Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Selenium chemistry for spatio-selective peptide and protein functionalization

Abstract

The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) — being found in both toxic compounds and also harnessed by nature for essential biochemical processes — has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.

Key points

  • Se chemistry can be used for peptide and protein modifications in a site-selective manner.

  • Se chemistry can be performed effectively and efficiently and in a traceless manner, that is, Se can be eliminated selectively upon protein spatio-specific protein functionalization.

  • Regioselective diselenide bond formation has a tremendous effect on protein folding, stability and solubility, which can be useful for therapeutic protein applications.

  • The development of the Se-based chemistry for spatio-specific manipulation of peptides and proteins has a tremendous potential for in vitro and in vivo targeting in the field of chemical biology and therapeutic developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatio-specific peptide and protein functionalization using Se chemistry.
Fig. 2: Metal-free Se chemistry for peptide and protein spatio-specific functionalization.
Fig. 3: The transition metal-mediated radical chemistry for the functionalization of peptides and proteins at Sec.
Fig. 4: The umpolung approaches for Sec-specific functionalization of peptides and proteins.
Fig. 5: Se-allyl Sec (ASec) as a chemical handle for chemoselective protein modification.
Fig. 6: Traceless Se chemistry for chemoselective protein modification.
Fig. 7: Intelligently selected diselenide bonds for simplified and enhanced protein folding of cysteine-rich proteins.

Similar content being viewed by others

References

  1. Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    CAS  Google Scholar 

  2. Shiraiwa, K., Cheng, R., Nonaka, H., Tamura, T. & Hamachi, I. Chemical tools for endogenous protein labeling and profiling. Cell Chem. Biol. 27, 970–985 (2020).

    CAS  PubMed  Google Scholar 

  3. Kang, M. S., Kong, T. W. S., Khoo, J. Y. X. & Loh, T.-P. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody–drug conjugates. Chem. Sci. 12, 13613–13647 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Liu, Y. et al. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochem. Pharmacol. 190, 114636 (2021).

    CAS  PubMed  Google Scholar 

  5. Tan, Y., Wu, H., Wei, T. & Li, X. Chemical protein synthesis: advances, challenges, and outlooks. J. Am. Chem. Soc. 142, 20288–20298 (2020).

    CAS  Google Scholar 

  6. Adakkattil, R., Thakur, K. & Rai, V. Reactivity and selectivity principles in native protein bioconjugation. Chem. Rec. 21, 1941–1956 (2021).

    CAS  PubMed  Google Scholar 

  7. Tamura, T. & Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J. Am. Chem. Soc. 141, 2782–2799 (2019).

    CAS  PubMed  Google Scholar 

  8. Lindstedt, P. R., Taylor, R. J., Bernardes, G. J. L. & Vendruscolo, M. Facile installation of post-translational modifications on the tau protein via chemical mutagenesis. ACS Chem. Neurosci. 12, 557–561 (2021).

    CAS  PubMed  Google Scholar 

  9. Wright, T. H. et al. Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354, agg1465 (2016).

    Google Scholar 

  10. Jbara, M., Maity, S. K. & Brik, A. Palladium in the chemical synthesis and modification of proteins. Angew. Chem. Int. Ed. 56, 10644–10655 (2017).

    CAS  Google Scholar 

  11. Tang, W. & Becker, M. L. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev. 43, 7013–7039 (2014).

    CAS  PubMed  Google Scholar 

  12. Afonso, C. F. et al. Cysteine-assisted click-chemistry for proximity-driven, site-specific acetylation of histones. Angew. Chem. Int. Ed. 61, e202208543 (2022).

    CAS  Google Scholar 

  13. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    CAS  PubMed  Google Scholar 

  14. Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 103–113 (2016).

    CAS  PubMed  Google Scholar 

  15. Mousa, R., Notis Dardashti, R. & Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. 56, 15818–15827 (2017).

    CAS  Google Scholar 

  16. Rayman, M. P. Selenium intake, status, and health: a complex relationship. Hormones 19, 9–14 (2020).

    PubMed  Google Scholar 

  17. Kryukov, G. V. et al. Characterization of mammalian selenoproteomes. Science 300, 1439–1443 (2003).

    ADS  CAS  PubMed  Google Scholar 

  18. Maroney, M. J. & Hondal, R. J. Selenium versus sulfur: reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med. 127, 228–237 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

    CAS  PubMed  Google Scholar 

  20. Stadtman, T. C. Selenocysteine. Annu. Rev. Biochem. 65, 83–100 (1996). This paper is an important review discussing biosynthesis and specific insertion of Sec as the 21st encoded amino acid in proteins and the relative catalytic activities of Cys-containing versus Sec-containing enzymes.

    CAS  PubMed  Google Scholar 

  21. Mousa, R., Reddy, P. S. & Metanis, N. Chemical protein synthesis through selenocysteine chemistry. Synlett 28, 1389–1393 (2017).

    CAS  Google Scholar 

  22. Metanis, N. & Hilvert, D. Natural and synthetic selenoproteins. Curr. Opin. Chem. Biol. 22, 27–34 (2014).

    CAS  PubMed  Google Scholar 

  23. Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).

    CAS  Google Scholar 

  24. Pehlivan, Ö., Waliczek, M., Kijewska, M. & Stefanowicz, P. Selenium in peptide chemistry. Molecules 28, 3198 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Maeda, H., Katayama, K., Matsuno, H. & Uno, T. 3′-(2,4-Dinitrobenzenesulfonyl)-2′,7′-dimethylfluorescein as a fluorescent probe for selenols. Angew. Chem. Int. Ed. 45, 1810–1813 (2006).

    CAS  Google Scholar 

  26. Zhang, B. et al. Selective selenol fluorescent probes: design, synthesis, structural determinants, and biological applications. J. Am. Chem. Soc. 137, 757–769 (2015).

    CAS  PubMed  Google Scholar 

  27. Eaton, J. K. et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 16, 497–506 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Eaton, J. K., Ruberto, R. A., Kramm, A., Viswanathan, V. S. & Schreiber, S. L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J. Am. Chem. Soc. 141, 20407–20415 (2019).

    CAS  PubMed  Google Scholar 

  29. Bernardim, B. et al. Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nat. Protoc. 14, 86–99 (2019).

    CAS  PubMed  Google Scholar 

  30. Akkapeddi, P. et al. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia 33, 2155–2168 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ferhati, X. et al. Single mutation on trastuzumab modulates the stability of antibody–drug conjugates built using acetal-based linkers and thiol-maleimide chemistry. J. Am. Chem. Soc. 144, 5284–5294 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Taylor, R. J. et al. π-Clamp-mediated homo- and heterodimerization of single-domain antibodies via site-specific homobifunctional conjugation. J. Am. Chem. Soc. 144, 13026–13031 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hofer, T., Thomas, J. D., Burke, T. R. Jr & Rader, C. An engineered selenocysteine defines a unique class of antibody derivatives. Proc. Natl Acad. Sci. USA 105, 12451–12456 (2008).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  34. Walsh, S. J. et al. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).

    CAS  PubMed  Google Scholar 

  35. Patterson, J. T., Asano, S., Li, X., Rader, C. & Barbas, C. F. III Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug. Chem. 25, 1402–1407 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Pedzisa, L., Li, X., Rader, C. & Roush, W. R. Assessment of reagents for selenocysteine conjugation and the stability of selenocysteine adducts. Org. Biomol. Chem. 14, 5141–5147 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Li, X. et al. Stable and potent selenomab-drug conjugates. Cell Chem. Biol. 24, 433–442.e6 (2017).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  38. Siemion, I. Z. Compositional frequencies of amino acids in the proteins and the genetic code. Biosystems 32, 163–170 (1994).

    CAS  PubMed  Google Scholar 

  39. Lu, H. S. et al. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity. Arch. Biochem. Biophys. 362, 1–11 (1999).

    CAS  PubMed  Google Scholar 

  40. Metanis, N., Keinan, E. & Dawson, P. E. Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J. Am. Chem. Soc. 128, 16684–16691 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Gundlach, H. G., Stein, W. H. & Moore, S. The nature of the amino acid residues involved in the inactivation of ribonuclease by iodoacetate. J. Biol. Chem. 234, 1754–1760 (1959).

    CAS  PubMed  Google Scholar 

  42. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  43. Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 562, 563–568 (2018).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kim, J. et al. Site-selective functionalization of methionine residues via photoredox catalysis. J. Am. Chem. Soc. 142, 21260–21266 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Xie, L.-J., Liu, L. & Cheng, L. Modifying methionine on proteins. ChemBioChem 21, 461–463 (2020).

    CAS  PubMed  Google Scholar 

  46. Lang, S., Spratt, D. E., Guillemette, J. G. & Palmer, M. Dual-targeted labeling of proteins using cysteine and selenomethionine residues. Anal. Biochem. 342, 271–279 (2005).

    CAS  PubMed  Google Scholar 

  47. Flood, D. T., Yan, N. L. & Dawson, P. E. Post-translational backbone engineering through selenomethionine-mediated incorporation of Freidinger lactams. Angew. Chem. Int. Ed. 57, 8697–8701 (2018).

    CAS  Google Scholar 

  48. Flood, D. T. et al. Selenomethionine as an expressible handle for bioconjugations. Proc. Natl Acad. Sci. USA 118, e2005164118 (2021). This study has shown a very practical approach to utilize selenomethionine as a valuable handle for bioconjugations.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).

    CAS  PubMed  Google Scholar 

  50. Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).

    CAS  PubMed  Google Scholar 

  51. Laps, S., Atamleh, F., Kamnesky, G., Sun, H. & Brik, A. General synthetic strategy for regioselective ultrafast formation of disulfide bonds in peptides and proteins. Nat. Commun. 12, 870 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  52. Laps, S. et al. Insight on the order of regioselective ultrafast formation of disulfide bonds in (antimicrobial) peptides and miniproteins. Angew. Chem. Int. Ed. 60, 24137–24143 (2021).

    CAS  Google Scholar 

  53. Laserna, V. et al. Dichloro butenediamides as irreversible site-selective protein conjugation reagent. Angew. Chem. Int. Ed. 60, 23750–23755 (2021).

    CAS  Google Scholar 

  54. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

    CAS  PubMed  Google Scholar 

  55. Yin, Y. et al. Chemical and ribosomal synthesis of topologically controlled bicyclic and tricyclic peptide scaffolds primed by selenoether formation. Angew. Chem. Int. Ed. 58, 4880–4885 (2019).

    CAS  Google Scholar 

  56. Morimoto, J., Hayashi, Y., Iwasaki, K. & Suga, H. Flexizymes: their evolutionary history and the origin of catalytic function. Acc. Chem. Res. 44, 1359–1368 (2011).

    CAS  PubMed  Google Scholar 

  57. Kawakami, T. et al. Diverse backbone-cyclized peptides via codon reprogramming. Nat. Chem. Biol. 5, 888–890 (2009).

    CAS  PubMed  Google Scholar 

  58. Josephson, K., Hartman, M. C. T. & Szostak, J. W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).

    CAS  PubMed  Google Scholar 

  59. Quaderer, R. & Hilvert, D. Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem. Commun. 22, 2620–2621 (2002).

    Google Scholar 

  60. Malins, L. R., Mitchell, N. J. & Payne, R. J. Peptide ligation chemistry at selenol amino acids. J. Pept. Sci. 20, 64–77 (2014).

    CAS  PubMed  Google Scholar 

  61. Dawson, P. E., Muir, T. W., Clarklewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    ADS  CAS  PubMed  Google Scholar 

  62. Yorimitsu, H., Kotora, M. & Patil, N. T. Special issue: recent advances in transition-metal catalysis. Chem. Rec. 21, 3335–3337 (2021).

    CAS  PubMed  Google Scholar 

  63. Zhou, Q.-L. Transition-metal catalysis and organocatalysis: where can progress be expected? Angew. Chem. Int. Ed. 55, 5352–5353 (2016).

    CAS  Google Scholar 

  64. Albada, B. & Metzler-Nolte, N. Organometallic-peptide bioconjugates: synthetic strategies and medicinal applications. Chem. Rev. 116, 11797–11839 (2016).

    CAS  PubMed  Google Scholar 

  65. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    ADS  CAS  PubMed  Google Scholar 

  66. Beld, J., Woycechowsky, K. J. & Hilvert, D. Selenoglutathione: efficient oxidative protein folding by a diselenide. Biochemistry 46, 5382–5390 (2007).

    CAS  PubMed  Google Scholar 

  67. Huber, R. E. & Criddle, R. S. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch. Biochem. Biophys. 122, 164–173 (1967).

    CAS  PubMed  Google Scholar 

  68. Nauser, T., Dockheer, S., Kissner, R. & Koppenol, W. H. Catalysis of electron transfer by selenocysteine. Biochemistry 45, 6038–6043 (2006).

    CAS  PubMed  Google Scholar 

  69. Zhao, Z. & Metanis, N. Copper-mediated selenazolidine deprotection enables one-pot chemical synthesis of challenging proteins. Angew. Chem. Int. Ed. 58, 14610–14614 (2019).

    CAS  Google Scholar 

  70. Zhao, Z. & Metanis, N. Utilizing copper-mediated deprotection of selenazolidine for cyclic peptide synthesis. J. Org. Chem. 85, 1731–1739 (2020).

    CAS  PubMed  Google Scholar 

  71. Zhao, Z., Mousa, R. & Metanis, N. One-pot chemical protein synthesis utilizing Fmoc-masked selenazolidine to address the redox functionality of human selenoprotein F. Chem. Eur. J. 28, e202200279 (2022).

    CAS  PubMed  Google Scholar 

  72. deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    CAS  PubMed  Google Scholar 

  73. Townsend, S. D. et al. Advances in proline ligation. J. Am. Chem. Soc. 134, 3912–3916 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Metanis, N., Keinan, E. & Dawson, P. E. Traceless ligation of cysteine peptides using selective deselenization. Angew. Chem. Int. Ed. 49, 7049–7053 (2010). This pioneering study reported the chemoselective deselenization of Sec to alanine in the presence of unprotected cysteine residues as a method for chemical protein synthesis.

    CAS  Google Scholar 

  75. Dery, S. et al. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci. 6, 6207–6212 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Reddy, P. S., Dery, S. & Metanis, N. Chemical synthesis of proteins with non-strategically placed cysteines using selenazolidine and selective deselenization. Angew. Chem. Int. Ed. 55, 992–995 (2016).

    CAS  Google Scholar 

  77. Malins, L. R., Mitchell, N. J., McGowan, S. & Payne, R. J. Oxidative deselenization of selenocysteine: applications for programmed ligation at serine. Angew. Chem. Int. Ed. 54, 12716–12721 (2015).

    CAS  Google Scholar 

  78. Dawson, P. E. Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Isr. J. Chem. 51, 862–867 (2011).

    CAS  Google Scholar 

  79. Malins, L. R. & Payne, R. J. Synthesis and utility of β-selenol-phenylalanine for native chemical ligation–deselenization chemistry. Org. Lett. 14, 3142–3145 (2012).

    CAS  PubMed  Google Scholar 

  80. Guan, I., Williams, K., Liu, J. S. T. & Liu, X. Synthetic thiol and selenol derived amino acids for expanding the scope of chemical protein synthesis. Front. Chem. 9, 826764 (2022).

    PubMed Central  PubMed  Google Scholar 

  81. Oroz, P. et al. Strategies for the synthesis of selenocysteine derivatives. Synthesis 54, 255–270 (2021).

    Google Scholar 

  82. Yin, H. et al. Stereoselective and divergent construction of β-thiolated/selenolated amino acids via photoredox-catalyzed asymmetric Giese reaction. J. Am. Chem. Soc. 142, 14201–14209 (2020). This paper provides a general and practical strategy for the preparation of β-thiolated or selenolated amino acids that has been developed by photocatalytic asymmetric Giese reaction.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Bechtel, T. J. & Weerapana, E. From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17, 1600391 (2017).

    Google Scholar 

  84. Huang, D., Zhang, L. & Sun, Y. Rational design of disulfide bridges in BbPETaseCD for enhancing the enzymatic performance in PET degradation. Molecules 28, 3528 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Barber, D. R. & Hondal, R. J. Gain of function conferred by selenocysteine: catalytic enhancement of one-electron transfer reactions by thioredoxin reductase. Protein Sci. 28, 79–89 (2019).

    CAS  PubMed  Google Scholar 

  86. Nauser, T., Steinmann, D., Grassi, G. & Koppenol, W. H. Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis. Biochemistry 53, 5017–5022 (2014).

    CAS  PubMed  Google Scholar 

  87. Nauser, T., Steinmann, D. & Koppenol, W. H. Why do proteins use selenocysteine instead of cysteine? Amino Acids 42, 39–44 (2012).

    CAS  PubMed  Google Scholar 

  88. Zhao, Z., Shimon, D. & Metanis, N. Chemoselective copper-mediated modification of selenocysteines in peptides and proteins. J. Am. Chem. Soc. 143, 12817–12824 (2021). This paper provides an important and useful method for the radical chemoselective modification of seleno-peptides and seleno-proteins using hydrazine and copper chemistry.

    CAS  PubMed  Google Scholar 

  89. Zhang, C., Vinogradova, E. V., Spokoyny, A. M., Buchwald, S. L. & Pentelute, B. L. Arylation chemistry for bioconjugation. Angew. Chem. Int. Ed. 58, 4810–4839 (2019).

    CAS  Google Scholar 

  90. Cohen, D. T. et al. A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nat. Chem. 11, 78–85 (2019). This study displayed that the umpolung chemistry of Sec with electron-withdrawing groups can provide a platform for the construction of diverse peptide–small molecule and protein–small molecule conjugates.

    ADS  CAS  PubMed  Google Scholar 

  91. Cohen, D. T., Zhang, C., Pentelute, B. L. & Buchwald, S. L. An umpolung approach for the chemoselective arylation of selenocysteine in unprotected peptides. J. Am. Chem. Soc. 137, 9784–9787 (2015). In this work, the authors have pioneered an umpolung chemistry for enabling site-directed arylation of Sec in unprotected peptides.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Maillard, B., Forrest, D. & Ingold, K. U. Kinetic applications of electron paramagnetic resonance spectroscopy. 27. Isomerization of cyclopropylcarbinyl to allylcarbinyl. J. Am. Chem. Soc. 98, 7024–7026 (1976).

    CAS  Google Scholar 

  93. Griffiths, R. C. et al. Site-selective modification of peptides and proteins via interception of free-radical-mediated dechalcogenation. Angew. Chem. Int. Ed. 59, 23659–23667 (2020). This article covers the exploration of the interception of deselenization and desulfurization for chemical protein modification.

    CAS  Google Scholar 

  94. Williams, P. J. H. et al. New approach to the detection of short-lived radical intermediates. J. Am. Chem. Soc. 144, 15969–15976 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Dowman, L. J. et al. Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine. Nat. Commun. 13, 6885 (2022). This study provides an alternative photocatalytic Sec trapping of the deselenizated Ala radical for peptide and protein functionalization providing a selenoether bond.

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  96. Fitzpatrick, N. A. & Musacchio, P. Z. Shining light on diselenide bonds. Nat. Chem. 15, 163–164 (2023).

    CAS  PubMed  Google Scholar 

  97. Mackay, A. S. et al. Electrochemical modification of polypeptides at selenocysteine. Angew. Chem. Int. Ed. 62, e202313037 (2023).

    CAS  Google Scholar 

  98. Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    ADS  CAS  Google Scholar 

  99. McLean, J. T., Benny, A., Nolan, M. D., Swinand, G. & Scanlan, E. M. Cysteinyl radicals in chemical synthesis and in nature. Chem. Soc. Rev. 50, 10857–10894 (2021).

    CAS  PubMed  Google Scholar 

  100. Arsenyan, P., Lapcinska, S., Ivanova, A. & Vasiljeva, J. Peptide functionalization through the generation of selenocysteine electrophile. Eur. J. Org. Chem. 2019, 4951–4961 (2019).

    CAS  Google Scholar 

  101. Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Wang, Y., Liu, P., Chang, J., Xu, Y. & Wang, J. Site-specific selenocysteine incorporation into proteins by genetic engineering. ChemBioChem 22, 2918–2924 (2021).

    CAS  PubMed  Google Scholar 

  103. Liu, J., Cheng, R. & Rozovsky, S. Synthesis and semisynthesis of selenopeptides and selenoproteins. Curr. Opin. Chem. Biol. 46, 41–47 (2018).

    PubMed Central  PubMed  Google Scholar 

  104. Palioura, S., Sherrer, R. L., Steitz, T. A., Söll, D. & Simonović, M. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science 325, 321–325 (2009).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  105. Wang, J., Schiller, S. M. & Schultz, P. G. A biosynthetic route to dehydroalanine-containing proteins. Angew. Chem. Int. Ed. 46, 6849–6851 (2007).

    CAS  Google Scholar 

  106. Shandell, M. A., Tan, Z. & Cornish, V. W. Genetic code expansion: a brief history and perspective. Biochemistry 60, 3455–3469 (2021).

    CAS  PubMed  Google Scholar 

  107. Liu, J. et al. Site-specific incorporation of selenocysteine using an expanded genetic code and palladium-mediated chemical deprotection. J. Am. Chem. Soc. 140, 8807–8816 (2018). This study provides an efficient approach to prepare selenoproteins via site-specific incorporation of protected Sec followed by Pd-mediated deprotection.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lin, Y. A. et al. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc. 135, 12156–12159 (2013). This paper shows that incorporated Se-allyl–Sec promoted cross-metathesis via the pre-coordination to the metal centre of Se for protein functionalization, which further displayed the versatility of Se chemistry.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Chalker, J. M. et al. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem. Sci. 2, 1666–1676 (2011).

    CAS  Google Scholar 

  110. Marques, M. C. et al. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat. Chem. Biol. 13, 544–550 (2017).

    ADS  CAS  PubMed  Google Scholar 

  111. Carvalho, C. M. L., Lu, J., Zhang, X., Arnér, E. S. J. & Holmgren, A. Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. FASEB J. 25, 370–381 (2011).

    CAS  PubMed  Google Scholar 

  112. Pratesi, A. et al. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488-499): an ESI-MS investigation. J. Inorg. Biochem. 136, 161–169 (2014).

    CAS  PubMed  Google Scholar 

  113. Bindoli, A. et al. Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord. Chem. Rev. 253, 1692–1707 (2009).

    CAS  Google Scholar 

  114. Boyington, J. C., Gladyshev, V. N., Khangulov, S. V., Stadtman, T. C. & Sun, P. D. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 1305–1308 (1997).

    CAS  PubMed  Google Scholar 

  115. Gabbiani, C. et al. Thioredoxin reductase, an emerging target for anticancer metallodrugs. Enzyme inhibition by cytotoxic gold(III) compounds studied with combined mass spectrometry and biochemical assays. MedChemComm 2, 50–54 (2011).

    CAS  Google Scholar 

  116. Arnér, E. S. J. Common modifications of selenocysteine in selenoproteins. Essays Biochem. 64, 45–53 (2019).

    Google Scholar 

  117. Rape, M. Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19, 59–70 (2018).

    CAS  PubMed  Google Scholar 

  118. Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Yang, Q., Zhao, J., Chen, D. & Wang, Y. E3 ubiquitin ligases: styles, structures and functions. Mol. Biomed. 2, 23 (2021).

    PubMed Central  PubMed  Google Scholar 

  120. Yang, R., Pasunooti, K. K., Li, F., Liu, X.-W. & Liu, C.-F. Dual native chemical ligation at lysine. J. Am. Chem. Soc. 131, 13592–13593 (2009).

    CAS  PubMed  Google Scholar 

  121. Ajish Kumar, K. S., Haj-Yahya, M., Olschewski, D., Lashuel, H. A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. 48, 8090–8094 (2009).

    CAS  Google Scholar 

  122. Pan, M. et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc. 138, 7429–7435 (2016).

    CAS  PubMed  Google Scholar 

  123. Chatterjee, C., McGinty, R. K., Pellois, J.-P. & Muir, T. W. Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Ed. 46, 2814–2818 (2007).

    CAS  Google Scholar 

  124. Dardashti, R. N. et al. Selenolysine: a new tool for traceless isopeptide bond formation. Chem. Eur. J. 26, 4952–4957 (2020). This work explores the generality and robustness of selenolysine for the construction of isopeptide bonds.

    CAS  PubMed  Google Scholar 

  125. Kulkarni, S. S., Watson, E. E., Premdjee, B., Conde-Frieboes, K. W. & Payne, R. J. Diselenide–selenoester ligation for chemical protein synthesis. Nat. Protoc. 14, 2229–2257 (2019).

    CAS  PubMed  Google Scholar 

  126. Mitchell, N. J. et al. Rapid additive-free selenocystine–selenoester peptide ligation. J. Am. Chem. Soc. 137, 14011–14014 (2015). The paper is firstly describing the elegant synthesis of proteins using a diselenide–selenoester ligation in a rapid, additive-free manner, which allows ligations to be performed at micromolar concentrations.

    CAS  PubMed  Google Scholar 

  127. Mitchell, N. J. et al. Accelerated protein synthesis via one-pot ligation-deselenization chemistry. Chem 2, 703–715 (2017).

    CAS  Google Scholar 

  128. Durek, T. & Alewood, P. F. Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew. Chem. Int. Ed. 50, 12042–12045 (2011).

    CAS  Google Scholar 

  129. Conibear, A. C., Watson, E. E., Payne, R. J. & Becker, C. F. W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev. 47, 9046–9068 (2018).

    CAS  PubMed  Google Scholar 

  130. Dadova, J., Galan, S. R. & Davis, B. G. Synthesis of modified proteins via functionalization of dehydroalanine. Curr. Opin. Chem. Biol. 46, 71–81 (2018).

    CAS  PubMed  Google Scholar 

  131. Peng, X., Xu, K., Zhang, Q., Liu, L. & Tan, J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. Trends Chem. 4, 643–657 (2022).

    CAS  Google Scholar 

  132. Liu, J., Chen, Q. & Rozovsky, S. Utilizing selenocysteine for expressed protein ligation and bioconjugations. J. Am. Chem. Soc. 139, 3430–3437 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Whedon, S. D. et al. Selenocysteine as a latent bioorthogonal electrophilic probe for deubiquitylating enzymes. J. Am. Chem. Soc. 138, 13774–13777 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Okeley, N. M., Zhu, Y. & van Der Donk, W. A. Facile chemoselective synthesis of dehydroalanine-containing peptides. Org. Lett. 2, 3603–3606 (2000).

    CAS  PubMed  Google Scholar 

  135. Levengood, M. R. & van der Donk, W. A. Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat. Protoc. 1, 3001–3010 (2006).

    CAS  PubMed  Google Scholar 

  136. Seebeck, F. P. & Szostak, J. W. Ribosomal synthesis of dehydroalanine-containing peptides. J. Am. Chem. Soc. 128, 7150–7151 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Wang, Z. U. et al. A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 51, 5232–5234 (2012).

    CAS  PubMed  Google Scholar 

  138. Creighton, T. E., Zapun, A. & Darby, N. J. Mechanisms and catalysts of disulphide bond formation in proteins. Trends Biotechnol. 13, 18–23 (1995).

    CAS  PubMed  Google Scholar 

  139. Moroder, L., Besse, D., Musiol, H.-J., Rudolph-Böhner, S. & Siedler, F. Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies. Pept. Sci. 40, 207–234 (1996).

    CAS  Google Scholar 

  140. Beld, J., Woycechowsky, K. J. & Hilvert, D. Catalysis of oxidative protein folding by small-molecule diselenides. Biochemistry 47, 6985–6987 (2008).

    CAS  PubMed  Google Scholar 

  141. Beld, J., Woycechowsky, K. J. & Hilvert, D. Small-molecule diselenides catalyze oxidative protein folding in vivo. ACS Chem. Biol. 5, 177–182 (2010).

    CAS  PubMed  Google Scholar 

  142. Beld, J., Woycechowsky, K. J. & Hilvert, D. Diselenides as universal oxidative folding catalysts of diverse proteins. J. Biotechnol. 150, 481–489 (2010).

    CAS  PubMed  Google Scholar 

  143. Metanis, N., Foletti, C., Beld, J. & Hilvert, D. Selenoglutathione-mediated rescue of kinetically trapped intermediates in oxidative protein folding. Isr. J. Chem. 51, 953–959 (2011).

    CAS  Google Scholar 

  144. Reddy, P. S. & Metanis, N. Small molecule diselenide additives for in vitro oxidative protein folding. Chem. Commun. 52, 3336–3339 (2016).

    Google Scholar 

  145. Besse, D., Siedler, F., Diercks, T., Kessler, H. & Moroder, L. The redox potential of selenocystine in unconstrained cyclic peptides. Angew. Chem. Int. Ed. 36, 883–885 (1997).

    CAS  Google Scholar 

  146. de Araujo, A. D. et al. Total synthesis of the analgesic conotoxin MrVIB through selenocysteine-assisted folding. Angew. Chem. Int. Ed. 50, 6527–6529 (2011).

    Google Scholar 

  147. Metanis, N. & Hilvert, D. Strategic use of non-native diselenide bridges to steer oxidative protein folding. Angew. Chem. Int. Ed. 51, 5585–5588 (2012).

    CAS  Google Scholar 

  148. Metanis, N. & Hilvert, D. Harnessing selenocysteine reactivity for oxidative protein folding. Chem. Sci. 6, 322–325 (2015).

    CAS  PubMed  Google Scholar 

  149. Chatrenet, B. & Chang, J. Y. The folding of hirudin adopts a mechanism of trial and error. J. Biol. Chem. 267, 3038–3043 (1992).

    CAS  PubMed  Google Scholar 

  150. Mousa, R. et al. Diselenide crosslinks for enhanced and simplified oxidative protein folding. Commun. Chem. 4, 30 (2021). The diselenide bridges at different positions including native or non-native crosslinks in hirudin display different effects on oxidative protein folding.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Ryle, A. P., Sanger, F., Smith, L. F. & Kitai, R. The disulphide bonds of insulin. Biochem. J. 60, 541–556 (1955).

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Katsoyannis, P. G., Fukuda, K., Tometsko, A., Suzuki, K. & Tilak, M. Insulin peptides. X. The synthesis of the B-chain of insulin and its combination with natural or synthetic A-chain to generate insulin activity. J. Am. Chem. Soc. 86, 930–932 (1964).

    CAS  Google Scholar 

  153. Dixon, G. H. & Wardlaw, A. C. Regeneration of insulin activity from the separated and inactive A and B chains. Nature 188, 721–724 (1960).

    ADS  CAS  PubMed  Google Scholar 

  154. Katsoyannis, P. G. Synthesis of insulin. Science 154, 1509–1514 (1966).

    ADS  CAS  PubMed  Google Scholar 

  155. Lin, N.-P. & Chou, D. H.-C. Modifying insulin to improve performance. Science 376, 1270–1271 (2022).

    ADS  CAS  PubMed  Google Scholar 

  156. Arai, K. et al. Preparation of selenoinsulin as a long-lasting insulin analogue. Angew. Chem. Int. Ed. 56, 5522–5526 (2017).

    CAS  Google Scholar 

  157. Dhayalan, B. et al. Reassessment of an innovative insulin analogue excludes protracted action yet highlights the distinction between external and internal diselenide bridges. Chem. Eur. J. 26, 4695–4700 (2020).

    CAS  PubMed  Google Scholar 

  158. Weil-Ktorza, O. et al. Substitution of an internal disulfide bridge with a diselenide enhances both foldability and stability of human insulin. Chem. Eur. J. 25, 8513–8521 (2019). This paper highlights the enhanced effect of an internal diselenide substitution on the foldability and stability of human insulin.

    CAS  PubMed  Google Scholar 

  159. Chen, Y.-S. et al. Se-glargine II. Native function of a basal insulin analog stabilized by an internal diselenide bridge. Preprint at bioRxiv https://doi.org/10.1101/2023.06.24.546337 (2023).

  160. Weil-Ktorza, O., Dhayalan, B., Chen, Y.-S., Weiss, M. A. & Metanis, N. Se-glargine I: chemical synthesis of a basal insulin analogue stabilized by an internal diselenide bridge. ChemBioChem https://doi.org/10.1002/cbic.202300818 (2023).

  161. WHO. in Trace Elements in Human Nutrition and Health 105–122 (Macmillan/Ceuteric, 1996).

  162. Barcza Stockler-Pinto, M., Carrero, J. J., De Carvalho Cardoso Weide, L., Franciscato Cozzolino, S. M. & Mafra, D. Effect of selenium supplementation via Brazil nut (Bertholletia excelsa, Hbk) on thyroid hormones levels in hemodialysis patients: a pilot study. Nutr. Hosp. 32, 1808–1812 (2015).

    PubMed  Google Scholar 

  163. Cengiz, E. et al. ISPAD Clinical Practice Consensus Guidelines 2022: insulin treatment in children and adolescents with diabetes. Pediatr. Diabetes 23, 1277–1296 (2022).

    PubMed  Google Scholar 

  164. Thyer, R. et al. Custom selenoprotein production enabled by laboratory evolution of recoded bacterial strains. Nat. Biotechnol. 36, 624–631 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Reich, H. J., Renga, J. M. & Reich, I. L. Organoselenium chemistry. Conversion of ketones to enones by selenoxide syn elimination. J. Am. Chem. Soc. 97, 5434–5447 (1975).

    CAS  Google Scholar 

  166. Klayman, D. L. & Griffin, T. S. Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J. Am. Chem. Soc. 95, 197–199 (1973).

    CAS  Google Scholar 

  167. Gill, R., Zayats, M. & Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008).

    CAS  Google Scholar 

  168. O’Hagan, M. P. et al. Photocleavable ortho-nitrobenzyl-protected DNA architectures and their applications. Chem. Rev. 123, 6839–6887 (2023).

    PubMed Central  PubMed  Google Scholar 

  169. Hartrampf, N. et al. Synthesis of proteins by automated flow chemistry. Science 368, 980–987 (2020).

    CAS  PubMed  Google Scholar 

  170. McMillan, A. E., Wu, W. W. X., Nichols, P. L., Wanner, B. M. & Bode, J. W. A vending machine for drug-like molecules — automated synthesis of virtual screening hits. Chem. Sci. 13, 14292–14299 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Mackay, A. S., Payne, R. J. & Malins, L. R. Electrochemistry for the chemoselective modification of peptides and proteins. J. Am. Chem. Soc. 144, 23–41 (2022).

    CAS  PubMed  Google Scholar 

  172. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    ADS  CAS  PubMed  Google Scholar 

  173. Basith, S., Manavalan, B., Hwan Shin, T. & Lee, G. Machine intelligence in peptide therapeutics: a next-generation tool for rapid disease screening. Med. Res. Rev. 40, 1276–1314 (2020).

    CAS  PubMed  Google Scholar 

  174. Ghosh, T., Fridman, N., Kosa, M. & Maayan, G. Self-assembled cyclic structures from copper(II) peptoids. Angew. Chem. Int. Ed. 57, 7703–7708 (2018).

    CAS  Google Scholar 

  175. Dengler, S., Douat, C. & Huc, I. Differential peptide multi-macrocyclizations at the surface of a helical foldamer template. Angew. Chem. Int. Ed. 61, e202211138 (2022).

    ADS  CAS  Google Scholar 

  176. Hondal, R. J. & Ruggles, E. L. Differing views of the role of selenium in thioredoxin reductase. Amino Acids 41, 73–89 (2011).

    CAS  PubMed  Google Scholar 

  177. Lee, K. H. & Jeong, D. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (review). Mol. Med. Rep. 5, 299–304 (2012).

    CAS  PubMed  Google Scholar 

  178. Gieselman, M. D., Xie, L. & van der Donk, W. A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett. 3, 1331–1334 (2001).

    CAS  PubMed  Google Scholar 

  179. Hondal, R. J., Nilsson, B. L. & Raines, R. T. Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc. 123, 5140–5141 (2001).

    CAS  PubMed  Google Scholar 

  180. Quaderer, R., Sewing, A. & Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta 84, 1197–1206 (2001).

    CAS  Google Scholar 

  181. Laps, S., Satish, G. & Brik, A. Harnessing the power of transition metals in solid-phase peptide synthesis and key steps in the (semi)synthesis of proteins. Chem. Soc. Rev. 50, 2367–2387 (2021).

    CAS  PubMed  Google Scholar 

  182. Kulkarni, S. S. et al. Expressed protein selenoester ligation. Angew. Chem. Int. Ed. 61, e202200163 (2022).

    CAS  Google Scholar 

  183. Li, Y., Liu, J., Zhou, Q., Zhao, J. & Wang, P. Preparation of peptide selenoesters from their corresponding acyl hydrazides. Chin. J. Chem. 39, 1861–1866 (2021).

    CAS  Google Scholar 

  184. Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

    CAS  PubMed  Google Scholar 

  185. Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).

    CAS  Google Scholar 

  186. Jin, K., Li, T., Chow, H. Y., Liu, H. & Li, X. P−B desulfurization: an enabling method for protein chemical synthesis and site-specific deuteration. Angew. Chem. Int. Ed. 56, 14607–14611 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank members of the Metanis group for the helpful discussions. N.M. thanks the support from the Israel Science Foundation (1388/22). S.L. is supported by the Emergency Postdoctoral Fellowships for Israeli Researchers in Israel of the Israel Academy of Sciences and Humanities.

Author information

Authors and Affiliations

Authors

Contributions

The authors Z.Z. and S.L. contributed equally to all aspects of the article. N.M. conceived and supervised the writing. All authors researched data and wrote the article.

Corresponding author

Correspondence to Norman Metanis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Ping Wang, Piotr Stefanowicz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Laps, S., Gichtin, J.S. et al. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat Rev Chem 8, 211–229 (2024). https://doi.org/10.1038/s41570-024-00579-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00579-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing