. K. & de Jong, W. A.) 181–236 (Wiley, 2018).

  21. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  22. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  23. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article  CAS  Google Scholar 

  24. Casida, M. E. in Recent Developments and Applications of Modern Density Functional Theory (ed. Seminario, J. M.) 391–439 (Elsevier, 1996).

  25. Čížek, J. On correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45, 4256–4266 (1966).

    Article  Google Scholar 

  26. Löwdin, P. O. Quantum theory of many-particle systems. 1. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489 (1955).

    Article  Google Scholar 

  27. Roos, B. O., Taylor, P. R. & Siegbahn, P. E. M. A complete active space SCF method (CASSCF) using a density-matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).

    Article  CAS  Google Scholar 

  28. Malmqvist, P. A., Rendell, A. & Roos, B. O. The restricted active space self-consistent-field method, implemented with a split graph unitary-group approach. J. Phys. Chem. 94, 5477–5482 (1990).

    Article  CAS  Google Scholar 

  29. de Groot, F. Multiplet effects in X-ray spectroscopy. Coord. Chem. Rev. 249, 31–63 (2005).

    Article  Google Scholar 

  30. Atanasov, M. et al. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 289, 177–214 (2015).

    Article  Google Scholar 

  31. Jung, J. L., Atanasov, M. & Neese, F. Ab initio ligand-field theory analysis and covalency trends in actinide and lanthanide free ions and octahedral complexes. Inorg. Chem. 56, 8802–8816 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Ungur, L. & Chibotaru, L. F. Ab initio crystal field for lanthanides. Chem. Eur. J. 23, 3708–3718 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Autschbach, J. Orbitals: some fiction and some facts. J. Chem. Educ. 89, 1032–1040 (2012).

    Article  CAS  Google Scholar 

  34. Glendening, E. D. & Weinhold, F. Natural resonance theory: II. Natural bond order and valency. J. Comput. Chem. 19, 610–627 (1998).

    Article  CAS  Google Scholar 

  35. Weinhold, F. & Landis, C. R. Discovering Chemistry with Natural Bond Orbitals (Wiley, 2012).

  36. Martin, R. L. Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003).

    Article  CAS  Google Scholar 

  37. Wiberg, K. B. Application of Pople-Santry-Segal complete neglect of differential overlap method to some hydrocarbons and their cations. J. Am. Chem. Soc. 90, 59–63 (1968).

    Article  CAS  Google Scholar 

  38. Mayer, I. Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 97, 270–274 (1983).

    Article  CAS  Google Scholar 

  39. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Clarendon, 1990).

  40. Tassell, M. J. & Kaltsoyannis, N. Covalency in AnCp4 (An = Th–Cm): a comparison of molecular orbital, natural population and atoms-in-molecules analyses. Dalton Trans. 39, 6719–6725 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Kirker, I. & Kaltsoyannis, N. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th–Cm; Cp = η5-C5H5). Dalton Trans. 40, 124–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Blanco, M. A., Pendás, A. M. & Francisco, E. Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1, 1096–1109 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Cho, H., de Jong, W. A. & Soderquist, C. Z. Probing the oxygen environment in UO22+ by solid-state 17O nuclear magnetic resonance spectroscopy and relativistic density functional calculations. J. Chem. Phys. 132, 084501 (2010).

    Article  PubMed  Google Scholar 

  44. Martel, L. et al. High-resolution solid-state oxygen-17 NMR of actinide-bearing compounds: an insight into the 5f chemistry. Inorg. Chem. 53, 6928–6933 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Martel, L. et al. Insight into the crystalline structure of ThF4 with the combined use of neutron diffraction, 19F magic-angle spinning-NMR, and density functional theory calculations. Inorg. Chem. 57, 15350–15360 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. DeVore, M. A., Klug, C. A., Kriz, M. R., Roy, L. E. & Wellons, M. S. Investigations of uranyl fluoride sesquihydrate (UO2F2•1.57H2O): combining 19F solid-state MAS NMR spectroscopy and GIPAW chemical shift calculations. J. Phys. Chem. A 122, 6873–6878 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Fernández-Alarcón, A. & Autschbach, J. Relativistic density functional NMR tensors analyzed with spin-free localized molecular orbitals. ChemPhysChem 24, e202200667 (2023).

    Article  PubMed  Google Scholar 

  48. Hrobárik, P., Hrobáriková, V., Greif, A. H. & Kaupp, M. Giant spin–orbit effects on NMR shifts in diamagnetic actinide complexes: guiding the search of uranium(VI) hydride complexes in the correct spectral range. Angew. Chem. Int. Ed. 51, 10884–10888 (2012).

    Article  Google Scholar 

  49. Seaman, L. A. et al. A rare uranyl(VI)-alkyl ate complex [Li(DME)1.5]2[UO2(CH2SiMe3)4] and its comparison with a homoleptic uranium(VI)-hexaalkyl. Angew. Chem. Int. Ed. 52, 3259–3263 (2013).

    Article  CAS  Google Scholar 

  50. Fortier, S., Walensky, J. R., Wu, G. & Hayton, T. W. High-valent uranium alkyls: evidence for the formation of UVI(CH2SiMe3)6. J. Am. Chem. Soc. 133, 11732–11743 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Panetti, G. B. et al. Isolation and characterization of a covalent CeIV-Aryl complex with an anomalous 13C chemical shift. Nat. Commun. 12, 1713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in Th(En){N(SiMe3)2}3 (E = Se, Te; n = 1, 2) and their oxo-uranium(VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Ramsey, N. F. Magnetic shielding of nuclei in molecules. Phys. Rev. 78, 699–703 (1950).

    Article  CAS  Google Scholar 

  54. Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Synthesis, thermochemistry, bonding, and 13C NMR chemical shift analysis of a phosphorano-stabilized carbene of thorium. Organometallics 36, 4519–4524 (2017).

    Article  CAS  Google Scholar 

  55. Wu, W. et al. Molecular thorium compounds with dichalcogenide ligands: synthesis, structure, 77Se NMR study, and thermolysis. Inorg. Chem. 57, 14821–14833 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Mullane, K. C. et al. 13C NMR shifts as an indicator of U–C bond covalency in uranium(VI) acetylide complexes: an experimental and computational study. Inorg. Chem. 58, 4152–4163 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Staun, S. L., Sergentu, D. C., Wu, G., Autschbach, J. & Hayton, T. W. Use of 15N NMR spectroscopy to probe covalency in a thorium nitride. Chem. Sci. 10, 6431–6436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sergentu, D. C. et al. Probing the electronic structure of a thorium nitride complex by solid-state 15N NMR spectroscopy. Inorg. Chem. 59, 10138–10145 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Du, J. Z. et al. Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nat. Commun. 12, 5649 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berryman, V. E. J. et al. Quantum chemical topology and natural bond orbital analysis of M–O covalency in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np). Phys. Chem. Chem. Phys. 22, 16804–16812 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Réant, B. L. L. et al. 29Si NMR spectroscopy as a probe of s- and f-block metal(II)–silanide bond covalency. J. Am. Chem. Soc. 143, 9813–9824 (2021).

    Article  PubMed  Google Scholar 

  62. Du, J. Z. et al. 31P nuclear magnetic resonance spectroscopy as a probe of thorium–phosphorus bond covalency: correlating phosphorus chemical shift to metal–phosphorus bond order. J. Am. Chem. Soc. 145, 21766–21784 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hedman, B., Hodgson, K. O. & Solomon, E. I. X-Ray absorption-edge spectroscopy of ligands bound to open-shell metal ions: chlorine K-edge studies of covalency in tetracholorocuprate(2−). J. Am. Chem. Soc. 112, 1643–1645 (1990).

    Article  CAS  Google Scholar 

  64. Sergentu, D. C. & Autschbach, J. X-ray absorption spectra of f-element complexes: insight from relativistic multiconfigurational wavefunction theory. Dalton Trans. 51, 1754–1764 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Kozimor, S. A. et al. Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 131, 12125–12136 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Kozimor, S. A. et al. Covalency trends in group IV metallocene dichlorides. Chlorine K-edge X-ray absorption spectroscopy and time dependent-density functional theory. Inorg. Chem. 47, 5365–5371 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Minasian, S. G. et al. New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory. Chem. Sci. 5, 351–359 (2014).

    Article  CAS  Google Scholar 

  68. Qiao, Y. S. et al. Enhanced 5f-δ bonding in [U(C7H7)2]: C K-edge XAS, magnetism, and ab initio calculations. Chem. Commun. 57, 9562–9565 (2021).

    Article  CAS  Google Scholar 

  69. Gourier, D., Caurant, D., Arliguie, T. & Ephritikhine, M. EPR and angle-selected ENDOR study of 5f–ligand interactions in the [U(η7-C7H7)2]− anion, an f1 analogue of uranocene. J. Am. Chem. Soc. 120, 6084–6092 (1998).

    Article  CAS  Google Scholar 

  70. Dolg, M. et al. Formally tetravalent cerium and thorium compounds: a configuration interaction study of cerocene Ce(C8H8)2 and thorocene Th(C8H8)2 using energy-adjusted quasirelativistic ab initio pseudopotentials. Chem. Phys. 195, 71–82 (1995).

    Article  CAS  Google Scholar 

  71. Booth, C. H., Walter, M. D., Daniel, M., Lukens, W. W. & Andersen, R. A. Self-contained Kondo effect in single molecules. Phys. Rev. Lett. 95, 267202 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Kerridge, A., Coates, R. & Kaltsoyannis, N. Is cerocene really a Ce(III) compound? All-electron spin–orbit coupled CASPT2 calculations on M(η8-C8H8)2 (M = Th, Pa, Ce). J. Phys. Chem. A 113, 2896–2905 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Moossen, O. & Dolg, M. Two interpretations of the cerocene electronic ground state. Chem. Phys. Lett. 594, 47–50 (2014).

    Article  CAS  Google Scholar 

  74. Smiles, D. E. et al. The duality of electron localization and covalency in lanthanide and actinide metallocenes. Chem. Sci. 11, 2796–2809 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sergentu, D. C., Booth, C. H. & Autschbach, J. Probing multiconfigurational states by spectroscopy: the cerium XAS L3-edge puzzle. Chem. Eur. J. 27, 7239–7251 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Hitchcock, P. B., Lappert, M. F., Maron, L. & Protchenko, A. V. Lanthanum does form stable molecular compounds in the +2 oxidation state. Angew. Chem. Int. Ed. 47, 1488–1491, (2008).

    Article  CAS  Google Scholar 

  77. MacDonald, M. R., Ziller, J. W. & Evans, W. J. Synthesis of a crystalline molecular complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J. Am. Chem. Soc. 133, 15914–15917 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. MacDonald, M. R. et al. Expanding rare-earth oxidation state chemistry to molecular complexes of holmium(II) and erbium(II). J. Am. Chem. Soc. 134, 8420–8423 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Ryan, A. J. et al. Synthesis, structure, and magnetism of tris(amide) [Ln{N(SiMe3)2}3]1− complexes of the non-traditional +2 lanthanide ions. Chem. Eur. J. 24, 7702–7709 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Fieser, M. E. et al. Evaluating the electronic structure of formal LnII ions in LnII(C5H4SiMe3)31 using XANES spectroscopy and DFT calculations. Chem. Sci. 8, 6076–6091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Denning, R. G. et al. Covalency in the uranyl ion: a polarized X-ray spectroscopic study. J. Chem. Phys. 117, 8008–8020 (2002).

    Article  CAS  Google Scholar 

  82. Stanistreet-Welsh, K. & Kerridge, A. Bounding [AnO2]2+ (An = U, Np) covalency by simulated O K-edge and An M-edge X-ray absorption near-edge spectroscopy. Phys. Chem. Chem. Phys. 25, 23753–23760 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Misael, W. A. & Gomes, A. S. P. Core excitations of uranyl in Cs2UO2Cl4 from relativistic embedded damped response time-dependent density functional theory calculations. Inorg. Chem. 62, 11589–11601 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Spencer, L. P. et al. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy. J. Am. Chem. Soc. 135, 2279–2290 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Minasian, S. G. et al. Determining relative f and d orbital contributions to M–Cl covalency in MCl62− (M = Ti, Zr, Hf, U) and UOCl5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 134, 5586−5597 (2012).

    Article  PubMed  Google Scholar 

  86. Kramers, H. A. & Heisenberg, W. On the dispersal of radiation by atoms. Z. Phys. 31, 681–708 (1925).

    Article  CAS  Google Scholar 

  87. Caciuffo, R. & Lander, G. H. X-ray synchrotron radiation studies of actinide materials. J. Synchrotron Radiat. 28, 1692–1708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Polly, R., Schacherl, B., Rothe, J. & Vitova, T. Relativistic multiconfigurational ab initio calculation of uranyl 3d4f resonant inelastic X-ray scattering. Inorg. Chem. 60, 18764–18776 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vitova, T. et al. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 8, 16053 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ehrman, J. N. et al. Unveiling hidden shake-up features in the uranyl M4-edge spectrum. JACS Au 4, 1134–1141 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sergentu, D. C. & Autschbach, J. Covalency in actinide(IV) hexachlorides in relation to the chlorine K-edge X-ray absorption structure. Chem. Sci. 13, 3194–3207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cross, J. N. et al. Covalency in americium(III) hexachloride. J. Am. Chem. Soc. 139, 8667–8677 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Diamond, R. M., Street, K. & Seaborg, G. T. An ion-exchange study of possible hybridized 5f bonding in the actinides. J. Am. Chem. Soc. 76, 1461–1469 (1954).

    Article  CAS  Google Scholar 

  94. Löble, M. W. et al. Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6x (x =3, 2). J. Am. Chem. Soc. 137, 2506–2523 (2015).

    Article  PubMed  Google Scholar 

  95. Palumbo, C. T., Zivkovic, I., Scopelliti, R. & Mazzanti, M. Molecular complex of Tb in the +4 oxidation state. J. Am. Chem. Soc. 141, 9827–9831 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Rice, N. T. et al. Design, isolation, and spectroscopic analysis of a tetravalent terbium complex. J. Am. Chem. Soc. 141, 13222–13233 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Willauer, A. R. et al. Accessing the +IV oxidation state in molecular complexes of praseodymium. J. Am. Chem. Soc. 142, 5538–5542 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Ramanathan, A. et al. Chemical design of electronic and magnetic energy scales of tetravalent praseodymium materials. Nat. Commun. 14, 3134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Minasian, S. G. et al. Quantitative evidence for lanthanide-oxygen orbital mixing in CeO2, PrO2, and TbO2. J. Am. Chem. Soc. 139, 18052–18064 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Kvashnina, K. O., Butorin, S. M., Martin, P. & Glatzel, P. Chemical state of complex uranium oxides. Phys. Rev. Lett. 111, 253002 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Kvashnina, K. O., Kvashnin, Y. O. & Butorin, S. M. Role of resonant inelastic X-ray scattering in high-resolution core-level spectroscopy of actinide materials. J. Electron Spectros. Relat. Phenomena 194, 27–36 (2014).

    Article  CAS  Google Scholar 

  102. Amidani, L. et al. Probing the local coordination of hexavalent uranium and the splitting of 5f orbitals induced by chemical bonding. Inorg. Chem. 60, 16286–16293 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Minasian, S. G., Krinsky, J. L. & Arnold, J. Evaluating f-element bonding from structure and thermodynamics. Chem. Eur. J. 17, 12234–12245 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Kelley, M. P. et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3,4,3-LI(1,2-HOPO). Inorg. Chem. 57, 5352–5363 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Formanuik, A. et al. Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy. Nat. Chem. 9, 578–583 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Schweiger, A. & Jeschke, J. Principles of Pulsed Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

  107. Nodaraki, L. E. et al. Metal–carbon bonding in early lanthanide substituted cyclopentadienyl complexes probed by pulsed EPR spectroscopy. Chem. Sci. 15, 3003–3010 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lukens, W. W. et al. The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study. Dalton Trans. 45, 11508–11521 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Wolford, N. J., Radovic, A. & Neidig, M. L. C-Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry. Dalton Trans. 50, 416–428 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Wolford, N. J., Yu, X. J., Bart, S. C., Autschbach, J. & Neidig, M. L. Ligand effects on electronic structure and bonding in U(III) coordination complexes: a combined MCD, EPR and computational study. Dalton Trans. 49, 14401–14410 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Gendron, F. et al. Magnetic circular dichroism of UCl6 in the ligand-to-metal charge-transfer spectral region. Phys. Chem. Chem. Phys. 19, 17300–17313 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Notter, F. P. & Bolvin, H. Optical and magnetic properties of the 5f1 AnX6q series: a theoretical study. J. Chem. Phys. 130, 184310 (2009).

    Article  PubMed  Google Scholar 

  113. Fleischauer, V. E. et al. Insight into the electronic structure of formal lanthanide(II) complexes using magnetic circular dichroism spectroscopy. Organometallics 38, 3124–3131 (2019).

    Article  CAS  Google Scholar 

  114. MacDonald, M. R., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. Completing the series of +2 ions for the lanthanide elements: synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+. J. Am. Chem. Soc. 135, 9857–9868, (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Aquino, F., Pritchard, B. & Autschbach, J. Scalar relativistic computations and localized orbital analyses of nuclear hyperfine coupling and paramagnetic NMR chemical shifts. J. Chem. Theory Comput. 8, 598–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Autschbach, J. in Annual Reports in Computational Chemistry Vol. 11 (ed. Dixon, D. A.) 3–36 (Elsevier, 2015).

  117. Gendron, F. & Autschbach, J. Ligand NMR chemical shift calculations for paramagnetic metal complexes: 5f1 vs 5f2 actinides. J. Chem. Theory Comput. 12, 5309–5321 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Bolvin, H. in Computational Modelling of Molecular Nanomagnets (ed. Rajaraman, G.) 179–218 (Springer, 2023).

  119. Ashuiev, A. et al. Geometry and electronic structure of Yb(III)[CH(SiMe3)2]3 from EPR and solid-state NMR augmented by computations. Phys. Chem. Chem. Phys. 26, 8734–8747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hermann, J. et al. Ab initio quantum chemistry with neural-network wavefunctions. Nat. Rev. Chem. 7, 692–709 (2023).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.K. wrote the ‘Introduction’ section, and researched and wrote the ‘NMR’ section. A.K. wrote the ‘Electronic structure methods and analysis’ section, and researched and wrote the ‘X-ray spectroscopy’ and ‘Emerging approaches’ sections. Both authors wrote the ‘Conclusions and outlook’ section. Both authors reviewed and edited the manuscript before and after submission.

Corresponding authors

Correspondence to Nikolas Kaltsoyannis or Andrew Kerridge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Congqing Zhu, Korey Carter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ab Initio ligand field theory

A theoretical approach for describing the detailed effects of the chemical environment on the electronic structure of the central ion of a coordination complex, taking into account both zero field and crystal field splitting, as well as spin–orbit coupling.

Bond critical point

In the context of the QTAIM (see below), a point in which the gradient of the electronic density vanishes, and two of the eigenvalues of the Hessian are negative and the other positive. Also known as a (3,−1) critical point. It is used to assess the degree of electronic charge accumulation in the internuclear region between two atoms, and it is thus a measure of covalency.

Delocalization index

In the context of the QTAIM, a measure of the number of electrons shared between two atoms in a molecule, derived from the second-order reduced density matrix. Formally, the covariance of the electron populations of the two atoms. It is used as a measure of covalency and bond order.

High energy resolution fluorescence detected–X-ray absorption spectroscopy

(HERFD-XAS). A technique for the extraction of X-ray absorption spectroscopy data from resonant inelastic X-ray scattering maps that takes advantage of the longer core–hole lifetime of an intermediate state to improve resolution.

Hyperfine sublevel correlation

A two-dimensional electron paramagnetic resonance correlation technique used to resolve overlapping signals from different ions in a molecule.

Interacting quantum atoms

An extension of QTAIM that partitions the total energy of molecular systems into intra-atomic and inter-atomic terms to provide information on binding and stability, amongst many other chemical properties.

Mayer bond order

An analysis technique that can be considered an extension of the Wiberg bond index (see below), incorporating non-orthogonality in the atomic basis.

Natural bond orbitals

Orbitals obtained from a decomposition of the density matrix focusing on the maximization of localized one-centre and two-centre regions in order to recover the closest approximation of a Lewis-type description of electronic structure as possible.

Natural localized molecular orbitals

(NLMOs). Orbitals encompassing the characteristics of natural bond orbitals extended to incorporate acceptor–donor delocalization. NLMOs can be considered 'semi-localized', lying between natural bond orbitals and molecular orbitals in terms of localization.

Natural transition orbitals

Orbitals obtained from the diagonalization of the transition density matrix. They are used to express the electronic excitation in terms of a minimal number of orbital transitions.

Quantum theory of atoms in molecules

(QTAIM). An analysis method based on the electron density as a fundamental quantity. It characterizes a molecule in terms of a set of critical points (satisfying the Poincaré–Hopf relationship) and contiguous, space-filling atomic basins, from which chemical properties can be unambiguously derived.

Wiberg bond index

(WBI). An analysis technique for obtaining an approximation of the formal bond order between bound atoms based on summation of the square of off-diagonal elements of the density matrix expressed over an orthogonal atomic basis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaltsoyannis, N., Kerridge, A. Understanding covalency in molecular f-block compounds from the synergy of spectroscopy and quantum chemistry. Nat Rev Chem 8, 701–712 (2024). https://doi.org/10.1038/s41570-024-00641-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00641-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing