Abstract
The chemistry of actinides has flourished since the late 2010s with the synthesis of new actinide complexes and clusters. On the theoretical side, a range of tools is available for the characterization of these heavy element-containing compounds, but discrepancies in the assessment of aromaticity using different tools have led to controversies. In this Perspective, we examine the origin of controversies relating to the aromaticity of metallic compounds, with a focus on actinides. The aromaticity of actinides is important, not because these molecules are numerous or have a special role in catalysis or reactivity, but because this topic pushes theories of aromaticity to their limits. Owing to its reference independence, the magnetic criterion of aromaticity has been the most popular choice for the characterization of the aromaticity of metallic compounds, including actinide compounds. Through examination of several case studies, we show why this criterion might be misleading for metallic species and explain how findings relating to actinide compounds could reshape theories of aromaticity, not just for actinides but perhaps also for well-known hydrocarbons.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Merino, G. et al. Aromaticity: quo vadis. Chem. Sci. 14, 5569–5576 (2023).
Ottosson, H. A focus on aromaticity: fuzzier than ever before? Chem. Sci. 14, 5542–5544 (2023).
Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & von Rague Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).
Cyrański, M. K. Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 105, 3773–3811 (2005).
Merino, G., Vela, A. & Heine, T. Description of electron delocalization via the analysis of molecular fields. Chem. Rev. 105, 3812–3841 (2005).
Gershoni-Poranne, R. & Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 44, 6597–6615 (2015).
Lazzeretti, P. Ring currents. Prog. Nucl. Magn. Reson. Spectrosc. 36, 1–88 (2000).
Sundholm, D., Fliegl, H. & Berger, R. J. F. Calculations of magnetically induced current densities: theory and applications. WIREs Comput. Mol. Sci. 6, 639–678 (2016).
Gomes, J. A. N. F. & Mallion, R. B. Aromaticity and ring currents. Chem. Rev. 101, 1349–1384 (2001).
Fernández, I. Aromaticity Modern Computational Methods and Applications (Elsevier, 2021).
Boronski, J. T. et al. A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding. Nature 598, 72–75 (2021).
Cuyacot, B. J. R. & Foroutan-Nejad, C. [{Th(C8H8)Cl2}3]2− is stable but not aromatic. Nature 603, E18–E20 (2022).
Boronski, J. T. et al. Reply to: [{Th(C8H8)Cl2}3]2− is stable but not aromatic. Nature 603, E21–E22 (2022).
Szczepanik, D. W. Bonding in a crystalline tri-thorium cluster: not σ-aromatic but still unique. Angew. Chem. Int. Ed. Engl. 61, e202204337 (2022).
Lin, X. & Mo, Y. On the bonding nature in the crystalline tri-thorium cluster: core-shell syngenetic σ-aromaticity. Angew. Chem. 134, e202209658 (2022).
Tomeček, J., Liddle, S. T. & Kaltsoyannis, N. Actinide-actinide bonding: electron delocalisation and σ-aromaticity in the tri-thorium cluster [{Th(η8-C8H8)(μ-Cl)2}3K2]. ChemPhysChem 24, e202300366 (2023).
Szczepanik, D. W. The curious case of the crystalline tri-thorium cluster: cyclic delocalization without aromatic stabilization? RSC Adv. 13, 34224–34229 (2023).
Thorn, D. L. & Hoffmann, R. Delocalization in metallocycles. Nouv. J. Chim. 3, 39–45 (1979).
Li, X., Kuznetsov, A. E., Zhang, H.-F., Boldyrev, A. I. & Wang, L.-S. Observation of all-metal aromatic molecules. Science 291, 859–861 (2001).
Chen, D., Hua, Y. & Xia, H. Metallaaromatic chemistry: history and development. Chem. Rev. 120, 12994–13086 (2020).
Tkachenko, N. V. et al. Bridging aromatic/antiaromatic units: recent advances in aromaticity and antiaromaticity in main-group and transition-metal clusters from bonding and magnetic analyses. Eur. J. Inorg. Chem. 2021, 4239–4250 (2021).
Boldyrev, A. I. & Wang, L.-S. All-metal aromaticity and antiaromaticity. Chem. Rev. 105, 3716–3757 (2005).
Mercero, J. M., Boldyrev, A. I., Merino, G. & Ugalde, J. M. Recent developments and future prospects of all-metal aromatic compounds. Chem. Soc. Rev. 44, 6519–6534 (2015).
Zubarev, D. Y., Averkiev, B. B., Zhai, H.-J., Wang, L.-S. & Boldyrev, A. I. Aromaticity and antiaromaticity in transition-metal systems. Phys. Chem. Chem. Phys. 10, 257–267 (2008).
Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).
Badri, Z. & Foroutan-Nejad, C. Unification of ground-state aromaticity criteria — structure, electron delocalization, and energy — in light of the quantum chemical topology. Phys. Chem. Chem. Phys. 18, 11693–11699 (2016).
Foroutan-Nejad, C. Interatomic magnetizability: a QTAIM-based approach toward deciphering magnetic aromaticity. J. Phys. Chem. A 115, 12555–12560 (2011).
Janda, T. & Foroutan‐Nejad, C. Why is benzene unique? Screening magnetic properties of C6H6 isomers. ChemPhysChem 19, 2357–2363 (2018).
Zhao, L., Grande-Aztatzi, R., Foroutan-Nejad, C., Ugalde, J. M. & Frenking, G. Aromaticity, the Hückel 4 n+2 rule and magnetic current. ChemistrySelect 2, 863–870 (2017).
Foroutan-Nejad, C. Magnetic antiaromaticity — paratropicity — does not necessarily imply instability. J. Org. Chem. 88, 14831–14835 (2023).
Stanger, A. NICS — past and present. Eur. J. Org. Chem. 2020, 3120–3127 (2020).
Gershoni-Poranne, R. & Stanger, A. in Aromaticity (ed. Fernandez, I.) 99–154 (Elsevier, 2021).
Cernusak, I., Fowler, P. W. & Steiner, E. Ring currents in six-membered heterocycles: the diazaborinines (CH)2B2N2. Mol. Phys. 98, 945–953 (2000).
Stanger, A. Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J. Org. Chem. 71, 883–893 (2006).
Jiménez-Halla, J. O. C., Matito, E., Robles, J. & Solà, M. Nucleus-independent chemical shift (NICS) profiles in a series of monocyclic planar inorganic compounds. J. Organomet. Chem. 691, 4359–4366 (2006).
Xu, Q., Jiang, L. & Tsumori, N. cyclo-Ti3[η2(μ2-C,O)]3: a side-on-bonded polycarbonyl titanium cluster with potentially antiaromatic character. Angew. Chem. Int. Ed. Engl. 44, 4338–4342 (2005).
Foroutan-Nejad, C., Shahbazian, S. & Rashidi-Ranjbar, P. The critical re-evaluation of the aromatic/antiaromatic nature of Ti3(CO)3: a missed opportunity? Phys. Chem. Chem. Phys. 13, 4576–4582 (2011).
Tsipis, A. C., Depastas, I. G., Karagiannis, E. E. & Tsipis, C. A. Diagnosis of magnetoresponsive aromatic and antiaromatic zones in three-membered rings of d- and f-block elements. J. Comput. Chem. 31, 431–446 (2010).
Ramírez-Tagle, R., Alvarado-Soto, L., Arratia-Perez, R., Bast, R. & Alvarez-Thon, L. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters. J. Chem. Phys. 135, 104506 (2011).
Tsipis, A. C., Kefalidis, C. E. & Tsipis, C. A. The role of the 5f orbitals in bonding, aromaticity, and reactivity of planar isocyclic and heterocyclic uranium clusters. J. Am. Chem. Soc. 130, 9144–9155 (2008).
Steiner, E. & Fowler, P. W. Four- and two-electron rules for diatropic and paratropic ring currents in monocyclic π systems. Chem. Commun. 21, 2220–2221 (2001).
Steiner, E. & Fowler, P. W. Patterns of ring currents in conjugated molecules: a few-electron model based on orbital contributions. J. Phys. Chem. A 105, 9553–9562 (2001).
Feixas, F., Matito, E., Duran, M., Poater, J. & Solà, M. Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theor. Chem. Acc. 128, 419–431 (2011).
Yong, L., Wu, S. D. & Chi, X. X. Theoretical study of aromaticity in small hydrogen and metal cation clusters X (X=H, Li, Na, K, and Cu). Int. J. Quantum Chem. 107, 722–728 (2007).
Lin, Y.-C. et al. Experimental and computational studies of alkali-metal coinage-metal clusters. J. Phys. Chem. A 110, 4244–4250 (2006).
Badri, Z., Foroutan-Nejad, C. & Rashidi-Ranjbar, P. Method/basis set dependence of NICS values among metallic nano-clusters and hydrocarbons. Phys. Chem. Chem. Phys. 14, 3471–3481 (2012).
Bast, R., Jusélius, J. & Saue, T. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds. Chem. Phys. 356, 187–194 (2009).
Badri, Z. et al. All-metal aromaticity: revisiting the ring current model among transition metal clusters. J. Chem. Theory Comput. 9, 4789–4796 (2013).
Cuyacot, B. J. R., Badri, Z., Ghosh, A. & Foroutan-Nejad, C. Metallaaromaticity — a protean world. Phys. Chem. Chem. Phys. 24, 27957–27963 (2022).
Chi, X. X. & Liu, Y. Theoretical evidence of d-orbital aromaticity in anionic metal X3 (X = Sc, Y, La) clusters. Int. J. Quantum Chem. 107, 1886–1896 (2007).
Dinadayalane, T. C., Priyakumar, U. D. & Sastry, G. N. Exploration of C6H6 potential energy surface: a computational effort to unravel the relative stabilities and synthetic feasibility of new benzene isomers. J. Phys. Chem. A 108, 11433–11448 (2004).
Vícha, J., Komorovsky, S., Repisky, M., Marek, R. & Straka, M. Relativistic spin–orbit heavy atom on the light atom NMR chemical shifts: general trends across the periodic table explained. J. Chem. Theory Comput. 14, 3025–3039 (2018).
Faglioni, F. et al. Why downfield proton chemical shifts are not reliable aromaticity indicators. Org. Lett. 7, 3457–3460 (2005).
Steiner, E., Fowler, P. W., Soncini, A. & Jenneskens, L. W. Current-density maps as probes of aromaticity: global and Clar π ring currents in totally resonant polycyclic aromatic hydrocarbons. Faraday Discuss. 135, 309–323 (2006).
Bultinck, P. Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. Faraday Discuss. 135, 347–365 (2007).
Damme, S. V., Acke, G., Havenith, R. W. A. & Bultinck, P. Can the current density map topology be extracted from the nucleus independent chemical shifts? Phys. Chem. Chem. Phys. 18, 11746–11755 (2016).
Pagano, J. K. et al. Actinide 2-metallabiphenylenes that satisfy Hückel’s rule. Nature 578, 563–567 (2020).
Eulenstein, A. R. et al. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4−. Nat. Chem. 13, 149–155 (2021).
Pathak, S., Bast, R. & Ruud, K. Multiconfigurational self-consistent field calculations of the magnetically induced current density using gauge-including atomic orbitals. J. Chem. Theory Comput. 9, 2189–2198 (2013).
Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Clarendon Press, 1990).
Poater, J., Solà, M. & Bickelhaupt, F. M. Hydrogen–hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. Chem. Eur. J. 12, 2889–2895 (2006).
Foroutan-Nejad, C., Shahbazian, S. & Marek, R. Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. Chem. Eur. J. 20, 10140–10152 (2014).
Keyvani, Z. A., Shahbazian, S. & Zahedi, M. Tracing the fingerprint of chemical bonds within the electron densities of hydrocarbons: a comparative analysis of the optimized and the promolecule densities. ChemPhysChem 17, 3260–3268 (2016).
Bader, R. F. W. & Stephens, M. E. Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 97, 7391–7399 (1975).
Evarestov, R. A. & Veryazov, V. A. Quantum-chemical definition of the atomic valence in molecules and crystals. Theor. Chim. Acta 81, 95–103 (1991).
Poater, J., Solà, M. & Bickelhaupt, F. M. A model of the chemical bond must be rooted in quantum mechanics, provide insight, and possess predictive power. Chem. Eur. J. 12, 2902–2905 (2006).
Foroutan‐Nejad, C. The Na⋅⋅⋅B bond in NaBH3−: a different type of bond. Angew. Chem. Int. Ed. Engl. 59, 20900–20903 (2020).
Sowlati-Hashjin, S. et al. Collective interactions among organometallics are exotic bonds hidden on lab shelves. Nat. Commun. 13, 2069 (2022).
Shaik, S., Danovich, D., Wu, W. & Hiberty, P. C. Charge-shift bonding and its manifestations in chemistry. Nat. Chem. 1, 443–449 (2009).
Szczepanik, D. W. et al. A uniform approach to the description of multicenter bonding. Phys. Chem. Chem. Phys. 16, 20514–20523 (2014).
Mo, Y., Song, L. & Lin, Y. Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. J. Phys. Chem. A 111, 8291–8301 (2007).
Wu, W., Su, P., Shaik, S. & Hiberty, P. C. Classical valence bond approach by modern methods. Chem. Rev. 111, 7557–7593 (2011).
Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).
Fliegl, H., Jusélius, J. & Sundholm, D. Gauge-origin independent calculations of the anisotropy of the magnetically induced current densities. J. Phys. Chem. A 120, 5658–5664 (2016).
Lazzeretti, P. Current density tensors. J. Chem. Phys. 148, 134109 (2018).
Havenith, R. W. A., De Proft, F., Fowler, P. W. & Geerlings, P. σ-Aromaticity in H3+ and Li3+: insights from ring-current maps. Chem. Phys. Lett. 407, 391–396 (2005).
Foroutan-Nejad, C. & Rashidi-Ranjbar, P. Chemical bonding in the lightest tri-atomic clusters; H3+, Li3+ and B3−. J. Mol. Struct. Theochem 901, 243–248 (2009).
Jaroš, A. & Straka, M. Unraveling actinide–actinide bonding in fullerene cages: a DFT versus ab initio methodological study. Phys. Chem. Chem. Phys. 25, 31500–31513 (2023).
Zhou, Z., Parr, R. G. & F. Garst, J. Absolute hardness as a measure of aromaticity. Tetrahedron Lett. 29, 4843–4846 (1988).
Zhou, Z. & Parr, R. G. New measures of aromaticity: absolute hardness and relative hardness. J. Am. Chem. Soc. 111, 7371–7379 (1989).
Steiner, E., Soncini, A. & Fowler, P. W. Full spectral decomposition of ring currents. J. Phys. Chem. A 110, 12882–12886 (2006).
Gao, Y. et al. On-surface synthesis of a doubly anti-aromatic carbon allotrope. Nature 623, 977–981 (2023).
Rončević, I. et al. Aromaticity reversal induced by vibrations in cyclo[16]carbon. J. Am. Chem. Soc. 145, 26962–26972 (2023).
Gaweł, P. & Foroutan-Nejad, C. Carbon rings push limits of chemical theories. Nature 623, 922–924 (2023).
Poater, J. et al. Single — not double — 3D-aromaticity in an oxidized closo icosahedral dodecaiodo-dodecaborate cluster. J. Am. Chem. Soc. 145, 22527–22538 (2023).
Foroutan-Nejad, C., Shahbazian, S., Feixas, F., Rashidi-Ranjbar, P. & Solà, M. A dissected ring current model for assessing magnetic aromaticity: a general approach for both organic and inorganic rings. J. Comput. Chem. 32, 2422–2431 (2011).
Acknowledgements
C.F.N. thanks the National Science Centre, Poland (grant no. 2020/39/B/ST4/02022) for funding.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Renana Gershoni-Poranne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Badri, Z., Foroutan-Nejad, C. On the aromaticity of actinide compounds. Nat Rev Chem 8, 551–560 (2024). https://doi.org/10.1038/s41570-024-00617-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-024-00617-y