Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Clarifying the four core effects of high-entropy materials

Abstract

High-entropy materials emerged as a field of research in 2004, when the first research on high-entropy alloys was published. The scope was soon expanded from high-entropy alloys to medium-entropy alloys, as well as to ceramics, polymers and composite materials. A fundamental understanding on high-entropy materials was proposed in 2006 by the ‘four core effects’ — high-entropy, severe-lattice-distortion, sluggish-diffusion and cocktail effects — which are often used to describe and explain the mechanisms of various peculiar phenomena associated with high-entropy materials. Throughout the years, the effects have been examined rigorously, and their validity has been affirmed. This Perspective discusses the fundamental understanding of the four core effects in high-entropy materials and gives further insights to strengthen the understanding for these effects. All these clarifications are believed to be helpful in understanding low-to-high-entropy materials as well as to aid the design of materials when studying new compositions or pursuing their use in applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of high-entropy alloys and the four core effects.
Fig. 2: Phase selection criteria.
Fig. 3: Severe lattice distortion and its effects on various properties.
Fig. 4: Factors causing sluggish diffusion.
Fig. 5: The composite properties of HEAs obtained by the cocktail effect.

Similar content being viewed by others

References

  1. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). The first publication to introduce the concept of multi-principal elements in alloy design.

    Article  CAS  Google Scholar 

  2. Chen, T. K., Shun, T. T., Yeh, J. W. & Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–189, 193–200 (2004).

    Article  Google Scholar 

  3. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004). The article that delivered the famous Cantor alloy and yielded an important conclusion: the total phase numbers in HEAs are much lower than the maximum equilibrium phase numbers allowed by the Gibbs phase rule.

    Article  Google Scholar 

  4. Yeh, J. W. et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533–2536 (2004). One of the earliest papers to investigate the microstructures and crystal structures of solid-solution alloys with multi-principal metallic elements.

    Article  Google Scholar 

  5. Huang, P. K., Yeh, J. W., Shun, T. T. & Chen, S. K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74–78 (2004).

    Article  CAS  Google Scholar 

  6. Hsu, C. Y., Yeh, J. W., Chen, S. K. & Shun, T. T. Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465–1469 (2004).

    Article  Google Scholar 

  7. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Skrabalak, S. E. Mashing up metals with carbothermal shock. Science 359, 1467 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Yao, Y. G. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, F. L. et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy. Science 370, 95–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Pan, Q. S. et al. Gradient cell–structured high-entropy alloy with exceptional strength and ductility. Science 374, 984–989 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Shi, P. J. et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 373, 912–918 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Yeh, J. W. Strength through high slip-plane density. Science 374, 940–941 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Z. M., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Ding, Q. Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Ren, J. et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 608, 62–68 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, B. B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Rao, Z. Y. et al. Machine learning–enabled high-entropy alloy discovery. Science 378, 78–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Han, L. L. et al. A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 608, 310–316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, Y. et al. High-entropy mechanism to boost ionic conductivity. Science 378, 1320–1324 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Yao, Y. G. et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 376, 151 (2022).

    Article  Google Scholar 

  24. Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, Y. et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 595, 245–249 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. He, Q. F. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, R. P. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, X. F. et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Savage, N. Striking a balance with high-entropy alloys. Nature 595, S4–S5 (2021).

    Article  CAS  Google Scholar 

  30. Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Divilov, S. et al. Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery. Nature 625, 66–73 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qian, X. S. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Lei, Z. F. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31, 633–648 (2006). An elucidation of the concept of entropy and high-entropy alloys.

    Article  CAS  Google Scholar 

  36. Zhou, N. et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics. Sci. Bull. 64, 856–864 (2019).

    Article  CAS  Google Scholar 

  37. Yao, K. et al. High-entropy intermetallic compound with ultra-high strength and thermal stability. Scr. Mater. 134, 113674 (2021).

    Article  Google Scholar 

  38. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article  CAS  Google Scholar 

  39. Akrami, S., Edalati, P., Fuji, M. & Edalati, K. High-entropy ceramics: review of principles, production and applications. Mater. Sci. Eng. R Rep. 146, 100644 (2021).

    Article  Google Scholar 

  40. Huang, Y. J., Yeh, J. W. & Yang, A. C. M. ‘High-entropy polymers’: a new mixing route of suppressed phase separation. Materialia https://doi.org/10.2139/ssrn.3708726 (2021).

  41. Gorr, B. et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd. 624, 270–278 (2015).

    Article  CAS  Google Scholar 

  42. Miracle, D. B. et al. Exploration and development of high entropy alloys for structural applications. Entropy 16, 494–525 (2014).

    Article  CAS  Google Scholar 

  43. Praveen, S. & Kim, H. S. High-entropy alloys: potential candidates for high-temperature applications — an overview. Adv. Eng. Mater. 20, 1700645 (2018).

    Article  Google Scholar 

  44. Gao, M. C., Yeh, J. W., Liaw, P. K. & Zhang, Y. (eds) High-Entropy Alloys: Fundamentals and Applications (Springer, 2016).

  45. Yan, X. & Zhang, Y. Functional properties and promising applications of high entropy alloys. Scr. Mater. 187, 188–193 (2020).

    Article  CAS  Google Scholar 

  46. Wang, X., Guo, W. & Fu, Y. High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A 9, 663–701 (2021).

    Article  CAS  Google Scholar 

  47. Nene, S. S. et al. Corrosion-resistant high entropy alloy with high strength and ductility. Scr. Mater. 166, 168–172 (2019).

    Article  CAS  Google Scholar 

  48. Liu, D., Jin, X., Guo, N., Liaw, P. K. & Qiao, J. W. Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination. Mater. Sci. Eng. A 818, 141386 (2021).

    Article  CAS  Google Scholar 

  49. Hsu, W. L., Murakami, H., Yeh, J. W., Yeh, A. C. & Shimoda, K. A heat-resistant NiCo0.6Fe0.2Cr1.5SiAlTi0.2 overlay coating for high-temperature applications. J. Electrochem. Soc. 163, C752–C758 (2016).

    Article  CAS  Google Scholar 

  50. Hsu, W. L., Murakami, H., Yeh, J. W., Yeh, A. C. & Shimoda, K. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surf. Coat. Technol. 316, 71–74 (2017).

    Article  CAS  Google Scholar 

  51. Hsu, W. L., Yang, Y. C., Chen, C. Y. & Yeh, J. W. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics 89, 105–110 (2017).

    Article  CAS  Google Scholar 

  52. Hsu, W. L. et al. A study of NiCo0.6Fe0.2CrxSiAlTiy high-entropy alloys for applications as a high-temperature protective coating and a bond coat in thermal barrier coating systems. J. Electrochem. Soc. 165, C524–C531 (2018).

    Article  CAS  Google Scholar 

  53. Katiyar, N. K., Biswas, K., Yeh, J. W., Sharma, S. & Tiwary, C. S. A perspective on the catalysis using the high entropy alloys. Nano Energy 88, 106261 (2021).

    Article  Google Scholar 

  54. Pedersen, J. K., Batchelor, T. A. A., Bagger, A. & Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 10, 2169–2176 (2020).

    Article  CAS  Google Scholar 

  55. Tong, C. J. et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements. Metall. Mater. Trans. A 36, 1263–1271 (2005).

    Article  Google Scholar 

  56. Yeh, J. W. Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759–1771 (2013). This article emphasizes the four core effects of high-entropy alloys, clarifies several misconceptions about HEAs, and suggests several routes for future HEA research and development.

    Article  CAS  Google Scholar 

  57. Yeh, J. W. Physical metallurgy of high-entropy alloys. JOM 67, 2254–2261 (2015).

    Article  CAS  Google Scholar 

  58. Ondicho, I., Alunda, B. & Kamau, K. in High Entropy Materials — Microstructures and Properties (ed. Zhang, Y.) Ch. 4 (IntechOpen, 2022).

  59. Lee, C. et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 160, 158–172 (2018).

    Article  CAS  Google Scholar 

  60. Dewangan, S. K. et al. A review on high-temperature applicability: a milestone for high entropy alloys. Eng. Sci. Technol. Int. J. 35, 101211 (2022).

    Google Scholar 

  61. LaRosa, C. R., Shih, M., Varvenne, C. & Ghazisaeidi, M. Solid solution strengthening theories of high-entropy alloys. Mater. Charact. 151, 310–317 (2019).

    Article  CAS  Google Scholar 

  62. Tsai, K. Y. On High Entropy Effect and Sluggish Diffusion Effect of High-Entropy Alloys. PhD thesis, National Tsing Hua Univ. (2014).

  63. Tsai, M. H. & Yeh, J. W. High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014). This article reviews several crucial aspects of the field, including the core effects, phase formation, mechanical properties, high-temperature properties and corrosion behaviours. It also points out current challenges and future directions.

    Article  Google Scholar 

  64. Okamoto, N. L. et al. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, W. et al. A map of single-phase high-entropy alloys. Nat. Commun. 14, 2856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. B. S. Murty, B. S., Yeh, J. W., Ranganathan, S. & Bhattacharjee, P. P. High-Entropy Alloys 2nd edn (Elsevier, 2019).

  67. Nutor, R. K. et al. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys. Adv. Eng. Mater. 22, 2000466 (2020).

    Article  CAS  Google Scholar 

  68. He, Q. F. & Yang, Y. On lattice distortion in high entropy alloys. Front. Mater. 5, 0042 (2018).

    Article  Google Scholar 

  69. Tokarewicz, M. & Gradzka-Dahlke, M. Review of recent research on AlCoCrFeNi high-entropy alloy. Metals 11, 1302 (2021).

    Article  CAS  Google Scholar 

  70. Yeh, J. W., Chang, S. Y., Hong, Y. D., Chen, S. K. & Lin, S. J. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements. Mater. Chem. Phys. 103, 41–46 (2007).

    Article  CAS  Google Scholar 

  71. Tsai, K. Y., Tsai, M. H. & Yeh, J. W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887–4897 (2013). The first publication that clarifies sluggish-diffusion effects using diffusion couples with homologous temperature from CoCrFeMnNi HEA to investigate the diffusion behaviours of each constituent element in a matrix.

    Article  CAS  Google Scholar 

  72. Kao, Y. F. et al. Electrical, magnetic and hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607–1614 (2011).

    Article  CAS  Google Scholar 

  73. Cheng, K. H., Lai, C. H., Lin, S. J. & Yeh, J. W. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. Ann. Chim. Sci. Mat. 31, 723–736 (2006).

    Article  CAS  Google Scholar 

  74. Roy, A., Munshi, J. & Balasubramanian, G. Low energy atomic traps sluggardize the diffusion in compositionally complex refractory alloys. Intermetallics 131, 107106 (2021).

    Article  CAS  Google Scholar 

  75. Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G. & Lu, Z. P. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526–529 (2013).

    Article  CAS  Google Scholar 

  76. Wang, R., Chen, W., Zhong, J. & Zhang, L. Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloys. J. Mater. Sci. Technol. 34, 1791–1798 (2018).

    Article  CAS  Google Scholar 

  77. Liang, N. N., Xu, R. R., Wu, G. Z., Gao, X. Z. & Zhao, Y. H. High thermal stability of nanocrystalline FeNi2CoMo0.2V0.5 high-entropy alloy by twin boundary and sluggish diffusion. Mater. Sci. Eng. A 848, 143399 (2022).

    Article  CAS  Google Scholar 

  78. Osetsky, Y. N., Béland, L. K., Barashev, A. V. & Zhang, Y. On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys. Curr. Opin. Solid State Mater. Sci. 22, 65–74 (2018).

    Article  CAS  Google Scholar 

  79. Paul, A. Comments on “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys” by K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta Materialia 61 (2013) 4887–4897. Scr. Mater. 135, 153–157 (2017).

    Article  CAS  Google Scholar 

  80. Divinski, S. V., Pokoev, A., Esakkiraja, N. & Paul, A. A mystery of “Sluggish Diffusion” in high-entropy alloys: the truth or a myth? Diffus. Found. 17, 69–104 (2018).

    Article  CAS  Google Scholar 

  81. Ranganathan, S. Alloyed pleasure: multimetallic cocktails. Curr. Sci. 85, 1404–1406 (2003). The first publication to introduce the concept of multimetallic cocktails.

    Google Scholar 

  82. Liu, X. et al. Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloys Compd. 872, 159602 (2021).

    Article  CAS  Google Scholar 

  83. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010). The first publication to develop and investigate refractory high-entropy alloys.

    Article  CAS  Google Scholar 

  84. Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011). A critical study investigating the mechanical properties of refractory high-entropy alloys.

    Article  CAS  Google Scholar 

  85. Senkov, O. N., Scott, J. M., Senkova, S. V., Miracle, D. B. & Woodward, C. F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043–6048 (2011).

    Article  CAS  Google Scholar 

  86. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L. & Liaw, P. P. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008). A critical discussion of the solid-solution phase formation rules for multi-component high-entropy alloys. The article summarizes the microstructure characteristics of the reported multi-component high-entropy alloys in terms of their atomic size difference and enthalpy of mixing, to predict the solid-solution formation in various multi-component high-entropy alloys.

    Article  CAS  Google Scholar 

  87. Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys 2nd edn (Chapman & Hall, 1992).

  88. Massalski, T. B. Phase diagrams in materials science. Metall. Mater. Trans. A 20, 1295–1323 (1989).

    Article  Google Scholar 

  89. Pettifor, D. G. Phenomenology and theory in structural prediction. J. Phase Equilibria 17, 384–395 (1996).

    Article  CAS  Google Scholar 

  90. De Graef, M. & McHenry, M. E. Structure of Materials: an Introduction to Crystallography, Diffraction and Symmetry 2nd edn (Cambridge Univ. Press, 2012).

  91. Chen, S. T. Effect of Mixing Enthalpy, Mixing Entropy and Atomic Size Difference on the Structure of Multicomponent Alloys. MSc thesis, National Tsing Hua Univ. (2009).

  92. Yang, X. & Zhang, Y. Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Mater. Chem. Phys. 132, 233–238 (2012). This article estimates the solid-solution formation ability in multi-component alloy systems through a literature search of microstructures in various multi-component alloy systems and by calculating the corresponding atomic size differences, enthalpy of mixing and entropy of mixing.

    Article  CAS  Google Scholar 

  93. Allmann, R. & Hinek, R. The introduction of structure types into the Inorganic Crystal Structure Database ICSD. Acta Crystallogr. A 63, 412–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mackay, A. L. On complexity. Crystallogr. Rep. 46, 524–526 (2001).

    Article  Google Scholar 

  95. Schön, J. C. in A Focus on Crystallography (ed. Müller, H.) 27–36 (FIZ Karlsruhe, 2014).

  96. Toher, C., Oses, C., Hicks, D. & Curtarolo, S. Unavoidable disorder and entropy in multi-component systems. npj Comput. Mater. 5, 69 (2019).

    Article  Google Scholar 

  97. Zhang, K. B. & Fu, Z. Y. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high entropy alloys. Intermetallics 22, 24–32 (2012).

    Article  CAS  Google Scholar 

  98. Otto, F., Yang, Y., Bei, H. & George, E. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013). This paper investigates the role of configurational entropy in stabilizing single-phase solid solutions in equiatomic multicomponent alloys, combining thermodynamic analyses with computer coupling of phase diagrams and thermochemistry.

    Article  CAS  Google Scholar 

  99. Santodonato, L. J. et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).

    Article  PubMed  Google Scholar 

  100. Zhang, W., Liaw, P. K. & Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 61, 2–22 (2018).

    Article  CAS  Google Scholar 

  101. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). A comprehensive review of high-entropy alloys, includes the analysing thermodynamics of complex alloys (such as the discussion of enthalpy, entropy and Gibbs energy of disordered solid solution phases and ordered intermetallic compounds), organizing them into common groupings, analysing their microstructures and properties, and considers their potential applications.

    Article  CAS  Google Scholar 

  102. Cheng, C. Y. et al. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Curr. Opin. Solid State Mater. Sci. 21, 299–311 (2017).

    Article  CAS  Google Scholar 

  103. Lin, K. H. et al. Different lattice distortion effects on the tensile properties of Ni-W dilute solutions and CrFeNi and CoCrFeMnNi concentrated solutions. Acta Mater. 221, 117399 (2021).

    Article  CAS  Google Scholar 

  104. Obligacion, J. V. & Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2, 15–34 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, S., Rong, H., Yang, T., Bai, B. & Zhang, J. Ultrafine PtRu dilute alloy nanodendrites for enhanced electrocatalytic methanol oxidation. Chem. Eur. J. 26, 4025–4031 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Huang, P. K. & Yeh, J. W. Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater. 62, 105–108 (2010).

    Article  CAS  Google Scholar 

  107. Guo, S. & Liu, C. T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. 21, 433–446 (2011). This article collects and compares solid-solution-forming HEAs to find more trustworthy rules governing the formation of amorphous phases or solid solution phases, providing valuable guidance for the future development of HEAs and bulk metallic glasses.

    Article  Google Scholar 

  108. Kittel, C. Introduction to Solid State Physics 7th edn (Wiley, 2007).

  109. Meyers, M. A. & Chawla, K. K. Mechanical Metallurgy: Principles and Applications (Prentice-Hall, 1984).

  110. Vaidya, M., Pradeep, K. G., Murty, B. S., Wilde, G. & Divinski, S. V. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211–224 (2018).

    Article  CAS  Google Scholar 

  111. Vaidya, M., Trubel, S., Murty, B. S., Wilde, G. & Divinski, S. V. Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 994–1001 (2016).

    Article  CAS  Google Scholar 

  112. Wu, Z. et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014).

    Article  CAS  Google Scholar 

  113. Swalin, A. Thermodynamics of Solids 2nd edn (Wiley, 1972).

  114. Lin, K. H. et al. Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test. Intermetallics 118, 106635 (2020).

    Article  CAS  Google Scholar 

  115. Tong, C. J. et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881–893 (2005). This article investigates the microstructural characterization of the AlxCoCrCuFeNi alloy system with different aluminium content. It reports that this alloy exhibits a simple crystal structure and possesses nanoprecipitates (precipitation hardening) owing to the effect of high mixing entropy and sluggish diffusion.

    Article  Google Scholar 

  116. Eleti, R. R., Bhattacharjee, T., Shibata, A. & Tsuji, N. Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy. Acta Mater. 171, 132–145 (2019).

    Article  CAS  Google Scholar 

  117. Cao, P. P. et al. Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures. J. Mater. Sci. Technol. 122, 243–254 (2022).

    Article  CAS  Google Scholar 

  118. Tsai, C. W. et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J. Alloys Compd. 486, 427–435 (2009).

    Article  CAS  Google Scholar 

  119. Hsu, C. Y. et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng. A 528, 3581–3588 (2011).

    Article  Google Scholar 

  120. Tsai, M. H. et al. Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J. Electrochem. Soc. 158, 1161–1165 (2011).

    Article  Google Scholar 

  121. Qin, G. et al. Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high entropy alloys. Mater. Sci. Eng. A 710, 200–205 (2018).

    Article  CAS  Google Scholar 

  122. Wei, R. et al. Strengthening of Fe40Mn40Co10Cr10 high entropy alloy via Mo/C alloying. Mater. Lett. 219, 85–88 (2018).

    Article  CAS  Google Scholar 

  123. Deng, Y. et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124–133 (2015).

    Article  CAS  Google Scholar 

  124. Liu, W. H. et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332–342 (2016).

    Article  CAS  Google Scholar 

  125. Lucas, M. S. et al. Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).

    Article  Google Scholar 

  126. Liu, L., Zhu, J. B., Li, J. C. & Jiang, Q. Microstructure and magnetic properties of FeNiCuMnTiSnx high entropy alloys. Adv. Eng. Mater. 14, 919–922 (2012).

    Article  CAS  Google Scholar 

  127. Zhang, Y., Zuo, T. T., Cheng, Y. Q. & Liaw, P. K. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci. Rep. 3, 1455 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mustafa, F. et al. Strange metallicity and magnetic order in the CoNi (Cr/V) medium-entropy alloy system. Materials 16, 1044 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guan, H. et al. Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 187, 122–134 (2020).

    Article  CAS  Google Scholar 

  130. Riva, S. et al. A novel High-Entropy Alloy-based composite material. J. Alloys Compd. 730, 544–551 (2018).

    Article  CAS  Google Scholar 

  131. Fan, Q. C., Li, B. S. & Zhang, Y. The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites. Mater. Sci. Eng. A 598, 244–250 (2014).

    Article  CAS  Google Scholar 

  132. Wang, Q. et al. High entropy liquid electrolytes for lithium batteries. Nat. Commun. 14, 440 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

W.L.H. drafted the original article and figures and conducted the literature review. All authors conceived the structure and contents, discussed the concepts and insights for the article, and revised the manuscript.

Corresponding author

Correspondence to Jien-Wei Yeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Levente Vitos, Stefano Curtarolo, Hagen Eckert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Automatic FLOW for Materials Discovery (AFLOW) data source: https://www.aflowlib.org/

The Inorganic Crystal Structure Database (ICSD): https://www.psds.ac.uk/icsd

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, WL., Tsai, CW., Yeh, AC. et al. Clarifying the four core effects of high-entropy materials. Nat Rev Chem 8, 471–485 (2024). https://doi.org/10.1038/s41570-024-00602-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00602-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing