Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies to improve hydrogen activation on gold catalysts

Abstract

Catalytic reactions involving molecular hydrogen are at the heart of many transformations in the chemical industry. Classically, hydrogenations are carried out on Pd, Pt, Ru or Ni catalysts. However, the use of supported Au catalysts has garnered attention in recent years owing to their exceptional selectivity in hydrogenation reactions. This is despite the limited understanding of the physicochemical aspects of hydrogen activation and reaction on Au surfaces. A rational design of new improved catalysts relies on making better use of the hydrogenating properties of Au. This Review analyses the strategies utilized to improve hydrogen–Au interactions, from addressing the importance of the Au particle size to exploring alternative mechanisms for H2 dissociation on Au cations and Au–ligand interfaces. These insights hold the potential to drive future applications of Au catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of H2 activation on heterogeneous Au catalysts and strategies to enhance H2 dissociation on Au.
Fig. 2: Selective hydrogenation on Au catalysts in the presence of ligands and in the case of Au-N-doped catalyst.
Fig. 3: Hot electron-induced H–D formation at 23 °C on 1% Au/SiO2 catalyst.
Fig. 4: Au single-atom catalysts.
Fig. 5: Spillover region identification.
Fig. 6: Morphology in the structure of the bimetallic Au@Pt core–shell nanocatalyst.

Similar content being viewed by others

References

  1. Wood, B. & Wise, H. The role of adsorbed hydrogen in the catalytic hydrogenation of cyclohexene. J. Catal. 5, 135–145 (1966).

    CAS  Google Scholar 

  2. Fujitani, T., Nakamura, I., Akita, T., Okamura, M. & Haruta, M. Hydrogen dissociation by gold clusters. Angew. Chem. Int. Ed. 48, 9515–9518 (2009).

    CAS  Google Scholar 

  3. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    PubMed  Google Scholar 

  4. Navarro-Jaén, S. et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 5, 564–579 (2021).

    PubMed  Google Scholar 

  5. Shuo, C., Wojcieszak, R., Dumeignil, F., Marceau, E. & Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 118, 11023–11117 (2018).

    Google Scholar 

  6. Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).

    ADS  CAS  PubMed  Google Scholar 

  7. Hvolbæk, B. et al. Catalytic activity of Au nanoparticles. Nano Today 2, 14–18 (2007).

    Google Scholar 

  8. Fujita, T. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775–780 (2012).

    ADS  CAS  PubMed  Google Scholar 

  9. Wang, H. et al. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal. 4, 418–424 (2021).

    CAS  Google Scholar 

  10. Lopez, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004).

    CAS  Google Scholar 

  11. Qian, H., Zhu, M., Wu, Z. & Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45, 1470–1479 (2012).

    CAS  PubMed  Google Scholar 

  12. Haruta, M. When gold is not noble: catalysis by nanoparticles. Chem. Rec. 3, 75–87 (2003).

    CAS  PubMed  Google Scholar 

  13. Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).

    CAS  PubMed  Google Scholar 

  14. Bond, G. C. Hydrogenation by gold catalysts: an unexpected discovery and a current assessment. Gold Bull. 49, 53–61 (2016).

    CAS  Google Scholar 

  15. Delgado, J. A. & Godard, C. in Recent Advances in Nanoparticle Catalysis. Molecular Catalysis, Vol. 1 (eds Van Leeuwen, P. W. N. M. & Claver, C.) 303–344 (Springer, Cham, 2020).

  16. Hutchings, G. Heterogeneous gold catalysis. ACS Cent. Sci. 4, 1095–1101 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bus, E., Miller, J. T. & van Bokhoven, J. A. Hydrogen chemisorption on Al2O3-supported gold catalysts. J. Phys. Chem. B 109, 14581–14587 (2005).

    CAS  PubMed  Google Scholar 

  18. Green, I. X., Tang, W., Neurock, M. & Yates, J. T. Low-temperature catalytic H2 oxidation over Au nanoparticle/TiO2 dual perimeter sites. Angew. Chem. Int. Ed. 50, 10186–10189 (2011).

    CAS  Google Scholar 

  19. Manzoli, M., Chiorino, A., Vindigni, F. & Boccuzzi, F. Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: a FTIR study. Catal. Today 181, 62–67 (2012).

    CAS  Google Scholar 

  20. Boronat, M., Concepcion, P. & Corma, A. Unravelling the nature of gold surface sites by combining IR spectroscopy and DFT calculations. implications in catalysis. J. Phys. Chem. C 113, 16772–16784 (2009).

    CAS  Google Scholar 

  21. Watkins, W. L. & Borensztein, Y. Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys. Chem. Chem. Phys. 19, 27397–27405 (2017).

    CAS  PubMed  Google Scholar 

  22. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    ADS  CAS  Google Scholar 

  23. Sun, X. et al. Facile synthesis of precious-metal single-site catalysts using organic solvents. Nat. Chem. 12, 560–567 (2020).

    CAS  PubMed  Google Scholar 

  24. Guan, Q. et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 4, 840–849 (2021).

    CAS  Google Scholar 

  25. Chmielewski, A. et al. Reshaping dynamics of gold nanoparticles under H2 and O2 at atmospheric pressure. ACS Nano 13, 2024–2033 (2019).

    CAS  PubMed  Google Scholar 

  26. Bai, S. T. et al. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem. Soc. Rev. 50, 4259–4298 (2021).

    CAS  PubMed  Google Scholar 

  27. Gesesse, D. et al. A soft-chemistry assisted strong metal–support interaction on a designed plasmonic core–shell photocatalyst for enhanced photocatalytic hydrogen production. Nanoscale 12, 7011–7023 (2020).

    CAS  PubMed  Google Scholar 

  28. Ferraz P, C. et al. Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations. Green Chem. 23, 8453–8457 (2021).

    Google Scholar 

  29. Nguyen, K. T. et al. Unusual hydrogen implanted gold with lattice contraction at increased hydrogen content. Nat. Commun. 12, 1560 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  30. Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854–866 (2022).

    Google Scholar 

  31. Segura, Y., Lopez, N. & Perez-Ramirez, J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: triple- versus double-bond activation. J. Catal. 247, 383–386 (2007).

    CAS  Google Scholar 

  32. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Google Scholar 

  33. Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    CAS  Google Scholar 

  34. Nørskov, J., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    PubMed  Google Scholar 

  35. Milone, C. et al. Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts. J. Catal. 222, 348–356 (2004).

    CAS  Google Scholar 

  36. Silva, R., Fiorio, J., Vidinha, P. & Rossi, L. M. Gold catalysis for selective hydrogenation of aldehydes and valorization of bio‐based chemical building blocks. J. Braz. Chem. Soc. 30, 2162–2169 (2019).

    CAS  Google Scholar 

  37. Fiorio, J. & Rossi, L. Clean protocol for deoxygenation of epoxides to alkenes via catalytic hydrogenation using Au. Catal. Sci. Technol. 11, 312–318 (2021).

    CAS  Google Scholar 

  38. Fiorio, J., Lopez, N. & Rossi, L. Gold–ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 heterolytic activation by frustrated Lewis pairs. ACS Catal. 7, 2973–2980 (2017).

    CAS  Google Scholar 

  39. Whittaker, T. et al. H2 oxidation over supported Au nanoparticle catalysts: evidence for heterolytic H2 activation at the metal–support interface. J. Am. Chem. Soc. 140, 16469–16487 (2018).

    CAS  PubMed  Google Scholar 

  40. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    ADS  CAS  PubMed  Google Scholar 

  41. Lin, R. et al. Design of single Au atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem. Int. Ed. 58, 504–509 (2019).

    ADS  CAS  Google Scholar 

  42. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    PubMed  Google Scholar 

  43. Fiorio, J. et al. Accessing frustrated Lewis pair chemistry through robust Au@N-doped carbon for selective hydrogenation of alkynes. ACS Catal. 8, 3516–3524 (2018).

    CAS  Google Scholar 

  44. Lu, G. et al. Gold catalyzed hydrogenations of small imines and nitriles: enhanced reactivity of Au surface toward H2 via collaboration with a Lewis base. Chem. Sci. 5, 1082–1090 (2014).

    ADS  CAS  Google Scholar 

  45. Almora-Barrios, N., Cano, I., van Leeuwen, P. & Lopez, N. Concerted chemoselective hydrogenation of acrolein on secondary phosphine oxide decorated gold nanoparticles. ACS Catal. 7, 3949–3954 (2017).

    CAS  Google Scholar 

  46. Lv, X., Lu, G., Wang, Z.-Q., Xu, Z.-N. & Guo, G.-C. Computational evidence for Lewis base-promoted CO2 hydrogenation to formic acid on gold surfaces. ACS Catal. 7, 4519–4526 (2017).

    CAS  Google Scholar 

  47. Ren, D. et al. An unusual chemoselective hydrogenation of quinoline compounds using supported Au catalysts. J. Am. Chem. Soc. 134, 17592–17598 (2012).

    CAS  PubMed  Google Scholar 

  48. Cano, I., Chapman, A. M., Urakawa, A. & van Leeuwen, P. W. N. M. Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. J. Am. Chem. Soc. 136, 2520–2528 (2014).

    CAS  PubMed  Google Scholar 

  49. Cano, I. et al. Air-stable gold nanoparticles ligated by secondary phosphine oxides as catalyst for the chemoselective hydrogenation of substituted aldehydes: a remarkable ligand effect. J. Am. Chem. Soc. 137, 7718–7727 (2015).

    CAS  PubMed  Google Scholar 

  50. Garcia-Melchor, M. & Lopez, N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: the example of CeO2. J. Phys. Chem. C 118, 10921–10926 (2014).

    CAS  Google Scholar 

  51. Aireddy, D. & Ding, K. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 12, 4707–4723 (2022).

    CAS  Google Scholar 

  52. Lyalin, A. & Taketsugu, T. A computational investigation of H2adsorption and dissociation on Au nanoparticles supported on TiO2 surface. Faraday Discuss. 152, 185–201 (2011).

    ADS  CAS  PubMed  Google Scholar 

  53. Du, X. et al. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 11, 5811 (2020).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  54. Fu, Q., Wagner, T., Olliges, S. & Carstanjen, H.-D. Metal–oxide interfacial reactions: encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 109, 944–951 (2005).

    CAS  PubMed  Google Scholar 

  55. Sun, Y. et al. Gold catalysts containing interstitial carbon atoms boost hydrogenation activity. Nat. Commun. 11, 4600 (2020).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  56. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    CAS  PubMed  Google Scholar 

  57. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    ADS  CAS  PubMed  Google Scholar 

  58. Linic, S., Christopher, P., Xin, H. & Marimuthu, A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 46, 1890–1899 (2013).

    CAS  PubMed  Google Scholar 

  59. Brus, L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    CAS  PubMed  Google Scholar 

  60. Quiroz, J. et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett. 18, 7289–7297 (2018).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  61. Barbosa, E. C. M. et al. Reaction pathway dependence in plasmonic catalysis: hydrogenation as a model molecular transformation. Chem. Eur. J. 24, 12330–12339 (2018).

    CAS  PubMed  Google Scholar 

  62. Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).

    Google Scholar 

  63. Pyykkö, P. Relativity, gold, closed-shell interactions, and CsAuNH3. Angew. Chem. Int. Ed. 41, 3573–3578 (2002).

    Google Scholar 

  64. De Vos, D. & Sels, B. Gold redox catalysis for selective oxidation of methane to methanol. Angew. Chem. Int. Ed. 117, 30–32 (2005).

    ADS  Google Scholar 

  65. Guzman, J. et al. CO oxidation catalyzed by supported Au: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed. 44, 4778–4781 (2005).

    CAS  Google Scholar 

  66. Jones, C. et al. Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold. Angew. Chem. Int. Ed. 116, 4726–4729 (2004).

    ADS  Google Scholar 

  67. Corma, A., Gonzalez-Arellano, C., Iglesias, M. & Sanchez, F. Gold nanoparticles and gold(III) complexes as general and selective hydrosilylation catalysts. Angew. Chem. Int. Ed. 119, 7966–7968 (2007).

    ADS  Google Scholar 

  68. Wang, L. et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nat. Commun. 9, 1362 (2018).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhang, L., Ren, Y., Liu, W., Wang, A. & Zhang, T. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 5, 653–672 (2018).

    CAS  Google Scholar 

  70. Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).

    CAS  PubMed  Google Scholar 

  71. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    CAS  Google Scholar 

  72. Cao, S. et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat. Chem. 11, 1098–1105 (2019).

    CAS  PubMed  Google Scholar 

  73. Corma, A., Salnikov, O. G., Barskiy, D. A., Kovtunov, K. V. & Koptyug, I. V. Single-atom Au catalysis in the context of developments in parahydrogen-induced polarization. Chem. Eur. J. 21, 7012–7015 (2015).

    CAS  PubMed  Google Scholar 

  74. Qiao, B. et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 8, 2913–2924 (2015).

    MathSciNet  CAS  Google Scholar 

  75. Guzman, J. & Gates, B. C. Structure and reactivity of a mononuclear gold-complex catalyst supported on magnesium oxide. Angew. Chem. Int. Ed. 115, 115–714 (2003).

    Google Scholar 

  76. Comas-Vives, A. et al. Single-site homogeneous and heterogenized gold(III) hydrogenation catalysts:  mechanistic implications. J. Am. Chem. Soc. 128, 4756–4765 (2006).

    CAS  PubMed  Google Scholar 

  77. Sárkány, A., Schay, Z., Frey, K., Széles, É. & Sajó, I. Some features of acetylene hydrogenation on Au-iron oxide catalyst. Appl. Catal. A Gen. 380, 133–141 (2010).

    Google Scholar 

  78. Zhang, X., Shi, H. & Xu, B. Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 Catalysts. Angew. Chem. Int. Ed. 44, 7132–7135 (2005).

    CAS  Google Scholar 

  79. He, X. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 10, 3663 (2019).

    ADS  PubMed Central  PubMed  Google Scholar 

  80. Single atom catalysts push the boundaries of heterogeneous catalysis. Nat. Commun. 12, 5884 (2021).

  81. Wang, Z., Gu, L., Song, L., Wang, H. & Yu, R. Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Mater. Chem. Front. 2, 1024–1030 (2018).

    CAS  Google Scholar 

  82. Liu, J. et al. Ligand–metal charge transfer induced via adjustment of textural properties controls the performance of single-atom catalysts during photocatalytic degradation. ACS Appl. Mater. Interfaces 13, 25858–25867 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Vilé, G. et al. Azide-alkyne click chemistry over a heterogeneous copper-based single-atom catalyst. ACS Catal. 12, 2947–2958 (2022).

    Google Scholar 

  84. Gan, T. et al. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 389, 124490 (2020).

    CAS  Google Scholar 

  85. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004).

    ADS  CAS  PubMed  Google Scholar 

  86. Fu, Q. & Luo, Y. Catalytic activity of single transition-metal atom doped in Cu(111) surface for heterogeneous hydrogenation. J. Phys. Chem. C 117, 14618–14624 (2013).

    CAS  Google Scholar 

  87. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008).

    ADS  CAS  PubMed  Google Scholar 

  88. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    ADS  CAS  PubMed  Google Scholar 

  89. Boucher, M. B. et al. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys. Chem. Chem. Phys. 15, 12187–12196 (2013).

    CAS  PubMed  Google Scholar 

  90. Sankar, M. et al. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 41, 8099–8139 (2012).

    CAS  PubMed  Google Scholar 

  91. Maroun, F., Ozanam, F., Magnussen, O. M. & Behm, R. J. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 293, 1811–1814 (2001).

    ADS  CAS  PubMed  Google Scholar 

  92. Venkatachalam, S. & Jacob, T. Hydrogen adsorption on Pd-containing Au(111) bimetallic surfaces. Phys. Chem. Chem. Phys. 11, 3263–3270 (2009).

    CAS  PubMed  Google Scholar 

  93. van der Hoeven, J. E. S. et al. Entropic control of H–D exchange rates over dilute Pd-in-Au alloy nanoparticle catalysts. ACS Catal. 11, 6971–6981 (2021).

    Google Scholar 

  94. Buurmans, I. & Weckhuysen, B. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    CAS  PubMed  Google Scholar 

  95. Sambur, J. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    ADS  CAS  PubMed  Google Scholar 

  96. Yin, H. et al. Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst. Nat. Catal. 3, 834–842 (2020).

    CAS  Google Scholar 

  97. Lucci, F. R. et al. Controlling hydrogen activation, spillover, and desorption with Pd−Au single-atom alloys. J. Phys. Chem. Lett. 7, 480–485 (2016).

    CAS  PubMed  Google Scholar 

  98. Liu, J. et al. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts. ACS Catal. 9, 8757–8765 (2019).

    CAS  Google Scholar 

  99. Shi, D. et al. Probing the core and surface composition of nanoalloy to rationalize its selectivity: study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation. Chem Catal. 2, 1686–1708 (2022).

    CAS  Google Scholar 

  100. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    CAS  Google Scholar 

  101. van der Hoeven, J. E. S. et al. Unlocking synergy in bimetallic catalysts by core–shell design. Nat. Mater. 20, 1216–1220 (2021).

    ADS  PubMed  Google Scholar 

  102. Luneau, M. et al. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun. Chem. 3, 46 (2020).

    PubMed Central  PubMed  Google Scholar 

  103. Datye, A. K. & Guo, H. Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nat. Commun. 12, 895 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  104. Zhao, X., Fang, R., Kong, X. & Li, Y. Atomic design of dual-metal hetero-single-atoms for high-efficiency synthesis of natural flavones. Nat. Commun. 13, 7873 (2022).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  105. Tian, S. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 12, 3181 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  106. Zhang, T. et al. The dual-active-site tandem catalyst containing Ru single atoms and Ni nanoparticles boosts CO2 methanation. Appl. Catal. B 323, 122190 (2023).

    CAS  Google Scholar 

  107. Paul Sabatier Nobel Lecture. NobelPrize.org https://www.nobelprize.org/prizes/chemistry/1912/sabatier/lecture/ (2024).

  108. Hastert, R. C. Hydrogenation of fatty acids. J. Am. Oil Chem. Soc. 56, 732A–739A (1979).

    CAS  Google Scholar 

  109. Luza, L. et al. Revealing hydrogenation reaction pathways on naked gold nanoparticles. ACS Catal. 7, 2791–2799 (2017).

    CAS  Google Scholar 

  110. Luza, L. et al. Tunneling effects in confined gold nanoparticle hydrogenation catalysts. Phys. Chem. Chem. Phys. 21, 16615–16622 (2019).

    CAS  PubMed  Google Scholar 

  111. Eom, N., Messing, M., Johansson, J. & Deppert, K. General trends in core–shell preferences for bimetallic nanoparticles. ACS Nano 15, 8883–8895 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ledendecker, M. et al. Engineering gold-platinum core-shell nanoparticles by self-limitation in solution. Commun. Chem. 5, 71 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Bruno, L., Scuderi, M., Priolo, F., Falciola, L. & Mirabella, S. Enlightening the bimetallic effect of Au@Pd nanoparticles on Ni oxide nanostructures with enhanced catalytic activity. Sci. Rep. 13, 3203 (2023).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhao, J. et al. Ir promotion of TiO2 supported Au catalysts for selective hydrogenation of cinnamaldehyde. Catal. Commun. 54, 72–76 (2014).

    CAS  Google Scholar 

  115. Li, H. et al. Improved chemoselective hydrogenation of crotonaldehyde over bimetallic AuAg/SBA-15 catalyst. J. Catal. 330, 135–144 (2015).

    Google Scholar 

  116. Chen, J., Sun, W., Wang, Y. & Fang, W. Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure. Green. Energy Environ. 6, 546–556 (2021).

    CAS  Google Scholar 

  117. Tkachenko, G., Truong, V. G., Esporlas, C. L., Sanskriti, I. & Nic Chormaic, S. Evanescent field trapping and propulsion of Janus particles along optical nanofibers. Nat. Commun. 14, 1691 (2023).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

R.W. discloses support for publication of this work from Programme Investissement d’Avenir (I-SITE ULNE / ANR-16-IDEX-0004 ULNE), Métropole Européenne de Lille (MEL) and Region Hauts-de-France for the (CatBioInnov project).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert Wojcieszak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Mathilde Luneau, Hio Tong Ngan, Philippe Sautet and the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitratos, N., Vilé, G., Albonetti, S. et al. Strategies to improve hydrogen activation on gold catalysts. Nat Rev Chem 8, 195–210 (2024). https://doi.org/10.1038/s41570-024-00578-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00578-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing