Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

On the aromaticity of actinide compounds

Abstract

The chemistry of actinides has flourished since the late 2010s with the synthesis of new actinide complexes and clusters. On the theoretical side, a range of tools is available for the characterization of these heavy element-containing compounds, but discrepancies in the assessment of aromaticity using different tools have led to controversies. In this Perspective, we examine the origin of controversies relating to the aromaticity of metallic compounds, with a focus on actinides. The aromaticity of actinides is important, not because these molecules are numerous or have a special role in catalysis or reactivity, but because this topic pushes theories of aromaticity to their limits. Owing to its reference independence, the magnetic criterion of aromaticity has been the most popular choice for the characterization of the aromaticity of metallic compounds, including actinide compounds. Through examination of several case studies, we show why this criterion might be misleading for metallic species and explain how findings relating to actinide compounds could reshape theories of aromaticity, not just for actinides but perhaps also for well-known hydrocarbons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of strong local currents on shielding zones.
Fig. 2: Experimentally characterized aromatic actinides.
Fig. 3: Current density pattern of the [{Th(C8H8)Cl2}3K2] model system.
Fig. 4: Analysis of the aromaticity the [{Th(C8H8)Cl2}3K2] model system using electronic and energetic criteria.

Similar content being viewed by others

References

  1. Merino, G. et al. Aromaticity: quo vadis. Chem. Sci. 14, 5569–5576 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ottosson, H. A focus on aromaticity: fuzzier than ever before? Chem. Sci. 14, 5542–5544 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & von Rague Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    CAS  PubMed  Google Scholar 

  4. Cyrański, M. K. Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 105, 3773–3811 (2005).

    PubMed  Google Scholar 

  5. Merino, G., Vela, A. & Heine, T. Description of electron delocalization via the analysis of molecular fields. Chem. Rev. 105, 3812–3841 (2005).

    CAS  PubMed  Google Scholar 

  6. Gershoni-Poranne, R. & Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 44, 6597–6615 (2015).

    CAS  PubMed  Google Scholar 

  7. Lazzeretti, P. Ring currents. Prog. Nucl. Magn. Reson. Spectrosc. 36, 1–88 (2000).

    CAS  Google Scholar 

  8. Sundholm, D., Fliegl, H. & Berger, R. J. F. Calculations of magnetically induced current densities: theory and applications. WIREs Comput. Mol. Sci. 6, 639–678 (2016).

    CAS  Google Scholar 

  9. Gomes, J. A. N. F. & Mallion, R. B. Aromaticity and ring currents. Chem. Rev. 101, 1349–1384 (2001).

    CAS  PubMed  Google Scholar 

  10. Fernández, I. Aromaticity Modern Computational Methods and Applications (Elsevier, 2021).

  11. Boronski, J. T. et al. A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding. Nature 598, 72–75 (2021).

    CAS  PubMed  Google Scholar 

  12. Cuyacot, B. J. R. & Foroutan-Nejad, C. [{Th(C8H8)Cl2}3]2− is stable but not aromatic. Nature 603, E18–E20 (2022).

    CAS  PubMed  Google Scholar 

  13. Boronski, J. T. et al. Reply to: [{Th(C8H8)Cl2}3]2− is stable but not aromatic. Nature 603, E21–E22 (2022).

    CAS  PubMed  Google Scholar 

  14. Szczepanik, D. W. Bonding in a crystalline tri-thorium cluster: not σ-aromatic but still unique. Angew. Chem. Int. Ed. Engl. 61, e202204337 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, X. & Mo, Y. On the bonding nature in the crystalline tri-thorium cluster: core-shell syngenetic σ-aromaticity. Angew. Chem. 134, e202209658 (2022).

    Google Scholar 

  16. Tomeček, J., Liddle, S. T. & Kaltsoyannis, N. Actinide-actinide bonding: electron delocalisation and σ-aromaticity in the tri-thorium cluster [{Th(η8-C8H8)(μ-Cl)2}3K2]. ChemPhysChem 24, e202300366 (2023).

    PubMed  Google Scholar 

  17. Szczepanik, D. W. The curious case of the crystalline tri-thorium cluster: cyclic delocalization without aromatic stabilization? RSC Adv. 13, 34224–34229 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Thorn, D. L. & Hoffmann, R. Delocalization in metallocycles. Nouv. J. Chim. 3, 39–45 (1979).

    CAS  Google Scholar 

  19. Li, X., Kuznetsov, A. E., Zhang, H.-F., Boldyrev, A. I. & Wang, L.-S. Observation of all-metal aromatic molecules. Science 291, 859–861 (2001).

    CAS  PubMed  Google Scholar 

  20. Chen, D., Hua, Y. & Xia, H. Metallaaromatic chemistry: history and development. Chem. Rev. 120, 12994–13086 (2020).

    CAS  PubMed  Google Scholar 

  21. Tkachenko, N. V. et al. Bridging aromatic/antiaromatic units: recent advances in aromaticity and antiaromaticity in main-group and transition-metal clusters from bonding and magnetic analyses. Eur. J. Inorg. Chem. 2021, 4239–4250 (2021).

    CAS  Google Scholar 

  22. Boldyrev, A. I. & Wang, L.-S. All-metal aromaticity and antiaromaticity. Chem. Rev. 105, 3716–3757 (2005).

    CAS  PubMed  Google Scholar 

  23. Mercero, J. M., Boldyrev, A. I., Merino, G. & Ugalde, J. M. Recent developments and future prospects of all-metal aromatic compounds. Chem. Soc. Rev. 44, 6519–6534 (2015).

    CAS  PubMed  Google Scholar 

  24. Zubarev, D. Y., Averkiev, B. B., Zhai, H.-J., Wang, L.-S. & Boldyrev, A. I. Aromaticity and antiaromaticity in transition-metal systems. Phys. Chem. Chem. Phys. 10, 257–267 (2008).

    CAS  PubMed  Google Scholar 

  25. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    CAS  PubMed  Google Scholar 

  26. Badri, Z. & Foroutan-Nejad, C. Unification of ground-state aromaticity criteria — structure, electron delocalization, and energy — in light of the quantum chemical topology. Phys. Chem. Chem. Phys. 18, 11693–11699 (2016).

    CAS  PubMed  Google Scholar 

  27. Foroutan-Nejad, C. Interatomic magnetizability: a QTAIM-based approach toward deciphering magnetic aromaticity. J. Phys. Chem. A 115, 12555–12560 (2011).

    CAS  PubMed  Google Scholar 

  28. Janda, T. & Foroutan‐Nejad, C. Why is benzene unique? Screening magnetic properties of C6H6 isomers. ChemPhysChem 19, 2357–2363 (2018).

    CAS  PubMed  Google Scholar 

  29. Zhao, L., Grande-Aztatzi, R., Foroutan-Nejad, C., Ugalde, J. M. & Frenking, G. Aromaticity, the Hückel 4 n+2 rule and magnetic current. ChemistrySelect 2, 863–870 (2017).

    CAS  Google Scholar 

  30. Foroutan-Nejad, C. Magnetic antiaromaticity — paratropicity — does not necessarily imply instability. J. Org. Chem. 88, 14831–14835 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stanger, A. NICS — past and present. Eur. J. Org. Chem. 2020, 3120–3127 (2020).

    CAS  Google Scholar 

  32. Gershoni-Poranne, R. & Stanger, A. in Aromaticity (ed. Fernandez, I.) 99–154 (Elsevier, 2021).

  33. Cernusak, I., Fowler, P. W. & Steiner, E. Ring currents in six-membered heterocycles: the diazaborinines (CH)2B2N2. Mol. Phys. 98, 945–953 (2000).

    CAS  Google Scholar 

  34. Stanger, A. Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J. Org. Chem. 71, 883–893 (2006).

    CAS  PubMed  Google Scholar 

  35. Jiménez-Halla, J. O. C., Matito, E., Robles, J. & Solà, M. Nucleus-independent chemical shift (NICS) profiles in a series of monocyclic planar inorganic compounds. J. Organomet. Chem. 691, 4359–4366 (2006).

    Google Scholar 

  36. Xu, Q., Jiang, L. & Tsumori, N. cyclo-Ti322-C,O)]3: a side-on-bonded polycarbonyl titanium cluster with potentially antiaromatic character. Angew. Chem. Int. Ed. Engl. 44, 4338–4342 (2005).

    CAS  PubMed  Google Scholar 

  37. Foroutan-Nejad, C., Shahbazian, S. & Rashidi-Ranjbar, P. The critical re-evaluation of the aromatic/antiaromatic nature of Ti3(CO)3: a missed opportunity? Phys. Chem. Chem. Phys. 13, 4576–4582 (2011).

    CAS  PubMed  Google Scholar 

  38. Tsipis, A. C., Depastas, I. G., Karagiannis, E. E. & Tsipis, C. A. Diagnosis of magnetoresponsive aromatic and antiaromatic zones in three-membered rings of d- and f-block elements. J. Comput. Chem. 31, 431–446 (2010).

    CAS  PubMed  Google Scholar 

  39. Ramírez-Tagle, R., Alvarado-Soto, L., Arratia-Perez, R., Bast, R. & Alvarez-Thon, L. Probing the aromaticity of the [(HtAc)32-H)6], [(HtTh)32-H)6],+, and [(HtPa)32-H)6] clusters. J. Chem. Phys. 135, 104506 (2011).

    PubMed  Google Scholar 

  40. Tsipis, A. C., Kefalidis, C. E. & Tsipis, C. A. The role of the 5f orbitals in bonding, aromaticity, and reactivity of planar isocyclic and heterocyclic uranium clusters. J. Am. Chem. Soc. 130, 9144–9155 (2008).

    CAS  PubMed  Google Scholar 

  41. Steiner, E. & Fowler, P. W. Four- and two-electron rules for diatropic and paratropic ring currents in monocyclic π systems. Chem. Commun. 21, 2220–2221 (2001).

    Google Scholar 

  42. Steiner, E. & Fowler, P. W. Patterns of ring currents in conjugated molecules: a few-electron model based on orbital contributions. J. Phys. Chem. A 105, 9553–9562 (2001).

    CAS  Google Scholar 

  43. Feixas, F., Matito, E., Duran, M., Poater, J. & Solà, M. Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theor. Chem. Acc. 128, 419–431 (2011).

    CAS  Google Scholar 

  44. Yong, L., Wu, S. D. & Chi, X. X. Theoretical study of aromaticity in small hydrogen and metal cation clusters X (X=H, Li, Na, K, and Cu). Int. J. Quantum Chem. 107, 722–728 (2007).

    Google Scholar 

  45. Lin, Y.-C. et al. Experimental and computational studies of alkali-metal coinage-metal clusters. J. Phys. Chem. A 110, 4244–4250 (2006).

    CAS  PubMed  Google Scholar 

  46. Badri, Z., Foroutan-Nejad, C. & Rashidi-Ranjbar, P. Method/basis set dependence of NICS values among metallic nano-clusters and hydrocarbons. Phys. Chem. Chem. Phys. 14, 3471–3481 (2012).

    CAS  PubMed  Google Scholar 

  47. Bast, R., Jusélius, J. & Saue, T. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds. Chem. Phys. 356, 187–194 (2009).

    CAS  Google Scholar 

  48. Badri, Z. et al. All-metal aromaticity: revisiting the ring current model among transition metal clusters. J. Chem. Theory Comput. 9, 4789–4796 (2013).

    CAS  PubMed  Google Scholar 

  49. Cuyacot, B. J. R., Badri, Z., Ghosh, A. & Foroutan-Nejad, C. Metallaaromaticity — a protean world. Phys. Chem. Chem. Phys. 24, 27957–27963 (2022).

    CAS  PubMed  Google Scholar 

  50. Chi, X. X. & Liu, Y. Theoretical evidence of d-orbital aromaticity in anionic metal X3 (X = Sc, Y, La) clusters. Int. J. Quantum Chem. 107, 1886–1896 (2007).

    CAS  Google Scholar 

  51. Dinadayalane, T. C., Priyakumar, U. D. & Sastry, G. N. Exploration of C6H6 potential energy surface: a computational effort to unravel the relative stabilities and synthetic feasibility of new benzene isomers. J. Phys. Chem. A 108, 11433–11448 (2004).

    CAS  Google Scholar 

  52. Vícha, J., Komorovsky, S., Repisky, M., Marek, R. & Straka, M. Relativistic spin–orbit heavy atom on the light atom NMR chemical shifts: general trends across the periodic table explained. J. Chem. Theory Comput. 14, 3025–3039 (2018).

    PubMed  Google Scholar 

  53. Faglioni, F. et al. Why downfield proton chemical shifts are not reliable aromaticity indicators. Org. Lett. 7, 3457–3460 (2005).

    CAS  PubMed  Google Scholar 

  54. Steiner, E., Fowler, P. W., Soncini, A. & Jenneskens, L. W. Current-density maps as probes of aromaticity: global and Clar π ring currents in totally resonant polycyclic aromatic hydrocarbons. Faraday Discuss. 135, 309–323 (2006).

    Google Scholar 

  55. Bultinck, P. Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. Faraday Discuss. 135, 347–365 (2007).

    CAS  PubMed  Google Scholar 

  56. Damme, S. V., Acke, G., Havenith, R. W. A. & Bultinck, P. Can the current density map topology be extracted from the nucleus independent chemical shifts? Phys. Chem. Chem. Phys. 18, 11746–11755 (2016).

    PubMed  Google Scholar 

  57. Pagano, J. K. et al. Actinide 2-metallabiphenylenes that satisfy Hückel’s rule. Nature 578, 563–567 (2020).

    CAS  PubMed  Google Scholar 

  58. Eulenstein, A. R. et al. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4−. Nat. Chem. 13, 149–155 (2021).

    CAS  PubMed  Google Scholar 

  59. Pathak, S., Bast, R. & Ruud, K. Multiconfigurational self-consistent field calculations of the magnetically induced current density using gauge-including atomic orbitals. J. Chem. Theory Comput. 9, 2189–2198 (2013).

    CAS  PubMed  Google Scholar 

  60. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Clarendon Press, 1990).

  61. Poater, J., Solà, M. & Bickelhaupt, F. M. Hydrogen–hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. Chem. Eur. J. 12, 2889–2895 (2006).

    CAS  PubMed  Google Scholar 

  62. Foroutan-Nejad, C., Shahbazian, S. & Marek, R. Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. Chem. Eur. J. 20, 10140–10152 (2014).

    CAS  PubMed  Google Scholar 

  63. Keyvani, Z. A., Shahbazian, S. & Zahedi, M. Tracing the fingerprint of chemical bonds within the electron densities of hydrocarbons: a comparative analysis of the optimized and the promolecule densities. ChemPhysChem 17, 3260–3268 (2016).

    CAS  PubMed  Google Scholar 

  64. Bader, R. F. W. & Stephens, M. E. Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 97, 7391–7399 (1975).

    CAS  Google Scholar 

  65. Evarestov, R. A. & Veryazov, V. A. Quantum-chemical definition of the atomic valence in molecules and crystals. Theor. Chim. Acta 81, 95–103 (1991).

    CAS  Google Scholar 

  66. Poater, J., Solà, M. & Bickelhaupt, F. M. A model of the chemical bond must be rooted in quantum mechanics, provide insight, and possess predictive power. Chem. Eur. J. 12, 2902–2905 (2006).

    CAS  PubMed  Google Scholar 

  67. Foroutan‐Nejad, C. The NaB bond in NaBH3: a different type of bond. Angew. Chem. Int. Ed. Engl. 59, 20900–20903 (2020).

    PubMed  Google Scholar 

  68. Sowlati-Hashjin, S. et al. Collective interactions among organometallics are exotic bonds hidden on lab shelves. Nat. Commun. 13, 2069 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shaik, S., Danovich, D., Wu, W. & Hiberty, P. C. Charge-shift bonding and its manifestations in chemistry. Nat. Chem. 1, 443–449 (2009).

    CAS  PubMed  Google Scholar 

  70. Szczepanik, D. W. et al. A uniform approach to the description of multicenter bonding. Phys. Chem. Chem. Phys. 16, 20514–20523 (2014).

    CAS  PubMed  Google Scholar 

  71. Mo, Y., Song, L. & Lin, Y. Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. J. Phys. Chem. A 111, 8291–8301 (2007).

    CAS  PubMed  Google Scholar 

  72. Wu, W., Su, P., Shaik, S. & Hiberty, P. C. Classical valence bond approach by modern methods. Chem. Rev. 111, 7557–7593 (2011).

    CAS  PubMed  Google Scholar 

  73. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    CAS  PubMed  Google Scholar 

  74. Fliegl, H., Jusélius, J. & Sundholm, D. Gauge-origin independent calculations of the anisotropy of the magnetically induced current densities. J. Phys. Chem. A 120, 5658–5664 (2016).

    CAS  PubMed  Google Scholar 

  75. Lazzeretti, P. Current density tensors. J. Chem. Phys. 148, 134109 (2018).

    PubMed  Google Scholar 

  76. Havenith, R. W. A., De Proft, F., Fowler, P. W. & Geerlings, P. σ-Aromaticity in H3+ and Li3+: insights from ring-current maps. Chem. Phys. Lett. 407, 391–396 (2005).

    CAS  Google Scholar 

  77. Foroutan-Nejad, C. & Rashidi-Ranjbar, P. Chemical bonding in the lightest tri-atomic clusters; H3+, Li3+ and B3. J. Mol. Struct. Theochem 901, 243–248 (2009).

    CAS  Google Scholar 

  78. Jaroš, A. & Straka, M. Unraveling actinide–actinide bonding in fullerene cages: a DFT versus ab initio methodological study. Phys. Chem. Chem. Phys. 25, 31500–31513 (2023).

    PubMed  Google Scholar 

  79. Zhou, Z., Parr, R. G. & F. Garst, J. Absolute hardness as a measure of aromaticity. Tetrahedron Lett. 29, 4843–4846 (1988).

    CAS  Google Scholar 

  80. Zhou, Z. & Parr, R. G. New measures of aromaticity: absolute hardness and relative hardness. J. Am. Chem. Soc. 111, 7371–7379 (1989).

    CAS  Google Scholar 

  81. Steiner, E., Soncini, A. & Fowler, P. W. Full spectral decomposition of ring currents. J. Phys. Chem. A 110, 12882–12886 (2006).

    CAS  PubMed  Google Scholar 

  82. Gao, Y. et al. On-surface synthesis of a doubly anti-aromatic carbon allotrope. Nature 623, 977–981 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rončević, I. et al. Aromaticity reversal induced by vibrations in cyclo[16]carbon. J. Am. Chem. Soc. 145, 26962–26972 (2023).

    PubMed  PubMed Central  Google Scholar 

  84. Gaweł, P. & Foroutan-Nejad, C. Carbon rings push limits of chemical theories. Nature 623, 922–924 (2023).

    PubMed  Google Scholar 

  85. Poater, J. et al. Single — not double — 3D-aromaticity in an oxidized closo icosahedral dodecaiodo-dodecaborate cluster. J. Am. Chem. Soc. 145, 22527–22538 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Foroutan-Nejad, C., Shahbazian, S., Feixas, F., Rashidi-Ranjbar, P. & Solà, M. A dissected ring current model for assessing magnetic aromaticity: a general approach for both organic and inorganic rings. J. Comput. Chem. 32, 2422–2431 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.F.N. thanks the National Science Centre, Poland (grant no. 2020/39/B/ST4/02022) for funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Cina Foroutan-Nejad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Renana Gershoni-Poranne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badri, Z., Foroutan-Nejad, C. On the aromaticity of actinide compounds. Nat Rev Chem 8, 551–560 (2024). https://doi.org/10.1038/s41570-024-00617-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00617-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing