Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy

Abstract

Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Closing the carbon cycle to remove CO2 greenhouse gas (GHG) emissions.
Fig. 2: The energetics of various feedstocks and of their conversion.
Fig. 3: Modularity is the future of the chemical industry.
Fig. 4: An aggressive timeline to close the carbon cycle.

Similar content being viewed by others

References

  1. Allen, M. et al. in Global Warming Of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 3–24 (Cambridge Univ. Press, 2018).

  2. Nasta, A. & Westerdale R. W. Jr CO2-secure: a national program to deploy carbon removal at gigaton scale. EFI Foundation https://energyfuturesinitiative.org/reports/co2-secure-a-national-program-to-deploy-carbon-removal-at-gigaton-scale/ (2022).

  3. Pörtner, H.-O. et al. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022).

  4. Lee, H. et al. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Lee, H. & Romero, J.) 1–34 (IPCC, 2023).

  5. Pörtner, H.-O. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 3–33 (Cambridge Univ. Press, 2022). 2022 summary by IPCC identifies future impacts of climate change and climate resilience on the world.

  6. Wang, Y. et al. Quantification of human contribution to soil moisture-based terrestrial aridity. Nat. Commun. 13, 6848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ryoo, J.-M. & Park, T. Contrasting characteristics of atmospheric rivers and their impacts on 2016 and 2020 wildfire seasons over the western United States. Environ. Res. Lett. 18, 074010 (2023).

    Article  Google Scholar 

  8. Ericksen, P. J., Ingram, J. S. I. & Liverman, D. M. Food security and global environmental change: emerging challenges. Environ. Sci. Policy 12, 373–377 (2009).

    Article  Google Scholar 

  9. Gai, D. H. B., Shittu, E., Yang, Y. C. E. & Li, H.-Y. A comprehensive review of the nexus of food, energy, and water systems: what the models tell us. J. Water Resour. Plan. Manag. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001564 (2022).

  10. Stott, P. Climate change. How climate change affects extreme weather events. Science 352, 1517–1518 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Bataille, C. G. F. Physical and policy pathways to net‐zero emissions industry. Wiley Interdiscip. Rev. Clim. Change 11, e633 (2020).

    Article  Google Scholar 

  12. Bazzanella, A. M. & Ausfelder, F. Low Carbon Energy and Feedstock for the European Chemical Industry (DECHEMA, 2017).

  13. Madeddu, S. et al. The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat). Environ. Res. Lett. 15, 124004 (2020).

    Article  CAS  Google Scholar 

  14. Elimelech, M. The global challenge for adequate and safe water. AQUA 55, 3–10 (2006).

    Google Scholar 

  15. Hering, J. G., Waite, T. D., Luthy, R. G., Drewes, J. E. & Sedlak, D. L. A changing framework for urban water systems. Environ. Sci. Technol. 47, 10721–10726 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Tortajada, C. & Biswas, A. K. Achieving universal access to clean water and sanitation in an era of water scarcity: strengthening contributions from academia. Curr. Opin. Environ. Sustain. 34, 21–25 (2018).

    Article  Google Scholar 

  17. Hillie, T. & Hlophe, M. Nanotechnology and the challenge of clean water. Nat. Nanotechnol. 2, 663–664 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Rabesandratana, T. Research on ocean plastic surging, U.N. report finds. Science (10 June 2021).

  19. Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. What a waste 2.0: a global snapshot of solid waste Management to 2050. World Bank https://openknowledge.worldbank.org/handle/10986/30317 (2018).

  20. Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diggle, A. & Walker, T. R. Environmental and economic impacts of mismanaged plastics and measures for mitigation. Environments 9, 15 (2022).

    Article  Google Scholar 

  22. What is a Circular Economy? (Environmental Protection Agency, 2023); https://www.epa.gov/recyclingstrategy/what-circular-economy.

  23. National Academies of Sciences, Engineering, and Medicine et al. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies Press, 2018).

  24. The long-term strategy of the United States: pathways to net-zero greenhouse gas emissions by 2050. US Department of State and the US Executive Office of the President https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf (2021).

  25. Bashmakov, I. A. et al. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 11 (Cambridge Univ. Press, 2022).

  26. Why is it so hard to decarbonize aviation? Climate Trade https://climatetrade.com/why-is-it-so-hard-to-decarbonize-aviation/ (2022).

  27. Male, J. L., Kintner-Meyer, M. C. W. & Weber, R. S. The U.S. energy system and the production of sustainable aviation fuel from clean electricity Front. Energy Res. https://doi.org/10.3389/fenrg.2021.765360 (2021).

  28. Decarbonising aviation. Shell Global https://www.shell.com/energy-and-innovation/the-energy-future/decarbonising-aviation.html#vanity-aHR0cHM6Ly93d3cuc2hlbGwuY29tL0RlY2FyYm9uaXNpbmdBdmlhdGlvbi5odG1s.

  29. Biswas, S., Moreno Sader, K. & Green, W. H. Perspective on decarbonizing long-haul trucks using onboard dehydrogenation of liquid organic hydrogen carriers. Energy Fuels 37, 17003–17012 (2023).

    Article  CAS  Google Scholar 

  30. The Global Centre for Maritime Decarbonisation (GCMD) https://www.gcformd.org/.

  31. Table 18. Energy-related carbon dioxide emissions by sector and source Case: reference case | region: United States. US Energy Information Administration https://www.eia.gov/outlooks/aeo/data/browser/#/?id=17-AEO2022&cases=ref2022&sourcekey=0 (2022).

  32. Table 19. Energy-related carbon dioxide emissions by end use Case: reference case. US Energy Information Administration https://www.eia.gov/outlooks/aeo/data/browser/#/?id=22-AEO2022&cases=ref2022&sourcekey=0 (2022).

  33. 2020 Guide to the business of chemistry. American Chemistry Council https://www.americanchemistry.com/chemistry-in-america/data-industry-statistics/resources/2020-guide-to-the-business-of-chemistry (2020).

  34. Clean Fuels & Products Shot™: alternative sources for carbon-based products. Office of Energy Efficiency & Renewable Energy https://www.energy.gov/eere/clean-fuels-products-shottm-alternative-sources-carbon-based-products (2023).

  35. Matthews, J. B. R. in Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 541–562. (Cambridge Univ. Press, 2018).

  36. Biden–Harris administration announces $750 million to advance clean hydrogen technologies. US Department of Energy (15 March 2023); https://www.energy.gov/articles/biden-harris-administration-announces-750-million-advance-clean-hydrogen-technologies.

  37. Peplow, M. The race to upcycle CO2 into fuels, concrete and more. Nature 603, 780–783 (2022). Urgency, viability and related needs for upcycling of CO2 into fuels, chemicals and concretes.

    Article  CAS  PubMed  Google Scholar 

  38. Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Langholtz, M. H., Stokes, B. J. & Eaton, L. M. 2016 Billion-ton Report: Advancing Domestic Resources for a Thriving Bioeconomy Vol. 1: Economic availability of feedstocks (US Department of Energy, 2016).

  40. Brown, R. C. & Brown, T. R. Biorenewable Resources: Engineering New Products from Agriculture 2nd edn (Wiley-Blackwell, 2014).

  41. Dong, W. et al. A framework to quantify mass flow and assess food loss and waste in the US food supply chain. Commun. Earth Environ. 3, 83 (2022).

    Article  Google Scholar 

  42. Korley, L. T. J., Epps, T. H. III, Helms, B. A. & Ryan, A. J. Toward polymer upcycling-adding value and tackling circularity. Science 373, 66–69 (2021). How to transform untapped plastic waste into fine chemicals and recyclable materials through design of new sustainable polymers.

    Article  CAS  PubMed  Google Scholar 

  43. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  44. Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Palm, E., Nilsson, L. J. & Åhman, M. Electricity-based plastics and their potential demand for electricity and carbon dioxide. J. Clean. Prod. 129, 548–555 (2016).

    Article  Google Scholar 

  46. Kougias, P. G. & Angelidaki, I. 2018 Biogas and its opportunities — a review. Front. Environ. Sci. Eng. 12, 14 (2018).

  47. Lacy, P. & Rutqvist, J. Waste to Wealth The Circular Economy Advantage (Palgrave Macmillan, 2015).

  48. Keijer, T., Bakker, V. & Slootweg, J. C. Circular chemistry to enable a circular economy. Nat. Chem. 11, 190–195 (2019). Twelve principles of green chemistry and circular chemistry enabling waste-free chemical industries.

    Article  CAS  PubMed  Google Scholar 

  49. Badgett, A., Newes, E. & Milbrandt, A. Economic analysis of wet waste-to-energy resources in the United States. Energy 176, 224–234 (2019).

    Article  Google Scholar 

  50. Coma, M. et al. Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss. 202, 175–195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y. et al. Review of waste biorefinery development towards a circular economy: from the perspective of a life cycle assessment. Renew. Sustain. Energy Rev. 139, 110716 (2021).

    Article  CAS  Google Scholar 

  52. Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J. & Bhowmik, R. A review on municipal solid waste-to-energy trends in the USA. Renew. Sustain. Energy Rev. 119, 109512 (2020).

    Article  CAS  Google Scholar 

  53. Saygin, D. & Gielen, D. Zero-emission pathway for the global chemical and petrochemical sector. Energies 14, 3772 (2021).

    Article  CAS  Google Scholar 

  54. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  PubMed  Google Scholar 

  55. Feng, K., Davis, S. J., Sun, L. & Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 6, 7714 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. MacDonald, A. E. et al. Future cost-competitive electricity systems and their impact on US CO2 emissions. Nat. Clim. Change 6, 526–531 (2016).

    Article  Google Scholar 

  57. Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    Article  CAS  Google Scholar 

  58. Bistline, J. E. T. Roadmaps to net-zero emissions systems: emerging insights and modeling challenges. Joule 5, 2551–2563 (2021).

    Article  Google Scholar 

  59. Wu, W. & Skye, H. M. Residential net-zero energy buildings: review and perspective. Renew. Sustain. Energy Rev. 142, 110859 (2021).

    Article  Google Scholar 

  60. Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Homrich, A. S., Galvão, G., Abadia, L. G. & Carvalho, M. M. The circular economy umbrella: trends and gaps on integrating pathways. J. Clean. Prod. 175, 525–543 (2018).

    Article  Google Scholar 

  62. Bonsu, N. O. Towards a circular and low-carbon economy: insights from the transitioning to electric vehicles and net zero economy. J. Clean. Prod. 256, 120659 (2020).

    Article  Google Scholar 

  63. Basic Energy Sciences Roundtable on Foundational Science for Carbon-Neutral Hydrogen Technologies (Department of Energy, 2021).

  64. Basic Energy Sciences Roundtable Foundational Science for Carbon Dioxide Removal Technologies (Department of Energy, 2022).

  65. Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers (Department of Energy, 2019).

  66. Is it possible to achieve net-zero emissions? National Academies https://www.nationalacademies.org/based-on-science/is-it-possible-to-achieve-net-zero-emissions (2021).

  67. The importance of chemical research to the U.S. economy — new report. National Academies https://www.nationalacademies.org/news/2022/07/the-importance-of-chemical-research-to-the-u-s-economy-new-report (2022).

  68. d’Aprile, P. et al. How the European Union could achieve net-zero emission at net-zero cost. McKinsey Sustainability https://www.mckinsey.com/capabilities/sustainability/our-insights/how-the-european-union-could-achieve-net-zero-emissions-at-net-zero-cost (2020).

  69. Technology roadmap: energy and GHG reductions in the chemical industry via catalytic processes. International Energy Agency https://iea.blob.core.windows.net/assets/d0f7ff3a-0612-422d-ad7d-a682091cb500/TechnologyRoadmapEnergyandGHGReductionsintheChemicalIndustryviaCatalyticProcesses.pdf (2013). Examines the energy demand and global GHG emissions of the chemical and petrochemical sectors, and proposes the need of energy savings approaching 13 exajoules by 2050.

  70. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016). Identifies the key industrial separations processes and identifies the ones that necessitate scientific advances.

    Article  PubMed  Google Scholar 

  71. Samir, A., Ashour, F. H., Hakim, A. A. A. & Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 6, 68 (2022).

    Article  CAS  Google Scholar 

  72. Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Doliente, S. S. et al. Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Front. Energy Res. https://doi.org/10.3389/fenrg.2020.00110 (2020).

  74. Alivisatos, P. & Buchanan, M. Basic research needs for carbon capture: beyond 2020. US Department of Energy Office of Scientific and Technical Information https://www.osti.gov/biblio/1291240 (2010).

  75. Kalam, S. et al. Carbon dioxide sequestration in underground formations: review of experimental, modeling, and field studies. J. Pet. Explor. Prod. Technol. 11, 303–325 (2021).

    Article  CAS  Google Scholar 

  76. Zheng, J., Chong, Z. R., Qureshi, M. F. & Linga, P. Carbon dioxide sequestration via gas hydrates: a potential pathway toward decarbonization. Energy Fuels 34, 10529–10546 (2020).

    Article  CAS  Google Scholar 

  77. Ehlig-Economides, C. A. Geologic carbon dioxide sequestration methods, opportunities, and impacts. Curr. Opin. Chem. Eng. 42, 100957 (2023).

    Article  Google Scholar 

  78. King, S. Recycling our way to sustainability. Nature 611, S7 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Hottle, T. A., Bilec, M. M. & Landis, A. E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 98, 1898–1907 (2013).

    Article  CAS  Google Scholar 

  80. Hong, M. & Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    Article  CAS  Google Scholar 

  81. Klotz, M., Haupt, M. & Hellweg, S. Limited utilization options for secondary plastics may restrict their circularity. Waste Manag. 141, 251–270 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Hood, B. Make recycled goods covetable. Nature 531, 438–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. To get serious on the circular economy, upend how global business works. Nature 612, 190 (2022).

  84. Carbon negative shot. Office of Fossil Energy and Carbon Management https://www.energy.gov/fecm/carbon-negative-shot (2023).

  85. Lahtela, V. & Kärki, T. Mechanical sorting processing of waste material before composite manufacturing – a review. J. Eng. Sci. Technol. Rev. 11, 35–46 (2018).

    Article  CAS  Google Scholar 

  86. Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, e2000415 (2021).

    Article  PubMed  Google Scholar 

  87. Zhang, X., Liu, C., Chen, Y., Zheng, G. & Chen, Y. Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review. Environ. Dev. Sustain. 24, 11471–11513 (2022).

    Article  PubMed  Google Scholar 

  88. Handley, M. C., Slesinski, D. & Hsu, S. C. Potential early markets for fusion energy. J. Fusion Energy 40, 18 (2021).

    Article  CAS  Google Scholar 

  89. Zou, C. et al. The role of new energy in carbon neutral. Pet. Explor. Dev. 48, 480–491 (2021).

    Article  Google Scholar 

  90. Hu, G., Li, Y., Ye, C., Liu, L. & Chen, X. Engineering microorganisms for enhanced CO2 sequestration. Trends Biotechnol. 37, 532–547 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Ng, I. S., Keskin, B. B. & Tan, S. I. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria. Biotechnol. J. 15, e1900228 (2020).

    Article  PubMed  Google Scholar 

  92. Li, X. et al. Mining natural products for advanced biofuels and sustainable bioproducts. Curr. Opin. Biotechnol. 84, 103003 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Evans, A., Strezov, V. & Evans, T. J. Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 16, 4141–4147 (2012).

    Article  Google Scholar 

  95. Stram, B. N. Key challenges to expanding renewable energy. Energy Policy 96, 728–734 (2016).

    Article  Google Scholar 

  96. Joshi, J. Do renewable portfolio standards increase renewable energy capacity? evidence from the United States. J. Environ. Manag. 287, 112261 (2021).

    Article  Google Scholar 

  97. Impram, S., Varbak Nese, S. & Oral, B. Challenges Of renewable energy penetration on power system flexibility: a survey. Energy Strategy Rev. 31, 100539 (2020).

    Article  Google Scholar 

  98. Williams, J. H. et al. Carbon‐neutral pathways for the United States. AGU Adv. 2, e2020AV000284 (2021).

    Article  Google Scholar 

  99. Murphy, S. Modernizing the U.S. electric grid: a proposal to update transmission infrastructure for the future of electricity. Environ. Prog. Sustain. Energy 41, e13798 (2022).

    Article  CAS  Google Scholar 

  100. Blonsky, M. et al. Potential impacts of transportation and building electrification on the grid: a review of electrification projections and their effects on grid infrastructure, operation, and planning. Curr. Sustain. Renew. Energy Rep. 6, 169–176 (2019).

    Google Scholar 

  101. Murphy, C. et al. Electrification Futures Study: Scenarios of Power System Evolution and Infrastructure Development for the United States (National Renewable Energy Laboratory, 2021).

  102. Fant, C. et al. Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure. Energy 195, 116899 (2020).

  103. Snyder, C. S., Bruulsema, T. W., Jensen, T. L. & Fixen, P. E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 133, 247–266 (2009).

    Article  CAS  Google Scholar 

  104. Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2016).

    Article  Google Scholar 

  105. Stanley, P. L., Rowntree, J. E., Beede, D. K., DeLonge, M. S. & Hamm, M. W. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 162, 249–258 (2018).

    Article  Google Scholar 

  106. Heller, M. C. & Keoleian, G. A. Greenhouse gas emission estimates of U.S. dietary choices and food loss. J. Ind. Ecol. 19, 391–401 (2015).

    Article  CAS  Google Scholar 

  107. Bennetzen, E. H., Smith, P. & Porter, J. R. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Change Biol. 22, 763–781 (2016).

    Article  Google Scholar 

  108. The United States of American nationally determined contribution: reducing greenhouse gases in the United States: a 2030 emissions target. United Nations Framework Convention on Climate Change https://unfccc.int/sites/default/files/NDC/2022-06/United%20States%20NDC%20April%2021%202021%20Final.pdf (2021).

  109. Executive Order 14008, tackling the climate crisis at home and abroad. Federal Register https://www.federalregister.gov/documents/2021/02/01/2021-02177/tackling-the-climate-crisis-at-home-and-abroad (2021).

  110. Cheliotis, M. et al. Review on the safe use of ammonia fuel cells in the maritime industry. Energies 14, 3023 (2021).

    Article  CAS  Google Scholar 

  111. Machaj, K. et al. Ammonia as a potential marine fuel: a review. Energy Strategy Rev. 44, 100926 (2022).

    Article  Google Scholar 

  112. Valera-Medina, A. et al. Review on ammonia as a potential fuel: from synthesis to economics. Energy Fuels 35, 6964–7029 (2021).

    Article  CAS  Google Scholar 

  113. Wang, Y. et al. A review of low and zero carbon fuel technologies: achieving ship carbon reduction targets. Sustain. Energy Technol. Assess. 54, 102762 (2022).

    Google Scholar 

  114. Elrhoul, D., Romero Gómez, M. & Naveiro, M. Review of green hydrogen technologies application in maritime transport. Int. J. Green. Energy 20, 1800–1825 (2023).

    Article  CAS  Google Scholar 

  115. Bilgili, L. A systematic review on the acceptance of alternative marine fuels. Renew. Sustain. Energy Rev. 182, 113367 (2023).

  116. Elishav, O. et al. Progress and prospective of nitrogen-based alternative fuels. Chem. Rev. 120, 5352–5436 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhao, Y. et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3, 2472–2484 (2019).

    Article  CAS  Google Scholar 

  119. Jang, J. H., Park, S. Y., Youn, D. H. & Jang, Y. J. Recent advances in electrocatalysts for ammonia oxidation reaction. Catalysts 13, 803 (2023).

    Article  CAS  Google Scholar 

  120. Lamb, K. E., Dolan, M. D. & Kennedy, D. F. Ammonia for hydrogen storage; a review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrog. Energy 44, 3580–3593 (2019).

    Article  CAS  Google Scholar 

  121. Carbon-free fuel is impossible: the fuel revolution is here. Sunborne Systems https://sunbornesystems.com/ (2021).

  122. The Amogy technology: a big solution for a big challenge. AMOGY https://amogy.co/technology/ (2020).

  123. Shen, H. et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design. Chem 7, 1708–1754 (2021).

    Article  CAS  Google Scholar 

  124. Cui, Y. et al. The development of catalysts for electrochemical nitrogen reduction toward ammonia: theoretical and experimental advances. Chem. Commun. 58, 10290–10302 (2022).

    Article  CAS  Google Scholar 

  125. Yang, B., Ding, W., Zhang, H. & Zhang, S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 14, 672–687 (2021).

    Article  CAS  Google Scholar 

  126. Chalkley, M. J., Drover, M. W. & Peters, J. C. Catalytic N2-to-NH3 (or -N2H4) conversion by well-defined molecular coordination complexes. Chem. Rev. 120, 5582–5636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Garrido-Barros, P., Derosa, J., Chalkley, M. J. & Peters, J. C. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature 609, 71–76 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Singh, A. R. et al. Electrochemical ammonia synthesis — the selectivity challenge. ACS Catal. 7, 706–709 (2017).

  129. Overview of Greenhouse Gases. US Environmental Protection Agency https://www.epa.gov/ghgemissions/overview-greenhouse-gases#:~:Text=The%20impact%20of%201%20pound,1%20pound%20of%20carbon%20dioxide.&Text=Globally%2C%20about%2040%25%20of%20total,emissions%20come%20from%20human%20activities (2022).

  130. Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022).

    Article  CAS  Google Scholar 

  131. Liu, J., Balmford, A. & Bawa, K. S. Fuel, food and fertilizer shortage will hit biodiversity and climate. Nature 604, 425 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Comer, B. M. et al. Prospects and challenges for solar fertilizers. Joule 3, 1578–1605 (2019).

    Article  CAS  Google Scholar 

  133. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  134. The Maritime Executive. Ammonia leak on tanker kills one and injures three off Malaysia. The Maritime Executive (April 7 2021).

  135. Pivovar, B., Rustagi, N. & Satyapal, S. Hydrogen at scale (H2@Scale): key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27, 47–52 (2018).

    Article  CAS  Google Scholar 

  136. Hydrogen shot. Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/hydrogen-shot (2021).

  137. DOE national clean hydrogen strategy and roadmap. US Department of Energy https://www.hydrogen.energy.gov/pdfs/clean-hydrogen-strategy-roadmap.pdf (2022).

  138. Department of Energy hydrogen program plan. US Department of Energy https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf (2020).

  139. Koleva, M. & Rustagi, N. Hydrogen delivery and dispensing cost. US Department of Energy https://www.hydrogen.energy.gov/pdfs/20007-hydrogen-delivery-dispensing-cost.pdf (2020).

  140. Multi-year research, development, and demonstration plan 3.2 hydrogen delivery. Department of Energy https://www.energy.gov/sites/prod/files/2015/08/f25/fcto_myrdd_delivery.pdf (2015).

  141. Hydrogen pipelines. Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/hydrogen-pipelines.

  142. M. W. Melaina, M. W., Antonia, O. & Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks: a Review of Key Issues. (National Renewable Energy Laboratory, 2013).

  143. Twitchell, J., DeSomber, K. & Bhatnagar, D. Defining long duration energy storage. J. Energy Storage 60, 105787 (2023).

    Article  Google Scholar 

  144. Horowitz, A. How we’re moving to net-zero by 2050. Department of Energy https://www.energy.gov/articles/how-were-moving-net-zero-2050 (2021).

  145. Nalley, S. Release at the Bipartisan Policy Center. Energy Information Administration https://www.eia.gov/pressroom/releases/press495.php (2022).

  146. Tullo, A. H. Organics challenge ammonia as hydrogen carriers. ACS Cent. Sci. 8, 1471–1473 (2022).

  147. The world’s first global hydrogen supply chain demonstration project. Chiyoda Corporation https://www.chiyodacorp.com/en/service/spera-hydrogen/ (2016).

  148. Wasserscheid, P. et al. Experimental determination of the hydrogenation/dehydrogenation — equilibrium of the LOHC system H0/H18-dibenzyltoluene. Int. J. Hydrog. Energy 46, 32583–32594 (2021).

    Article  Google Scholar 

  149. Allendorf, M. D. et al. Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 14, 1214–1223 (2022). Outlines the needs and key challenges for stationary and mobile H2 storage applications, including materials and research and development approaches.

    Article  CAS  PubMed  Google Scholar 

  150. The Long Duration Storage Shot (Office of Energy Efficiency & Renewable Energy, 2021); https://www.energy.gov/eere/long-duration-storage-shot.

  151. Mevawala, C. et al. The ethanol–ethyl acetate system as a biogenic hydrogen carrier. Energy Technol. 11, 2200892 (2023).

    Article  CAS  Google Scholar 

  152. Crandall, B. S., Brix, T., Weber, R. S. & Jiao, F. Techno-economic assessment of green H2 carrier supply chains. Energy Fuels 37, 1441–1450 (2022).

    Article  Google Scholar 

  153. Papadias, D. D., Peng, J.-K. & Ahluwalia, R. K. Hydrogen carriers: production, transmission, decomposition, and storage. Int. J. Hydrog. Energy 46, 24169–24189 (2021).

    Article  CAS  Google Scholar 

  154. Stetson, N. & Wieliczko, M. Hydrogen technologies for energy storage: a perspective. MRS Energy Sustain. 7, 41 (2020). Overview of the US Department of Energy’s Hydrogen and Fuel Cell Technologies Office’s activities in hydrogen storage, outlining the needs of a modernized grid and other research and development directions.

  155. Aakko-Saksa, P. T., Cook, C., Kiviaho, J. & Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy – review and discussion. J. Power Sources 396, 803–823 (2018).

    Article  CAS  Google Scholar 

  156. Niermann, M., Beckendorff, A., Kaltschmitt, M. & Bonhoff, K. Liquid Organic Hydrogen Carrier (LOHC) – assessment based on chemical and economic properties. Int. J. Hydrog. Energy 44, 6631–6654 (2019).

    Article  CAS  Google Scholar 

  157. Obara, S. Y. Energy efficiency of a hydrogen supply system using the reaction cycle of methylcyclohexane-toluene-hydrogen. Mech. Eng. J. 5, 17-00062 (2018).

    Article  Google Scholar 

  158. Preuster, P., Papp, C. & Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017). Describes liquid organic hydrogen carrier applications needed for storage and transportation applications of catalysis for both hydrogenation and dehydrogenation.

    Article  CAS  PubMed  Google Scholar 

  159. Aromatics technology. Chevron Phillips Chemical https://www.cpchem.com/what-we-do/licensing/aromatics-technology (2000).

  160. Hu, P., Ben-David, Y. & Milstein, D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew. Chem. Int. Ed. 55, 1061–1064 (2016).

    Article  CAS  Google Scholar 

  161. Tran, B. L., Johnson, S. I., Brooks, K. P. & Autrey, S. T. Ethanol as a liquid organic hydrogen carrier for seasonal microgrid application: catalysis, theory, and engineering feasibility. ACS Sustain. Chem. Eng. 9, 7130–7138 (2021).

    Article  CAS  Google Scholar 

  162. Zou, Y. Q., von Wolff, N., Anaby, A., Xie, Y. & Milstein, D. Ethylene glycol as an efficient and reversible liquid organic hydrogen carrier. Nat. Catal. 2, 415–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Verevkin, S. P., Konnova, M. E., Zherikova, K. V. & Pimerzin, A. A. Sustainable hydrogen storage: thermochemistry of amino-alcohols as seminal liquid organic hydrogen carriers. J. Chem. Thermodyn. 163, 106591 (2021).

    Article  CAS  Google Scholar 

  164. Onoda, M., Nagano, Y. & Fujita, K.-I. Iridium-catalyzed dehydrogenative lactonization of 1,4-butanediol and reversal hydrogenation: new hydrogen storage system using cheap organic resources. Int. J. Hydrog. Energy 44, 28514–28520 (2019).

    Article  CAS  Google Scholar 

  165. Hu, P., Fogler, E., Diskin-Posner, Y., Iron, M. A. & Milstein, D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat. Commun. 6, 6859 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Gautier, V., Campon, I., Chappaz, A. & Pitault, I. Kinetic modeling for the gas-phase hydrogenation of the LOHC γ-butyrolactone–1,4-butanediol on a copper-zinc catalyst. Reactions 3, 499–515 (2022).

    Article  CAS  Google Scholar 

  167. Grubel, K. et al. Research requirements to move the bar forward using aqueous formate salts as H2 carriers for energy storage applications. J. Energy Power Technol. https://doi.org/10.21926/jept.2004016 (2020).

  168. Hwang, Y. J. et al. Development of an autothermal formate-based hydrogen generator: from optimization of formate dehydrogenation conditions to thermal integration with fuel cells. ACS Sustain. Chem. Eng. 8, 9846–9856 (2020).

    Article  CAS  Google Scholar 

  169. Müller, K., Brooks, K. & Autrey, T. Releasing hydrogen at high pressures from liquid carriers: aspects for the H2 delivery to fueling stations. Energy Fuels 32, 10008–10015 (2018).

    Article  Google Scholar 

  170. Müller, K., Brooks, K. & Autrey, T. Hydrogen storage in formic acid: a comparison of process options. Energy Fuels 31, 12603–12611 (2017).

    Article  Google Scholar 

  171. Gutiérrez, O. Y. et al. Using earth abundant materials for long duration energy storage: electro-chemical and thermo-chemical cycling of bicarbonate/formate. Green Chem. 25, 4222–4233 (2023).

    Article  Google Scholar 

  172. Schaub, T. & Paciello, R. A. A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angew. Chem. Int. Ed. 50, 7278–7282 (2011).

    Article  CAS  Google Scholar 

  173. Ruggles, T. H., Dowling, J. A., Lewis, N. S. & Caldeira, K. Opportunities for flexible electricity loads such as hydrogen production from curtailed generation. Adv. Appl. Energy 3, 100051 (2021).

    Article  CAS  Google Scholar 

  174. Castelvecchi, D. How the hydrogen revolution can help save the planet — and how it can’t. Nature 611, 440–443 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Dowling, J. A. et al. Role of long-duration energy storage in variable renewable electricity systems. Joule 4, 1907–1928 (2020).

    Article  Google Scholar 

  176. Spitsen, P. & Sprenkle, V. Energy storage cost and performance database. Pacific Northwest National Laboratory https://www.pnnl.gov/ESGC-cost-performance.

  177. Zivar, D., Kumar, S. & Foroozesh, J. Underground hydrogen storage: a comprehensive review. Int. J. Hydrog. Energy 46, 23436–23462 (2021).

    Article  CAS  Google Scholar 

  178. Andersson, J. & Grönkvist, S. A comparison of two hydrogen storages in a fossil-free direct reduced iron process. Int. J. Hydrog. Energy 46, 28657–28674 (2021).

    Article  CAS  Google Scholar 

  179. Andersson, J. Application of liquid hydrogen carriers in hydrogen steelmaking. Energies 14, 1392 (2021).

    Article  CAS  Google Scholar 

  180. Rosner, F. et al. Green steel: design and cost analysis of hydrogen-based direct iron reduction. Energy Environ. Sci. 16, 4121–4134 (2023).

    Article  CAS  Google Scholar 

  181. Nazir, H. et al. Is the H2 economy realizable in the foreseeable future? part I: H2 production methods. Int. J. Hydrog. Energy 45, 13777–13788 (2020).

    Article  CAS  Google Scholar 

  182. Nazir, H. et al. Is the H2 economy realizable in the foreseeable future? part II: H2 storage, transportation, and distribution. Int. J. Hydrog. Energy 45, 20693–20708 (2020).

    Article  CAS  Google Scholar 

  183. Nazir, H. et al. Is the H2 economy realizable in the foreseeable future? part III: H2 usage technologies, applications, and challenges and opportunities. Int. J. Hydrog. Energy 45, 28217–28239 (2020).

    Article  CAS  Google Scholar 

  184. Ogden, J. M. Prospects for building a hydrogen energy infrastructure. Annu. Rev. Energy Environ. 24, 227–279 (1999).

    Article  Google Scholar 

  185. Midilli, A., Ay, M., Dincer, I. & Rosen, M. A. On hydrogen and hydrogen energy strategies. Renew. Sustain. Energy Rev. 9, 255–271 (2005).

    Article  CAS  Google Scholar 

  186. Cipriani, G. et al. Perspective on hydrogen energy carrier and its automotive applications. Int. J. Hydrog. Energy 39, 8482–8494 (2014).

    Article  CAS  Google Scholar 

  187. Hosseini, S. E. & Wahid, M. A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. Int. J. Energy Res. 44, 4110–4131 (2020).

    Article  Google Scholar 

  188. Kojima, Y. Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrog. Energy 44, 18179–18192 (2019).

    Article  CAS  Google Scholar 

  189. Lange, J. P. Towards circular carbo-chemicals – the metamorphosis of petrochemicals. Energy Environ. Sci. 14, 4358–4376 (2021).

    Article  CAS  Google Scholar 

  190. Sharifzadeh, M. et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog. Energy Combust. Sci. 71, 1–80 (2019).

    Article  Google Scholar 

  191. Ilic, D., Williams, K., Farnish, R., Webb, E. & Liu, G. On the challenges facing the handling of solid biomass feedstocks. Biofuels Bioprod. Biorefin. 12, 187–202 (2018).

    Article  CAS  Google Scholar 

  192. Nunes, L. J. R., Causer, T. P. & Ciolkosz, D. Biomass for energy: a review on supply chain management models. Renew. Sustain. Energy Rev. 120, 109658 (2020).

    Article  Google Scholar 

  193. Walker, T. W., Motagamwala, A. H., Dumesic, J. A. & Huber, G. W. Fundamental catalytic challenges to design improved biomass conversion technologies. J. Catal. 369, 518–525 (2019).

    Article  CAS  Google Scholar 

  194. Mitsos, A. et al. Challenges in process optimization for new feedstocks and energy sources. Comput. Chem. Eng. 113, 209–221 (2018).

    Article  CAS  Google Scholar 

  195. Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article  Google Scholar 

  196. Allan, R. P. Frequently Asked Questions. The Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/ar6/wg1/downloads/faqs/IPCC_AR6_WGI_FAQs_Compiled.pdf (2021).

  197. FAQ Chapter 4. The Intergovernmental Panel on Climate Change https://www.ipcc.ch/sr15/faq/faq-chapter-4/ (2018).

  198. Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. Beyond 90% capture: possible, but at what cost? Int. J. Greenh. Gas Control 105, 103239 (2021).

    Article  CAS  Google Scholar 

  200. Siegelman, R. L., Kim, E. J. & Long, J. R. Porous materials for carbon dioxide separations. Nat. Mater. 20, 1060–1072 (2021).

    Article  CAS  Google Scholar 

  201. Danaci, D., Bui, M., Petit, C. & Mac Dowell, N. En route to zero emissions for power and industry with amine-based post-combustion capture. Environ. Sci. Technol. 55, 10619–10632 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Raza, A., Gholami, R., Rezaee, R., Rasouli, V. & Rabiei, M. Significant aspects of carbon capture and storage – a review. Petroleum 5, 335–340 (2019).

    Article  Google Scholar 

  203. Ishaq, M. et al. Exploring the potential of highly selective alkanolamine containing deep eutectic solvents based supported liquid membranes for CO2 capture. J. Mol. Liq. 340, 117274 (2021).

    Article  CAS  Google Scholar 

  204. Sjostrom, S. & Krutka, H. Evaluation of solid sorbents as a retrofit technology for CO2 capture. Fuel 89, 1298–1306 (2010).

    Article  CAS  Google Scholar 

  205. Wang, M., Joel, A. S., Ramshaw, C., Eimer, D. & Musa, N. M. Process intensification for post-combustion CO2 capture with chemical absorption: a critical review. Appl. Energy 158, 275–291 (2015).

    Article  CAS  Google Scholar 

  206. Liu, F. et al. Thermodynamics and kinetics of novel amino functionalized ionic liquid organic solvent for CO2 capture. Sep. Purif. Technol. 286, 120457 (2022).

    Article  CAS  Google Scholar 

  207. Li, X. et al. Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O. Sep. Purif. Technol. 275, 119181 (2021).

    Article  CAS  Google Scholar 

  208. Wu, X. et al. Electrochemically-mediated amine regeneration Of CO2 capture: from electrochemical mechanism to bench-scale visualization study. Appl. Energy 302, 117554 (2021).

    Article  CAS  Google Scholar 

  209. Rahimi, M. et al. An electrochemically mediated amine regeneration process with a mixed absorbent for postcombustion CO2 capture. Environ. Sci. Technol. 54, 8999–9007 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. Nat. Rev. Methods Primers 2, 68 (2022).

    Article  CAS  Google Scholar 

  211. Kersey, K. et al. Encapsulation of nanoparticle organic hybrid materials within electrospun hydrophobic polymer/ceramic fibers for enhanced CO2 capture. Adv. Funct. Mater. 33, 2301649 (2023).

  212. Zeeshan, M., Kidder, M. K., Pentzer, E., Getman, R. B. & Gurkan, B. Direct air capture of CO2: from insights into the current and emerging approaches to future opportunities. Front. Sustain. 4, https://doi.org/10.3389/frsus.2023.1167713 (2023).

  213. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  PubMed  Google Scholar 

  214. Zhu, X. et al. Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 51, 6574–6651 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Zheng, R. F. et al. A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation. Energy Environ. Sci. 13, 4106–4113 (2020).

    Article  CAS  Google Scholar 

  216. Jiang, Y. et al. Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents. J. Clean. Prod. 388, 135696 (2023).

    Article  CAS  Google Scholar 

  217. Baciocchi, R., Storti, G. & Mazzotti, M. Process design and energy requirements for the capture of carbon dioxide from air. Chem. Eng. Process. 45, 1047–1058 (2006).

    Article  CAS  Google Scholar 

  218. Zeman, F. Energy and material balance of CO2 capture from ambient air. Environ. Sci. Technol. 41, 7558–7563 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Singh, A. & Stéphenne, K. Shell Cansolv CO2 capture technology: achievement from first commercial plant. Energy Procedia 63, 1678–1685 (2014).

    Article  CAS  Google Scholar 

  220. Shewchuk, S. R., Mukherjee, A. & Dalai, A. K. Selective carbon-based adsorbents for carbon dioxide capture from mixed gas streams and catalytic hydrogenation Of CO2 into renewable energy source: a review. Chem. Eng. Sci. 243, 116735 (2021).

    Article  CAS  Google Scholar 

  221. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    Article  CAS  Google Scholar 

  222. Erans, M. et al. Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ. Sci. 15, 1360–1405 (2022).

    Article  CAS  Google Scholar 

  223. Digdaya, I. A. et al. A direct couple electrochemical system for capture and conversion of CO2 from oceanwater. Nat. Commun. 11, 4412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Jayarathna, C., Maelum, M., Karunarathne, S., Andrenacci, S. & Haugen, H. A. Review on direct ocean capture (DOC) technologies. In Proc. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16. 23–24 Oct 2022 (GHGT, 2022); https://doi.org/10.2139/ssrn.4282969.

  226. Kim, S. et al. Asymmetric chloride-mediated electrochemical process for CO2 removal from oceanwater. Energy Environ. Sci. 16, 2030–2044 (2023).

    Article  CAS  Google Scholar 

  227. Willauer, H. D., DiMascio, F., Hardy, D. R. & Williams, F. W. Feasibility of CO2 extraction from seawater and simultaneous hydrogen gas generation using a novel and robust electrolytic cation exchange module based on continuous electrodeionization technology. Ind. Eng. Chem. Res. 53, 12192–12200 (2014).

    Article  CAS  Google Scholar 

  228. Kothandaraman, J. & Heldebrant, D. J. Catalytic coproduction of methanol and glycol in one pot from epoxide, CO2, and H2. RSC Adv. 10, 42557–42563 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. LanzaJet technology to be deployed across three different projects in the UK. LANZAJET https://www.lanzajet.com/lanzajet-technology-to-be-deployed-across-three-different-projects-in-the-uk-to-meet-growing-demand-for-sustainable-aviation-fuels/ (2021).

  230. Dagle, R. A., Winkelman, A. D., Ramasamy, K. K., Lebarbier Dagle, V. & Weber, R. S. Ethanol as a renewable building block for fuels and chemicals. Ind. Eng. Chem. Res. 59, 4843–4853 (2020).

    Article  CAS  Google Scholar 

  231. Lilga, M. A. H. et al. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels. US patent 10,005,974 (2018).

  232. Efroymson, R. A., Langholtz, M. H., Johnson, K. E. & Stokes, B. J. (eds) 2016 Billion-ton Report: Advancing Domestic Resources for a Thriving Bioeconomy Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1 (Oak Ridge National Laboratory, 2017).

  233. Kopittke, P. M. et al. Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Crit. Rev. Environ. Sci. Technol. 52, 4308–4324 (2022).

    Article  Google Scholar 

  234. Larson, E. et al. Net-zero America: Potential Pathways, Infrastructure, and Impacts. (NetzeroAmerica, Princeton University, 2021).

  235. 2023 Billion-Ton Report: An Assessment of U.S. Renewable Carbon Resources (Department of Energy, 2023); https://www.energy.gov/eere/bioenergy/2023-billion-ton-report-assessment-us-renewable-carbon-resources.

  236. O’Malley, J., Pavlenko, N. & Searle, S. Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand. International Council On Clean Transportation https://theicct.org/wp-content/uploads/2021/06/Sustainable-aviation-fuel-feedstock-eu-mar2021.pdf (2021).

  237. Capaz, R. S., Guida, E., Seabra, J. E. A., Osseweijer, P. & Posada, J. A. Mitigating carbon emissions through sustainable aviation fuels: costs and potential. Biofuels Bioprod. Biorefin. 15, 502–524 (2020).

    Article  Google Scholar 

  238. Pavlenko, N. S. & Searle, S. Assessing the sustainability implications of alternative aviation fuels. International Council On Clean Transportation https://theicct.org/wp-content/uploads/2021/06/Alt-aviation-fuel-sustainability-mar2021.pdf (2021).

  239. Holladay, J., Abdullah, Z. & Heyne, J. Sustainable Aviation Fuel: Review of Technical Pathways. (US Department of Energy, Office of Energy Efficiency & Renewable Energy, 2020).

  240. Grim, R. G. et al. Electrifying the production of sustainable aviation fuel: the risks, economics, and environmental benefits of emerging pathways including CO2. Energy Environ. Sci. 15, 4798–4812 (2022).

    Article  CAS  Google Scholar 

  241. Becken, S., Mackey, B. & Lee, D. S. Implications of preferential access to land and clean energy for sustainable aviation fuels. Sci. Total Environ. 886, 163883 (2023).

    Article  CAS  PubMed  Google Scholar 

  242. Rogers, J. N. et al. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. Biofuels Bioprod. Biorefin. 11, 110–128 (2016). Evaluation of strategies for transforming biomass resources into fuels (both on road and aviation), energy and bio-based chemicals to achieve a billion tons bioeconomy by 2030.

    Article  Google Scholar 

  243. Sustainable aviation fuel grand challenge. Office of Energy Efficiency & Renewable Energy, Bioenergy Technologies Office https://www.energy.gov/eere/bioenergy/sustainable-aviation-fuel-grand-challenge.

  244. WAYPOINT 2050: Balancing Growth in Connectivity with a Comprehensive Global Air Transport Response to the Climate Emergency. Aviation Benefits. https://aviationbenefits.org/media/167187/w2050_full.pdf (2020).

  245. Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014).

    Article  Google Scholar 

  246. Robertson, G. P., Hamilton, S. K., Paustian, K. & Smith, P. Land-based climate solutions for the United States. Glob. Change Biol. 28, 4912–4919 (2022).

    Article  CAS  Google Scholar 

  247. Land use. Food and Agricultural Organization of the United Nations https://www.fao.org/faostat/en/#data/RL (2021).

  248. Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  249. Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  250. The art of integrity: ecosystem marketplace’s state of the voluntary carbon markets 2022 Q3. Ecosystem Marketplace A Forest Trends Initiative https://www.ecosystemmarketplace.com/publications/state-of-the-voluntary-carbon-markets-2022/ (2022).

  251. Khanna, M. Nexus between food, energy and ecosystem services in the Mississippi River basin: policy implications and challenges. Choices 32, 1–9 (2017).

  252. Plastina, A. & Sawadgo, W. Cover crops and no-till in the I-States: non-permanence and carbon markets. Center for Agricultural and Rural Development (CARD) at Iowa State University https://ideas.repec.org/p/ias/cpaper/apr-fall-2021-7.html (2021).

  253. Prokopy, L. S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature. J. Soil Water Conserv. 74, 520–534 (2019).

    Article  Google Scholar 

  254. Fairley, P. How to rescue biofuels from a sustainable dead end. Nature 611, S15–S17 (2022).

    Article  CAS  PubMed  Google Scholar 

  255. Seyed Hosseini, N., Shang, H. & Scott, J. A. Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology. Energy 146, 47–56 (2018).

    Article  CAS  Google Scholar 

  256. Wu, W., Lin, K. H. & Chang, J. S. Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. Bioresour. Technol. 267, 550–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Mandik, Y. I. et al. Zero-waste biorefinery of oleaginous microalgae as promising sources of biofuels and biochemicals through direct transesterification and acid hydrolysis. Process Biochem. 95, 214–222 (2020).

    Article  CAS  Google Scholar 

  258. Bhatia, S. K., Bhatia, R. K., Jeon, J.-M., Kumar, G. & Yang, Y.-H. Carbon dioxide capture and bioenergy production using biological system – a review. Renew. Sustain. Energy Rev. 110, 143–158 (2019).

    Article  CAS  Google Scholar 

  259. Rahman, F. A. et al. Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 71, 112–126 (2017).

    Article  Google Scholar 

  260. Hossain, N., Mahlia, T. M. I. & Saidur, R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol. Biofuels 12, 125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Kelloway, A. & Daoutidis, P. Process synthesis of biorefineries: optimization of biomass conversion to fuels and chemicals. Ind. Eng. Chem. Res. 53, 5261–5273 (2013).

    Article  Google Scholar 

  262. Liu, B. & Zhang, Z. Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catal. 6, 326–338 (2015).

    Article  Google Scholar 

  263. Siddiqui, S., Friedman, D. & Alper, J. Opportunities and Obstacles in Large-Scale Biomass Utilization: The Role of the Chemical Sciences and Engineering Communities: A Workshop Summary (National Academies Press, 2012).

  264. Gnanasekaran, L., Priya, A. K., Thanigaivel, S., Hoang, T. K. A. & Soto-Moscoso, M. The conversion of biomass to fuels via cutting-edge technologies: explorations from natural utilization systems. Fuel 331, 125668 (2023).

    Article  CAS  Google Scholar 

  265. Taarning, E. et al. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci. 4, 793–804 (2011).

    Article  CAS  Google Scholar 

  266. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    Article  PubMed  Google Scholar 

  267. Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016).

    Article  Google Scholar 

  268. Ebikade, E. O., Sadula, S., Gupta, Y. & Vlachos, D. G. A review of thermal and thermocatalytic valorization of food waste. Green Chem. 23, 2806–2833 (2021). Examines valorization of food waste to produce important biobased fuels, bulk chemicals, dietary supplements, adsorbents and antibacterial products, as an underutilized alternative energy source.

    Article  CAS  Google Scholar 

  269. Tons of food lost or wasted globally, this year. The World Counts https://www.theworldcounts.com/challenges/people-and-poverty/hunger-and-obesity/food-waste-statistics.

  270. Frequent questions about landfill gas. US Environmental Protection Agency, Landfill Methane Outreach Program (LMOP) https://www.epa.gov/lmop/frequent-questions-about-landfill-gas#:~:Text=MSW%20landfills%20contributed%2094.2%20MMTCO,(2.3%20percent%20of%20total (2023).

  271. Gupta, Y., Bhattacharyya, S. & Vlachos, D. G. Extraction of valuable chemicals from food waste via computational solvent screening and experiments. Sep. Purif. Technol. 316, 123719 (2023).

    Article  CAS  Google Scholar 

  272. Ebikade, E. et al. The future is garbage: repurposing of food waste to an integrated biorefinery. ACS Sustain. Chem. Eng. 8, 8124–8136 (2020).

    Article  CAS  Google Scholar 

  273. Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A. & Huber, G. W. Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chem. 20, 1824–1834 (2018).

    Article  CAS  Google Scholar 

  274. Pham, T. P., Kaushik, R., Parshetti, G. K., Mahmood, R. & Balasubramanian, R. Food waste-to-energy conversion technologies: current status and future directions. Waste Manag. 38, 399–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  275. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    Article  CAS  PubMed  Google Scholar 

  276. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  277. New Greenpeace report: plastic recycling is a dead-end street — year after year, plastic recycling declines even as plastic waste increases. Greenpeace https://www.greenpeace.org/usa/news/new-greenpeace-report-plastic-recycling-is-a-dead-end-street-year-after-year-plastic-recycling-declines-even-as-plastic-waste-increases/ (2022).

  278. Osborne, Margaret. At least 85 percent of U.S. plastic waste went to landfills in 2021. Smithsonian Magazine (9 May 2022).

  279. The Future of Plastic. Discovery Report (Chemical and Engineering News, 2020).

  280. Payne, J. & Jones, M. D. The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities. ChemSusChem 14, 4041–4070 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    Article  CAS  PubMed  Google Scholar 

  282. Mirkarimi, S. M. R., Bensaid, S. & Chiaramonti, D. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: a review. Appl. Energy 327, 120040 (2022).

    Article  CAS  Google Scholar 

  283. Quesada, L., Calero, M., Martín-Lara, M. Á., Pérez, A. & Blázquez, G. Production of an alternative fuel by pyrolysis of plastic wastes mixtures. Energy Fuels 34, 1781–1790 (2020).

    Article  CAS  Google Scholar 

  284. Soni, V. K. et al. Thermochemical recycling of waste plastics by pyrolysis: a review. Energy Fuels 35, 12763–12808 (2021).

    Article  CAS  Google Scholar 

  285. Antelava, A. et al. Energy potential of plastic waste valorization: a short comparative assessment of pyrolysis versus gasification. Energy Fuels 35, 3558–3571 (2021).

    Article  CAS  Google Scholar 

  286. Lopez, G. et al. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sust. Energy Rev. 82, 576–596 (2018).

    Article  CAS  Google Scholar 

  287. Celik, G. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Rorrer, J. E., Beckham, G. T. & Roman-Leshkov, Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au 1, 8–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  289. Tan, T. et al. Upcycling plastic wastes into value-added products by heterogeneous catalysis. ChemSusChem 15, e202200522 (2022).

    Article  CAS  PubMed  Google Scholar 

  290. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  291. Mason, A. H. et al. Rapid atom-efficient polyolefin plastics hydrogenolysis mediated by a well-defined single-site electrophilic/cationic organo-zirconium catalyst. Nat. Commun. 13, 7187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Chen, L. et al. Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal. 12, 4618–4627 (2022).

    Article  CAS  Google Scholar 

  293. Nakicenovic, N., Gritsevskii, A., Grubler, A. & Riahi, K. Global Natural Gas Perspectives (International Institute for Applied Systems Analysis (IIASA), Austria and International Gas Union, Office of the Secretary General, Denmark, 2000).

  294. Vedachalam, N., Srinivasalu, S., Rajendran, G., Ramadass, G. A. & Atmanand, M. A. Review of unconventional hydrocarbon resources in major energy consuming countries and efforts in realizing natural gas hydrates as a future source of energy. J. Nat. Gas Sci. Eng. 26, 163–175 (2015).

    Article  CAS  Google Scholar 

  295. Natural gas left in the world (BOE). WORLDOMETER https://www.worldometers.info/gas/ (2017).

  296. Bernstein, L. et al. Climate Change 2007 Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change, 2007).

  297. AgSTAR data and trends. US Environmental Protection Agency https://www.epa.gov/agstar/agstar-data-and-trends (2023).

  298. Fact sheet | biogas: converting waste to energy. Environmental and Energy Study Institute https://www.eesi.org/papers/view/fact-sheet-biogasconverting-waste-to-energy (2017).

  299. Sun, L., Wang, Y., Guan, N. & Li, L. Methane activation and utilization: current status and future challenges. Energy Technol. 8, 1900826 (2020).

    Article  CAS  Google Scholar 

  300. Fan, Z., Weng, W., Zhou, J., Gu, D. & Xiao, W. Catalytic decomposition of methane to produce hydrogen: a review. J. Energy Chem. 58, 415–430 (2021).

    Article  CAS  Google Scholar 

  301. Xu, M. et al. Promotional role of NiCu alloy in catalytic performance and carbon properties for CO2-free H2 production from thermocatalytic decomposition of methane. Catal. Sci. Technol. 13, 3231–3244 (2023).

    Article  CAS  Google Scholar 

  302. C, P. et al. Methane pyrolysis with a molten Cu–Bi alloy catalyst. ACS Catal. 9, 8337–8345 (2019).

    Article  Google Scholar 

  303. J, Z. et al. Catalytic methane pyrolysis with liquid and vapor phase tellurium. ACS Catal. 10, 8223–8230 (2020).

    Article  Google Scholar 

  304. Kang, D. et al. Catalytic methane pyrolysis in molten alkali chloride salts containing iron. ACS Catal. 10, 7032–7042 (2020).

    Article  CAS  Google Scholar 

  305. Bomgardner, M. N. Synthetic genomics’ new plan for algae. Chemical and Engineering News (18 August 2014).

  306. Bettenhausen, C. Will ethanol fuel a low-carbon future? Chemical and Engineering News (12 February 2023).

  307. Bettenhausen, C. LanzaTech completes SPAC merger. Chemical and Engineering News (24 February 2023).

  308. Youngs, D. E. Process and apparatus for recovering energy from low energy density gas stream. US patent 11,614,321 B1 (2023).

  309. Bettenhausen, C. Twelve to make SAF in Washington state. Chemical and Engineering News (30 December 2023).

  310. Kuhl, K. P., Cave, E. R. & Leonard, G. Reactor with advanced architecture for the electrochemical reaction of CO2, CO and other chemical compounds. US patent 11,680,327 B2 (2023).

  311. Bettenhausen, C. Waste-to-fuel approach takes 2 steps forward. Chemical and Engineering News (29 December 2022).

  312. Tiverios, P. G., Lucas, S. H. & Rich, L. L. Processes for producing high biogenic concentration fischer-tropsch liquids derived from municipal solid wastes (MSW) feedstocks. US patent 11,655,426 (2023).

  313. Bagi, Z. et al. Biomethane: the energy storage, platform chemical and greenhouse gas mitigation target. Anaerobe 46, 13–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  314. Prajapati, R., Kohli, K., Maity, S. K. & Sharma, B. K. Potential chemicals from plastic wastes. Molecules 26, 3175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Dogu, O. et al. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 84, 100901 (2021).

  316. Audiso, G. & Bertini, F. Molecular weight and pyrolysis products distribution of polymers: I. Polystyrene. J. Anal. Appl. Pyrolysis 24, 61–74 (1992).

    Article  Google Scholar 

  317. Aguado, J. & Serrano, D. P. in Feedstock Recycling of Plastic Wastes (ed. Clark, J. H.) 31–58 (The Royal Society of Chemistry, 1999).

  318. Williams, P. T. Hydrogen and carbon nanotubes from pyrolysis-catalysis of waste plastics: a review. Waste Biomass Valorization 12, 1–28 (2020).

    Article  Google Scholar 

  319. Szmant, H. H. Organic Building Blocks of the Chemical Industry (Wiley, 1989).

  320. Tonkovich, A. L. Y. & Gerber, M. A. The Top 50 Commodity Chemicals: Impact of Catalytic Process Limitations on Energy, Environment, and Economics (Pacific Northwest National Laboratory, 1995).

  321. Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 212, 17–60 (2001).

    Article  CAS  Google Scholar 

  322. Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854-866 (2022). This review collects and classifies terms for catalyst deactivation across disciplines and provides an analysis of deactivation mechanisms to mitigate catalyst deactivation.

  323. Delmon, B. Characterization of catalyst deactivation: industrial and laboratory time scales. Appl. Catal. 15, 1–16 (1985).

    Article  CAS  Google Scholar 

  324. Sholl, D. S. & Lively, R. P. Exemplar mixtures for studying complex mixture effects in practical chemical separations. JACS Au 2, 322–327 (2022). Outlines and recommendations for early-stage research that impacts practical applications in chemical separations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Rappé, K. G. et al. Aftertreatment protocols for catalyst characterization and performance evaluation: low-temperature oxidation, storage, three-way, and NH3-SCR catalyst test protocols. Emiss. Control Sci. Technol. 5, 183–214 (2019).

    Article  Google Scholar 

  326. Bui, L. et al. A hybrid modeling approach for catalyst monitoring and lifetime prediction. ACS Eng. Au 2, 17–26 (2021).

    Article  Google Scholar 

  327. Bogojeski, M., Sauer, S., Horn, F. & Müller, K.-R. Forecasting industrial aging processes with machine learning methods. Comput. Chem. Eng. 144 (2021).

  328. Marquetand, P. Recent progress in electro- and photocatalyst discovery with machine learning. Chem. Rev. 122, 15996–15997 (2022).

    Article  CAS  PubMed  Google Scholar 

  329. Weber, R. S. et al. Modularized production of fuels and other value-added products from distributed, wasted, or stranded feedstocks. Wiley Interdiscip. Rev. Energy Environ. 7, e308 (2018).

    Google Scholar 

  330. Boateng, A. & Harlow, S. J. Research summary: exploring on-farm pyrolysis processing of biofuels. Farm Energy https://farm-energy.extension.org/research-summary-exploring-on-farm-pyrolysis-processing-of-biofuels/ (2019).

  331. Energy Lab 2.0. Karlsruhe Institute of Technology https://www.elab2.kit.edu/english/index.php.

  332. Harrison, K., Dowe, N. BETO 2021 peer review: biomethanation to upgrade biogas to pipeline grade methane. NREL https://www.nrel.gov/docs/fy21osti/79311.pdf (2021).

  333. What is pyrolysis? US Department of Agriculture https://www.ars.usda.gov/northeast-area/wyndmoor-pa/eastern-regional-research-center/docs/biomass-pyrolysis-research-1/what-is-pyrolysis/ (2021).

  334. Enerkem https://enerkem.com/.

  335. Skaggs, R. L., Coleman, A. M., Seiple, T. E. & Milbrandt, A. R. Waste-to-energy biofuel production potential for selected feedstocks in the conterminous United States. Renew. Sustain. Energy Rev. 82, 2640–2651 (2018). Estimates quantities and geographic distribution of potential biocrude oil production from selected organic wastes, including wastewater sludge, animal manure, food waste, fats oils and greases, and a hydrothermal liquefaction.

    Article  Google Scholar 

  336. Badgett, A. & Milbrandt, A. Food waste disposal and utilization in the United States: a spatial cost benefit analysis. J. Clean. Prod. 314, 128057 (2021).

    Article  Google Scholar 

  337. Laureanti, J. A., O’Hagan, M. & Shaw, W. J. Chicken fat for catalysis: a scaffold is as important for molecular complexes for energy transformations as it is for enzymes in catalytic function. Sustain. Energy Fuels 3, 3260–3278 (2019). Describes the use of biomimetic processes observed in enzymes to afford unrealized catalytic processes taking advantage of molecular chemical transformations.

    Article  CAS  Google Scholar 

  338. Dutta, A., Appel, A. M. & Shaw, W. J. Designing electrochemically reversible H2 oxidation and production catalysts. Nat. Rev. Chem. 2, 244–252 (2018).

    Article  CAS  Google Scholar 

  339. Shaw, W. J. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function. Catal. Rev. Sci. Eng. 54, 489–550 (2012).

    Article  CAS  Google Scholar 

  340. Bell, A. T., Gates, B. C., Ray, D. & Thompson, M. R. Basic Research Needs: Catalysis for Energy. Report from the U.S. Department of Energy Basic Energy Science Workshop August 6–8 2007 (Pacific Northwest National Laboratory, 2008).

  341. Lee, J. & Goodey, N. M. Catalytic contributions from remote regions of enzyme structure. Chem. Rev. 111, 7595–7624 (2011).

    Article  CAS  PubMed  Google Scholar 

  342. Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  343. Biddinger, E. J. & Modestino, M. A. Electro-organic syntheses for green chemical manufacturing. Electrochem. Soc. Interface 29, 43–47 (2020).

    Article  CAS  Google Scholar 

  344. Ryu, J. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 4, 742–752 (2021).

    Article  CAS  Google Scholar 

  345. Koshy, D. M. et al. Bridging thermal catalysis and electrocatalysis: catalyzing CO2 conversion with carbon-based materials. Angew. Chem. Int. Ed. 60, 17472–17480 (2021).

    Article  CAS  Google Scholar 

  346. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  347. Danly, D. E. Development and commercialization of the Monsanto electrochemical adiponitrile process. J. Electrochem. Soc. 131, 435C–442C (1984).

    Article  Google Scholar 

  348. Cardoso, D. S. P., Šljukić, B., Santos, D. M. F. & Sequeira, C. A. C. Organic electrosynthesis: from laboratorial practice to industrial applications. Org. Process Res. Dev. 21, 1213–1226 (2017).

    Article  CAS  Google Scholar 

  349. Mu, Y. et al. Kinetic study of nonthermal plasma activated catalytic CO2 hydrogenation over Ni supported on silica catalyst. Ind. Eng. Chem. Res. 59, 9478–9487 (2020).

    Article  CAS  Google Scholar 

  350. Deng, B. et al. Urban mining by flash Joule heating. Nat. Commun. 12, 5794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Wang, W. et al. Induction heating: an enabling technology for the heat management in catalytic processes. ACS Catal. 9, 7921–7935 (2019).

    Article  CAS  Google Scholar 

  352. Yassine, S. R., Fatfat, Z., Darwish, G. H. & Karam, P. Localized catalysis driven by the induction heating of magnetic nanoparticles. Catal. Sci. Technol. 10, 3890–3896 (2020).

    Article  CAS  Google Scholar 

  353. Mallapragada, D. S. et al. Decarbonization of the chemical industry through electrification: barriers and opportunities. Joule 7, 23–41 (2023).

    Article  CAS  Google Scholar 

  354. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    Article  CAS  PubMed  Google Scholar 

  355. Biswas, A. N. et al. Tandem electrocatalytic–thermocatalytic reaction scheme for CO2 conversion to C3 oxygenates. ACS Energy Lett. 7, 2904–2910 (2022).

    Article  CAS  Google Scholar 

  356. Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Article  Google Scholar 

  357. Mehta, P. et al. Plasma-catalytic ammonia synthesis beyond the equilibrium limit. ACS Catal. 10, 6726–6734 (2020).

    Article  CAS  Google Scholar 

  358. Liu, S., Winter, L. R. & Chen, J. G. Review of plasma-assisted catalysis for selective generation of oxygenates from CO2 and CH4. ACS Catal. 10, 2855–2871 (2020). Overview of non-thermal plasma to promote the co-conversion of CO2 and CH4 to value-added chemicals.

    Article  CAS  Google Scholar 

  359. Nangle, S. N., Sakimoto, K. K., Silver, P. A. & Nocera, D. G. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr. Opin. Chem. Biol. 41, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  360. Segev, G. et al. The 2022 solar fuels roadmap. J. Phys. D Appl. Phys. 55, 323003 (2022).

  361. Sherbo, R. S., Loh, D. M. & Nocera, D. G. in: Carbon Dioxide Electrochemistry Energy: Homogeneous and Heterogeneous Catalysis (eds Robert, M. et al.) Ch. 8 (The Royal Society of Chemistry, 2020).

  362. Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  363. Nocera, D. G. Proton-coupled electron transfer: the engine of energy conversion and storage. J. Am. Chem. Soc. 144, 1069–1081 (2022).

    Article  CAS  PubMed  Google Scholar 

  364. Cannella, D. & Jørgensen, H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol. Bioeng. 111, 59–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  365. Ladisch, M. R. Bioseparations in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2000).

  366. Liu, Z. & Smith, S. R. Enzyme recovery from biological wastewater treatment. Waste Biomass Valorization 12, 4185–4211 (2020).

    Article  Google Scholar 

  367. National Academies of Sciences, Engineering & Medicine A Research Agenda for Transforming Separation Science (National Academies Press, 2019).

  368. Stankiewicz, A. Reactive separations for process intensification: an industrial perspective. Chem. Eng. Process. 42, 137–144 (2003).

    Article  CAS  Google Scholar 

  369. Harmsen, G. J. Reactive distillation: the front-runner of industrial process intensification. Chem. Eng. Process. 46, 774–780 (2007).

    Article  CAS  Google Scholar 

  370. Kiss, A. A. & Bildea, C. S. A review of biodiesel production by integrated reactive separation technologies. J. Chem. Technol. Biotechnol. 87, 861–879 (2012).

    Article  CAS  Google Scholar 

  371. Brunetti, A., Caravella, A., Drioli, E. & Barbieri, G. in Membrane Engineering for the Treatment of Gases: Volume 2: Gas-separation Issues Combined with Membrane Reactors 2nd edn (eds Drioli, E. et al.) Ch. 1 (The Royal Society of Chemistry, 2017).

  372. Buckingham, J., Reina, T. R. & Duyar, M. S. Recent advances in carbon dioxide capture for process intensification. Carbon Capture Sci. Technol. 2, 100031 (2022).

    Article  CAS  Google Scholar 

  373. Shaffer, G. Long-term effectiveness and consequences of carbon dioxide sequestration. Nat. Geosci. 3, 464–467 (2010).

    Article  CAS  Google Scholar 

  374. Lackner, K. S. Climate change. A Guide to CO2 sequestration. Science 300, 1677–1678 (2003).

    Article  CAS  PubMed  Google Scholar 

  375. Omodolor, I. S., Otor, H. O., Andonegui, J. A., Allen, B. J. & Alba-Rubio, A. C. Dual-function materials for CO2 capture and conversion: a review. Ind. Eng. Chem. Res. 59, 17612–17631 (2020).

    Article  CAS  Google Scholar 

  376. Gadikota, G. Multiphase carbon mineralization for the reactive separation of CO2 and directed synthesis of H2. Nat. Rev. Chem. 4, 78–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  377. Li, M., Yang, K., Abdinejad, M., Zhao, C. & Burdyny, T. Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: a review. Nanoscale 14, 11892–11908 (2022).

    Article  CAS  PubMed  Google Scholar 

  378. Bogaerts, A. & Centi, G. Plasma technology for CO2 conversion: a personal perspective on prospects and gaps. Front. Energy Res. https://doi.org/10.3389/fenrg.2020.00111 (2020).

  379. Chen, T.-Y., Baker-Fales, M. & Vlachos, D. G. Operation and optimization of microwave-heated continuous-flow microfluidics. Ind. Eng. Chem. Res. 59, 10418–10427 (2020).

    Article  CAS  Google Scholar 

  380. McDonough, W. & Braungart, M. Cradle to Cradle: Remaking the Way We Make Things (North Point, 2002).

  381. Linear and circular economies: What are they and what’s the difference? Santander (13 March 2024); https://www.santander.com/en/stories/linear-and-circular-economies-what-are-they-and-whats-the-difference.

  382. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, eabc3183 (2020). Explores key properties of abundant metals and discusses how to embrace these properties in the design of efficient new catalysts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Bhosekar, A. & Lerapetritou, M. A framework for supply chain optimization for modular manufacturing with production feasibility analysis. Comput. Chem. Eng. 145, 107175 (2021).

    Article  CAS  Google Scholar 

  384. Zimmermann, A. W. et al. Techno-economic assessment guidelines for CO2 utilization. Front. Energy Res. https://doi.org/10.3389/fenrg.2020.00005 (2020).

  385. NETL CO2U LCA guidance toolkit. National Engineering Technology Laboratory https://www.netl.doe.gov/LCA/CO2U (2022).

  386. Life cycle analysis (LCA) of energy technology and pathways. National Engineering Technology Laboratory https://www.netl.doe.gov/LCA.

  387. About energy analysis. National Engineering Technology Laboratory https://www.netl.doe.gov/EA/about.

  388. Cost and performance baseline studies. National Energy Technology Laboratory https://www.netl.doe.gov/energyanalysis/details?id=729.

  389. Herron, S., Zoelle, A. & Summers, W. Cost of capturing CO2 from industrial sources report. National Energy Technology Laboratory https://www.netl.doe.gov/energy-analysis/details?id=1836 (2014).

  390. Fe/NETL CO2 Transport cost model and user’s manual. National Energy Technology Laboratory https://www.netl.doe.gov/energy-analysis/details?id=630.

  391. Quality guidelines for energy system studies (QGESS): cost estimation methnolody for NETL assessments of power plant performance. National Energy Technology Laboratory https://www.netl.doe.gov/energyanalysis/details?id=790.

  392. QGESS: capital cost scaling methodology. National Energy Technology Laboratory https://www.netl.doe.gov/energyanalysis/details?id=1026.

  393. Kabatek, P. & Zoelle, A. Cost and performance metrics used to assess carbon utilization and storage technologies. National Energy Technology Laboratory https://www.netl.doe.gov/energy-analysis/details?id=737 (2014).

  394. Mencarelli, L., Chen, Q., Pagot, A. & Grossmann, I. E. A review on superstructure optimization approaches in process system engineering. Comput. Chem. Eng. 136, 106808 (2020).

    Article  CAS  Google Scholar 

  395. McNamara, W., Passell, H., Montes, M., Jeffers, R. & Gyuk, I. Seeking energy equity through energy storage. Electr. J. 35, 107063 (2022).

    Article  Google Scholar 

  396. Finley-Brook, M. & Holloman, E. L. Empowering energy justice. Int. J. Environ. Res. Public Health 13, 926 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  397. Carley, S. & Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020).

    Article  CAS  Google Scholar 

  398. Lane, H. M., Morello-Frosch, R., Marshall, J. D. & Apte, J. S. Historical redlining is associated with present-day air pollution disparities in U.S. cities. Environ. Sci. Technol. Lett. 9, 345–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Tarekegne, B., O’Neil, R. & Twitchell, J. Energy storage as an equity asset. Curr. Sustain. Renew. Energy Rep. 8, 149–155 (2021).

    Google Scholar 

  400. Scott, M. & Powells, G. Towards a new social science research agenda for hydrogen transitions: social practices, energy justice, and place attachment. Energy Res. Soc. Sci. 61, 101346 (2020).

    Article  Google Scholar 

  401. Sovacool, B. K., Baum, C. M., Low, S., Roberts, C. & Steinhauser, J. Climate policy for a net-zero future: ten recommendations for direct air capture. Environ. Res. Lett. 17, 074014 (2022).

    Article  CAS  Google Scholar 

  402. Martenies, S. E., Akherati, A., Jathar, S. & Magzamen, S. Health and environmental justice implications of retiring two coal-fired power plants in the southern front range region of Colorado. Geohealth 3, 266–283 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  403. Clark, C. et al. Pathways to commercial liftoff: overview of societal considerations and impacts. US Department of Energy https://liftoff.energy.gov/wp-content/uploads/2023/05/20230523-Pathways-to-Commercial-Liftoff-Overview-of-Societal-Considerations-Impact.pdf (2023).

  404. Berry, B. et al. Just by design: exploring justice as a multidimensional concept in us circular economy discourse. Local. Environ. 27, 1225–1241 (2021).

    Article  Google Scholar 

  405. DeVries, T. The ocean carbon cycle. Annu. Rev. Environ. Resour. 47, 317–341 (2022).

  406. Alghoul, M. A., Poovanaesvaran, P., Sopian, K. & Sulaiman, M. Y. Review of brackish water reverse osmosis (BWRO) system designs. Renew. Sustain. Energy Rev. 13, 2661–2667 (2009).

    Article  CAS  Google Scholar 

  407. Huo, X., Vanneste, J., Cath, T. Y. & Strathmann, T. J. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine. Water Res. 175, 115688 (2020).

    Article  CAS  PubMed  Google Scholar 

  408. Water Science School Desalination. US Geological Survey https://www.usgs.gov/special-topics/water-science-school/science/desalination (2019).

  409. Larsen, T. A., Riechmann, M. E. & Udert, K. M. State of the art of urine treatment technologies: a critical review. Water Res. X 13, 100114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Zevenhoven, R. & Kilpinen, P. Control of Pollutants in Flue Gases and Fuel Gases (Helsinki University of Technology, Espoo (Finland). Laboratory of Energy Engineering and Environmental Protection, 2004).

  411. Xu, Y. et al. Oxygen-tolerant electroproduction of C2 products from simulated flue gas. Energy Environ. Sci. 13, 554–561 (2020).

    Article  CAS  Google Scholar 

  412. Gautam, M. et al. The effect of flue gas contaminants on electrochemical reduction Of CO2 to methyl formate in a dual methanol/water electrolysis system. Chem. Catal. 2, 2364–2378 (2022).

    Article  CAS  Google Scholar 

  413. Ho, H.-J., Iizuka, A. & Shibata, E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies. Ind. Eng. Chem. Res. 58, 8941–8954 (2019).

    Article  CAS  Google Scholar 

  414. Tripathi, N., Hills, C. D., Singh, R. S. & Atkinson, C. J. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. npj Clim. Atmos. Sci. 2, 35 (2019).

    Article  Google Scholar 

  415. Han, H. et al. Contaminants in biochar and suggested mitigation measures: a review. Chem. Eng. J. 429, 132287 (2022).

    Article  CAS  Google Scholar 

  416. Food wastage footprint impacts on natural resources. Food and Agriculture Organization of the United Nations (FAO) https://www.fao.org/3/i3347e/i3347e.pdf (2013).

  417. Milbrandt, A., Seiple, T., Heimiller, D., Skaggs, R. & Coleman, A. Wet waste-to-energy resources in the United States. Resour. Conserv. Recycl. 137, 32–47 (2018).

    Article  Google Scholar 

  418. Wakefield, F. Top 25 recycling facts and statistics for 2022. World Economic Forum https://www.weforum.org/agenda/2022/06/recycling-global-statistics-facts-plastic-paper/#:~:Text=1.,2 (2022).

  419. Zweifel, H., Maier, R. D. & Schiller, M. Plastics Additives Handbook 6th edn (Hanser Publications, 2009).

  420. Scheirs, J. & Kaminsky, W. Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels 1st edn. (Wiley, 2006).

  421. Bailey, M. Backgrounder: methane emissions from waste. Anaergia https://www.anaergia.com/backgrounder-methane-emissions-from-waste/ (2022).

  422. Campanelli, M. et al. Outlook for Biogas and Biomethane: Prospects for Organic Growth (International Energy Agency, 2020).

  423. Understanding global warming potentials. US Environmental Protection Agency https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#:~:Text=CO2%2C%20by%20definition%2C%20has,will%20last%20thousands%20of%20years (2023).

  424. Kidnay, A. J., Parrish, W. R. & McCartney, D. G. Fundamentals of Natural Gas Processing 3rd edn (CRC, 2019).

  425. NIST chemistry WebBook. National Institute of Standards and Technology webbook.nist.gov/.

  426. Lide, D. R. CRC Handbook of Chemistry and Physics 85th edn (CRC, 2004).

  427. Gaggioli, C. A., Stoneburner, S. J., Cramer, C. J. & Gagliardi, L. Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal. 9, 8481–8502 (2019).

    Article  CAS  Google Scholar 

  428. Rosen, A. S., Notestein, J. M. & Snurr, R. Q. Structure–activity relationships that identify metal–organic framework catalysts for methane activation. ACS Catal. 9, 3576–3587 (2019).

    Article  CAS  Google Scholar 

  429. Vitillo, J. G., Lu, C. C., Cramer, C. J., Bhan, A. & Gagliardi, L. Influence of first and second coordination environment on structural Fe(II) sites in MIL-101 for C–H bond activation in methane. ACS Catal. 11, 579–589 (2020).

    Article  Google Scholar 

  430. Bernales, V., Ortuño, M. A., Truhlar, D. G., Cramer, C. J. & Gagliardi, L. Computational design of functionalized metal–organic framework nodes for catalysis. ACS Cent. Sci. 4, 5–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  431. Raugei, S. et al. Toward molecular catalysts by computer. Acc. Chem. Res. 48, 248–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  432. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  433. Vorotnikov, V. & Vlachos, D. G. Group additivity and modified linear scaling relations for estimating surface thermochemistry on transition metal surfaces: application to furanics. J. Phys. Chem. C 119, 10417–10426 (2015).

    Article  CAS  Google Scholar 

  434. Wang, Y., Chen, T. Y. & Vlachos, D. G. NEXTorch: a design and Bayesian optimization toolkit for chemical sciences and engineering. J. Chem. Inf. Model. 61, 5312–5319 (2021).

    Article  CAS  PubMed  Google Scholar 

  435. Batchu, S. P. et al. Accelerating manufacturing for biomass conversion via integrated process and bench digitalization: a perspective. React. Chem. Eng. 7, 813–832 (2022).

    Article  CAS  Google Scholar 

  436. Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  437. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  438. Guo, J. et al. Automated chemical reaction extraction from scientific literature. J. Chem. Inf. Model. 62, 2035–2045 (2022). Use of chemical data from already existing scientific literature to afford access to the vast store of catalysis information that has not been stored in accordance with FAIR data principles.

    Article  CAS  PubMed  Google Scholar 

  439. Report for the ASCR Workshop on the Management and Storage of Scientific Data (US Department of Energy, 2022).

  440. Implementing FAIR data for people and machines: impacts and implications. National Academies https://www.nationalacademies.org/our-work/implementing-fair-data-for-people-and-machines-impacts-and-implications (2019).

  441. Byna, S. et al. Report for the ASCR Workshop on the Management and Storage of Scientific Data. (US Department of Energy, 2022); https://doi.org/10.2172/1845707.

  442. FAIR research data management: basics for chemists. NFDI4Chem https://www.nfdi4chem.de/a-workshop-for-institutions-fair-research-data-management-basics-for-chemists/ (2022).

  443. International FAIR convergence symposium. Committee on Data International Science Council https://codata.org/events/conferences/fair-convergence-symposium-2022/ (2022).

  444. Addressing rigor and reproducibility in heterogeneous, thermal catalysis. NSF and DOE Sponsored Workshop https://www.scholars.northwestern.edu/en/projects/addressing-rigor-and-reproducibility-in-heterogeneous-thermal-cat-3 (2022).

  445. Catalysis hub. SUNCAT Center for Interface Science and Catalysis https://www.catalysis-hub.org/ (2019).

  446. Repository for samples, reactions and related research data. Chemotion Repository https://www.chemotion-repository.net/welcome (2020).

  447. COD open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers. Crystallography Open Database https://www.crystallography.net/cod/ (2004).

  448. EELS data base: inner and outer shell excitation spectrum repository. Electron Energy Loss Spectroscopy Data Base https://eelsdb.eu/ (2016).

  449. ioChem-BD - The computational chemistry results repository. ioChem-BD https://www.iochem-bd.org (2015).

  450. Mass spectrometry interactive virtual environment. Center for Computational Mass Spectrometry https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp (2020).

  451. Yu, X. Y. et al. Mesoscopic structure facilitates rapid CO2 transport and reactivity in CO2 capture solvents. J. Phys. Chem. Lett. 9, 5765–5771 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Roadmap is the outcome of a workshop entitled Closing the Carbon Cycle: Opportunities in Energy Science, organized by seven Department of Energy, DOE, national laboratories and held at Pacific Northwest National Laboratory on July 18 and 19, 2022, with co-organization from Ames, Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and SLAC National Laboratories. In attendance were representatives from ten national laboratories, 35 academic institutions, several government agencies and four companies. The authors are indebted to the agencies responsible for the funding of their individual and group research efforts, without which this work would not have been possible. These include the US DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences; DOE-Office of Science Basic Energy Science Materials Science and Engineering; DOE-Fossil Energy and Carbon Management (FECM); DOE-Energy Efficiency and Renewable Energy (EERE); DOE-EERE, Hydrogen Fuel Cell Technology Office (HFTO); DOE-EERE, Bioenergy Technologies Office (BETO); DOE-EERE, Advanced Materials and Manufacturing Technology Office (AMMTO); DOE-EERE, Industrial Efficiency and Decarbonization Office (IEDO); US Department of Agriculture National Institute of Food and Agriculture; and National Science Foundation. The authors thank S. Soroko and C. E. Galvin (Argonne National Laboratory) for the creation of Fig. 1b, T. Bowman (Brookhaven National Laboratory) for creating the Box 1 figure, J. Bauer (National Renewable Energy Laboratory) for the creation of Fig. 3, and C. Johnson (Pacific Northwest National Laboratory) for the creation of Figs. 1a and 4. The authors also acknowledge K. Krzan and B. Mundy for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

W.J.S., M.K.K, S.R.B., M.D., W.A.T., S.D.S., F.M.T., D.J.H., T.A., E.J.B., A.S.H., R. Rana, J.L.M., R.M.R., J.A.S., D.G.V. and B.D.V. researched data for the article. W.J.S., S.R.B., M.D., W.A.T., M.K.K., S.D.S., F.M.T., D.J.H., T.A., S.B., C.D., L.G., M.L., J.Y.Y., J.G.C., J.L.M., R.M.R., J.A.S., D.G.V., B.D.V., J.R.M., B.T., J.K., T.P., E.A., B.A.H., W.H., C.K., K.K., D.S.S., J.L., P.L., D. Malhotra, K.T.M., C.P.O., R.M.P., L.Q., J.A.R., R. Rousseau, J.C.R., M.L.S., E.A.S., M.B.S., Y.S., C.J.T., K.J.G., W.T. and K.S.W. contributed substantially to discussion of the content. W.J.S., S.R.B., M.D., W.A.T., M.K.K., S.D.S., F.M.T., D.J.H., T.A., S.B., C.D., L.G., M.L., J.Y.Y., E.J.B., P.F.B., R.A.E., L.A.S., J.L.J., R.C.B., R.M.B., P.K.D., O.R.L., D. Miller, R. Rallo, A.D.S., R.S.W., J.G.C., J.L.M., R.M.R., J.A.S., D.C.V. and B.D.V. wrote the article. W.J.S., S.R.B., M.D., W.A.T., M.K.K., S.D.S., F.M.T., D.J.H., T.A., P.F.B., R.A.E, L.A.S., J.L.J., J.G.C., J.R.M., B.T., J.K. and M.E.B. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Wendy J. Shaw, Michelle K. Kidder, Simon R. Bare, Massimiliano Delferro, James R. Morris, Francesca M. Toma or Sanjaya D. Senanayake.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Livia Cabernard, Rachael Rothman, Chris Bataille and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Carbon dioxide capture and storage

A process in which a relatively pure stream of carbon dioxide (CO2) from industrial and energy-related sources is separated (captured), conditioned, compressed and transported to a storage location for long-term isolation from the atmosphere — sometimes referred to as carbon capture and storage. This could result in long-term storage (hundreds to thousands of years).

Carbon dioxide capture and utilization

A process in which CO2 is captured and then used to produce a new product. If the CO2 is stored in a product for a climate-relevant time horizon, this is referred to as carbon dioxide capture, utilization and storage. Only then, and only combined with CO2 recently removed from the atmosphere, can carbon dioxide capture, utilization and storage lead to CO2 removal. Carbon dioxide capture and utilization is sometimes referred to as carbon dioxide capture and use.

Circular economy

Materials, products and services are designed for reuse for the same application and are kept in circulation for as long as possible, seeking to extract maximum value and create minimum waste from all parts of the process.

Clean hydrogen

Molecular hydrogen (H2) produced with zero or next-to-zero carbon emissions.

Decarbonization

Typically refers to a reduction of the carbon emissions associated with electricity production, industry and transport.

Defossilization

Reduction of the use of fossil-derived chemicals, fuels and materials.

Direct air capture

(DAC). CO2 capture from the air.

Direct ocean capture

CO2 capture from the ocean.

Distributed chemical processes

Chemical processes operated at scales that are 2–3 orders of magnitude smaller than the centralized refineries we have today, typically handling on the order of tons to thousands of tons of feedstock per day. These distributed processes may operate at lower capital equipment utilization and/or efficiency than typical refineries to take advantage of lower operating costs.

Keeping carbon in play

A circular carbon cycle in which every carbon atom within products and waste streams is reused, ideally multiple times.

Large-scale energy storage

Storage greater than 1 GWh.

Linear economy

Raw materials are collected and transformed into products that consumers use and discard after a single use.

Long-duration energy storage

Storage systems to provide energy for time scales greater than 100 h.

Net-zero CO2 emissions

Net-zero CO2 emissions are achieved when anthropogenic CO2 emissions are balanced globally by anthropogenic CO2 removals over a specified period. Net-zero CO2 emissions are also referred to as carbon neutrality. See also net-zero emissions.

Net-zero emissions

Net-zero emissions are achieved when anthropogenic emissions of greenhouse gases to the atmosphere are balanced by anthropogenic removals over a specified period. When multiple greenhouse gases are involved, the quantification of net-zero emissions depends on the climate metric chosen to compare the emissions of different gases (such as global warming potential, global temperature change potential and others, as well as the chosen time horizon).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw,