Abstract
Catalytic reactions involving molecular hydrogen are at the heart of many transformations in the chemical industry. Classically, hydrogenations are carried out on Pd, Pt, Ru or Ni catalysts. However, the use of supported Au catalysts has garnered attention in recent years owing to their exceptional selectivity in hydrogenation reactions. This is despite the limited understanding of the physicochemical aspects of hydrogen activation and reaction on Au surfaces. A rational design of new improved catalysts relies on making better use of the hydrogenating properties of Au. This Review analyses the strategies utilized to improve hydrogen–Au interactions, from addressing the importance of the Au particle size to exploring alternative mechanisms for H2 dissociation on Au cations and Au–ligand interfaces. These insights hold the potential to drive future applications of Au catalysis.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wood, B. & Wise, H. The role of adsorbed hydrogen in the catalytic hydrogenation of cyclohexene. J. Catal. 5, 135–145 (1966).
Fujitani, T., Nakamura, I., Akita, T., Okamura, M. & Haruta, M. Hydrogen dissociation by gold clusters. Angew. Chem. Int. Ed. 48, 9515–9518 (2009).
Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).
Navarro-Jaén, S. et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 5, 564–579 (2021).
Shuo, C., Wojcieszak, R., Dumeignil, F., Marceau, E. & Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 118, 11023–11117 (2018).
Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).
Hvolbæk, B. et al. Catalytic activity of Au nanoparticles. Nano Today 2, 14–18 (2007).
Fujita, T. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775–780 (2012).
Wang, H. et al. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal. 4, 418–424 (2021).
Lopez, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004).
Qian, H., Zhu, M., Wu, Z. & Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45, 1470–1479 (2012).
Haruta, M. When gold is not noble: catalysis by nanoparticles. Chem. Rec. 3, 75–87 (2003).
Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).
Bond, G. C. Hydrogenation by gold catalysts: an unexpected discovery and a current assessment. Gold Bull. 49, 53–61 (2016).
Delgado, J. A. & Godard, C. in Recent Advances in Nanoparticle Catalysis. Molecular Catalysis, Vol. 1 (eds Van Leeuwen, P. W. N. M. & Claver, C.) 303–344 (Springer, Cham, 2020).
Hutchings, G. Heterogeneous gold catalysis. ACS Cent. Sci. 4, 1095–1101 (2018).
Bus, E., Miller, J. T. & van Bokhoven, J. A. Hydrogen chemisorption on Al2O3-supported gold catalysts. J. Phys. Chem. B 109, 14581–14587 (2005).
Green, I. X., Tang, W., Neurock, M. & Yates, J. T. Low-temperature catalytic H2 oxidation over Au nanoparticle/TiO2 dual perimeter sites. Angew. Chem. Int. Ed. 50, 10186–10189 (2011).
Manzoli, M., Chiorino, A., Vindigni, F. & Boccuzzi, F. Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: a FTIR study. Catal. Today 181, 62–67 (2012).
Boronat, M., Concepcion, P. & Corma, A. Unravelling the nature of gold surface sites by combining IR spectroscopy and DFT calculations. implications in catalysis. J. Phys. Chem. C 113, 16772–16784 (2009).
Watkins, W. L. & Borensztein, Y. Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys. Chem. Chem. Phys. 19, 27397–27405 (2017).
Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).
Sun, X. et al. Facile synthesis of precious-metal single-site catalysts using organic solvents. Nat. Chem. 12, 560–567 (2020).
Guan, Q. et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 4, 840–849 (2021).
Chmielewski, A. et al. Reshaping dynamics of gold nanoparticles under H2 and O2 at atmospheric pressure. ACS Nano 13, 2024–2033 (2019).
Bai, S. T. et al. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem. Soc. Rev. 50, 4259–4298 (2021).
Gesesse, D. et al. A soft-chemistry assisted strong metal–support interaction on a designed plasmonic core–shell photocatalyst for enhanced photocatalytic hydrogen production. Nanoscale 12, 7011–7023 (2020).
Ferraz P, C. et al. Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations. Green Chem. 23, 8453–8457 (2021).
Nguyen, K. T. et al. Unusual hydrogen implanted gold with lattice contraction at increased hydrogen content. Nat. Commun. 12, 1560 (2021).
Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854–866 (2022).
Segura, Y., Lopez, N. & Perez-Ramirez, J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: triple- versus double-bond activation. J. Catal. 247, 383–386 (2007).
van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).
Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).
Nørskov, J., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).
Milone, C. et al. Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts. J. Catal. 222, 348–356 (2004).
Silva, R., Fiorio, J., Vidinha, P. & Rossi, L. M. Gold catalysis for selective hydrogenation of aldehydes and valorization of bio‐based chemical building blocks. J. Braz. Chem. Soc. 30, 2162–2169 (2019).
Fiorio, J. & Rossi, L. Clean protocol for deoxygenation of epoxides to alkenes via catalytic hydrogenation using Au. Catal. Sci. Technol. 11, 312–318 (2021).
Fiorio, J., Lopez, N. & Rossi, L. Gold–ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 heterolytic activation by frustrated Lewis pairs. ACS Catal. 7, 2973–2980 (2017).
Whittaker, T. et al. H2 oxidation over supported Au nanoparticle catalysts: evidence for heterolytic H2 activation at the metal–support interface. J. Am. Chem. Soc. 140, 16469–16487 (2018).
Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).
Lin, R. et al. Design of single Au atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem. Int. Ed. 58, 504–509 (2019).
Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).
Fiorio, J. et al. Accessing frustrated Lewis pair chemistry through robust Au@N-doped carbon for selective hydrogenation of alkynes. ACS Catal. 8, 3516–3524 (2018).
Lu, G. et al. Gold catalyzed hydrogenations of small imines and nitriles: enhanced reactivity of Au surface toward H2 via collaboration with a Lewis base. Chem. Sci. 5, 1082–1090 (2014).
Almora-Barrios, N., Cano, I., van Leeuwen, P. & Lopez, N. Concerted chemoselective hydrogenation of acrolein on secondary phosphine oxide decorated gold nanoparticles. ACS Catal. 7, 3949–3954 (2017).
Lv, X., Lu, G., Wang, Z.-Q., Xu, Z.-N. & Guo, G.-C. Computational evidence for Lewis base-promoted CO2 hydrogenation to formic acid on gold surfaces. ACS Catal. 7, 4519–4526 (2017).
Ren, D. et al. An unusual chemoselective hydrogenation of quinoline compounds using supported Au catalysts. J. Am. Chem. Soc. 134, 17592–17598 (2012).
Cano, I., Chapman, A. M., Urakawa, A. & van Leeuwen, P. W. N. M. Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. J. Am. Chem. Soc. 136, 2520–2528 (2014).
Cano, I. et al. Air-stable gold nanoparticles ligated by secondary phosphine oxides as catalyst for the chemoselective hydrogenation of substituted aldehydes: a remarkable ligand effect. J. Am. Chem. Soc. 137, 7718–7727 (2015).
Garcia-Melchor, M. & Lopez, N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: the example of CeO2. J. Phys. Chem. C 118, 10921–10926 (2014).
Aireddy, D. & Ding, K. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 12, 4707–4723 (2022).
Lyalin, A. & Taketsugu, T. A computational investigation of H2adsorption and dissociation on Au nanoparticles supported on TiO2 surface. Faraday Discuss. 152, 185–201 (2011).
Du, X. et al. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 11, 5811 (2020).
Fu, Q., Wagner, T., Olliges, S. & Carstanjen, H.-D. Metal–oxide interfacial reactions: encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 109, 944–951 (2005).
Sun, Y. et al. Gold catalysts containing interstitial carbon atoms boost hydrogenation activity. Nat. Commun. 11, 4600 (2020).
Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).
Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).
Linic, S., Christopher, P., Xin, H. & Marimuthu, A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 46, 1890–1899 (2013).
Brus, L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).
Quiroz, J. et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett. 18, 7289–7297 (2018).
Barbosa, E. C. M. et al. Reaction pathway dependence in plasmonic catalysis: hydrogenation as a model molecular transformation. Chem. Eur. J. 24, 12330–12339 (2018).
Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).
Pyykkö, P. Relativity, gold, closed-shell interactions, and CsAu⋅NH3. Angew. Chem. Int. Ed. 41, 3573–3578 (2002).
De Vos, D. & Sels, B. Gold redox catalysis for selective oxidation of methane to methanol. Angew. Chem. Int. Ed. 117, 30–32 (2005).
Guzman, J. et al. CO oxidation catalyzed by supported Au: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed. 44, 4778–4781 (2005).
Jones, C. et al. Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold. Angew. Chem. Int. Ed. 116, 4726–4729 (2004).
Corma, A., Gonzalez-Arellano, C., Iglesias, M. & Sanchez, F. Gold nanoparticles and gold(III) complexes as general and selective hydrosilylation catalysts. Angew. Chem. Int. Ed. 119, 7966–7968 (2007).
Wang, L. et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nat. Commun. 9, 1362 (2018).
Zhang, L., Ren, Y., Liu, W., Wang, A. & Zhang, T. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 5, 653–672 (2018).
Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).
Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).
Cao, S. et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat. Chem. 11, 1098–1105 (2019).
Corma, A., Salnikov, O. G., Barskiy, D. A., Kovtunov, K. V. & Koptyug, I. V. Single-atom Au catalysis in the context of developments in parahydrogen-induced polarization. Chem. Eur. J. 21, 7012–7015 (2015).
Qiao, B. et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 8, 2913–2924 (2015).
Guzman, J. & Gates, B. C. Structure and reactivity of a mononuclear gold-complex catalyst supported on magnesium oxide. Angew. Chem. Int. Ed. 115, 115–714 (2003).
Comas-Vives, A. et al. Single-site homogeneous and heterogenized gold(III) hydrogenation catalysts: mechanistic implications. J. Am. Chem. Soc. 128, 4756–4765 (2006).
Sárkány, A., Schay, Z., Frey, K., Széles, É. & Sajó, I. Some features of acetylene hydrogenation on Au-iron oxide catalyst. Appl. Catal. A Gen. 380, 133–141 (2010).
Zhang, X., Shi, H. & Xu, B. Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 Catalysts. Angew. Chem. Int. Ed. 44, 7132–7135 (2005).
He, X. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 10, 3663 (2019).
Single atom catalysts push the boundaries of heterogeneous catalysis. Nat. Commun. 12, 5884 (2021).
Wang, Z., Gu, L., Song, L., Wang, H. & Yu, R. Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Mater. Chem. Front. 2, 1024–1030 (2018).
Liu, J. et al. Ligand–metal charge transfer induced via adjustment of textural properties controls the performance of single-atom catalysts during photocatalytic degradation. ACS Appl. Mater. Interfaces 13, 25858–25867 (2021).
Vilé, G. et al. Azide-alkyne click chemistry over a heterogeneous copper-based single-atom catalyst. ACS Catal. 12, 2947–2958 (2022).
Gan, T. et al. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 389, 124490 (2020).
Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004).
Fu, Q. & Luo, Y. Catalytic activity of single transition-metal atom doped in Cu(111) surface for heterogeneous hydrogenation. J. Phys. Chem. C 117, 14618–14624 (2013).
Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008).
Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).
Boucher, M. B. et al. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys. Chem. Chem. Phys. 15, 12187–12196 (2013).
Sankar, M. et al. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 41, 8099–8139 (2012).
Maroun, F., Ozanam, F., Magnussen, O. M. & Behm, R. J. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 293, 1811–1814 (2001).
Venkatachalam, S. & Jacob, T. Hydrogen adsorption on Pd-containing Au(111) bimetallic surfaces. Phys. Chem. Chem. Phys. 11, 3263–3270 (2009).
van der Hoeven, J. E. S. et al. Entropic control of H–D exchange rates over dilute Pd-in-Au alloy nanoparticle catalysts. ACS Catal. 11, 6971–6981 (2021).
Buurmans, I. & Weckhuysen, B. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).
Sambur, J. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).
Yin, H. et al. Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst. Nat. Catal. 3, 834–842 (2020).
Lucci, F. R. et al. Controlling hydrogen activation, spillover, and desorption with Pd−Au single-atom alloys. J. Phys. Chem. Lett. 7, 480–485 (2016).
Liu, J. et al. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts. ACS Catal. 9, 8757–8765 (2019).
Shi, D. et al. Probing the core and surface composition of nanoalloy to rationalize its selectivity: study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation. Chem Catal. 2, 1686–1708 (2022).
Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).
van der Hoeven, J. E. S. et al. Unlocking synergy in bimetallic catalysts by core–shell design. Nat. Mater. 20, 1216–1220 (2021).
Luneau, M. et al. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun. Chem. 3, 46 (2020).
Datye, A. K. & Guo, H. Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nat. Commun. 12, 895 (2021).
Zhao, X., Fang, R., Kong, X. & Li, Y. Atomic design of dual-metal hetero-single-atoms for high-efficiency synthesis of natural flavones. Nat. Commun. 13, 7873 (2022).
Tian, S. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 12, 3181 (2021).
Zhang, T. et al. The dual-active-site tandem catalyst containing Ru single atoms and Ni nanoparticles boosts CO2 methanation. Appl. Catal. B 323, 122190 (2023).
Paul Sabatier Nobel Lecture. NobelPrize.org https://www.nobelprize.org/prizes/chemistry/1912/sabatier/lecture/ (2024).
Hastert, R. C. Hydrogenation of fatty acids. J. Am. Oil Chem. Soc. 56, 732A–739A (1979).
Luza, L. et al. Revealing hydrogenation reaction pathways on naked gold nanoparticles. ACS Catal. 7, 2791–2799 (2017).
Luza, L. et al. Tunneling effects in confined gold nanoparticle hydrogenation catalysts. Phys. Chem. Chem. Phys. 21, 16615–16622 (2019).
Eom, N., Messing, M., Johansson, J. & Deppert, K. General trends in core–shell preferences for bimetallic nanoparticles. ACS Nano 15, 8883–8895 (2021).
Ledendecker, M. et al. Engineering gold-platinum core-shell nanoparticles by self-limitation in solution. Commun. Chem. 5, 71 (2022).
Bruno, L., Scuderi, M., Priolo, F., Falciola, L. & Mirabella, S. Enlightening the bimetallic effect of Au@Pd nanoparticles on Ni oxide nanostructures with enhanced catalytic activity. Sci. Rep. 13, 3203 (2023).
Zhao, J. et al. Ir promotion of TiO2 supported Au catalysts for selective hydrogenation of cinnamaldehyde. Catal. Commun. 54, 72–76 (2014).
Li, H. et al. Improved chemoselective hydrogenation of crotonaldehyde over bimetallic AuAg/SBA-15 catalyst. J. Catal. 330, 135–144 (2015).
Chen, J., Sun, W., Wang, Y. & Fang, W. Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure. Green. Energy Environ. 6, 546–556 (2021).
Tkachenko, G., Truong, V. G., Esporlas, C. L., Sanskriti, I. & Nic Chormaic, S. Evanescent field trapping and propulsion of Janus particles along optical nanofibers. Nat. Commun. 14, 1691 (2023).
Acknowledgements
R.W. discloses support for publication of this work from Programme Investissement d’Avenir (I-SITE ULNE / ANR-16-IDEX-0004 ULNE), Métropole Européenne de Lille (MEL) and Region Hauts-de-France for the (CatBioInnov project).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Mathilde Luneau, Hio Tong Ngan, Philippe Sautet and the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Dimitratos, N., Vilé, G., Albonetti, S. et al. Strategies to improve hydrogen activation on gold catalysts. Nat Rev Chem 8, 195–210 (2024). https://doi.org/10.1038/s41570-024-00578-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-024-00578-2