Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complementary probes for the electrochemical interface

Abstract

The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales — including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical technologies and active regions and process at the electrochemical interface (EI).
Fig. 2: Experimental strategies to probe the electrochemical interface (EI).
Fig. 3: Individual probes for assessing the electrochemical interface (EI) in operando.
Fig. 4: Complementary probes to assess the electrochemical interface (EI).
Fig. 5: Design flow of studying the electrochemical interface (EI) using complementary experimental and theoretical probes.

Similar content being viewed by others

References

  1. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  2. Tian, Y. et al. Promises and challenges of next-generation ‘beyond Li-ion’ batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).

    CAS  PubMed  Google Scholar 

  3. Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pastor, E. et al. Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nat. Commun. 8, 14280 (2017).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    ADS  CAS  PubMed  Google Scholar 

  6. Sivula, K. & van de. Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    ADS  CAS  Google Scholar 

  7. Sivula, K. Toward economically feasible direct solar-to-fuel energy conversion. J. Phys. Chem. Lett. 6, 975–976 (2015).

    CAS  PubMed  Google Scholar 

  8. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    CAS  Google Scholar 

  9. Stephens, I. E. L. et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).

    ADS  Google Scholar 

  10. Wang, M. & Feng, Z. Interfacial processes in electrochemical energy systems. Chem. Commun. 57, 10453–10468 (2021).

    ADS  CAS  Google Scholar 

  11. Schmickler, W. Electrochemical theory: double layer. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2014).

  12. Shin, S.-J. et al. On the importance of the electric double layer structure in aqueous electrocatalysis. Nat. Commun. 13, 174 (2022).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sebastián-Pascual, P., Shao-Horn, Y. & Escudero-Escribano, M. Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. Curr. Opin. Electrochem. 32, 100918 (2022).

    Google Scholar 

  14. Adler, S.B. et al. In High-Temperature Solid Oxide Fuel Cells for the 21st Century (eds Kendall K. & Kendall M.) 2nd edn, ix–x (Academic Press, 2016).

  15. Glenk, G. & Reichelstein, S. Reversible power-to-gas systems for energy conversion and storage. Nat. Commun. 13, 2010 (2022).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ye, L., Duan, X. & Xie, K. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. Angew. Chem. Int. Ed. 60, 21746–21750 (2021).

    CAS  Google Scholar 

  17. Schmickler, W. Electronic effects in the electric double layer. Chem. Rev. 96, 3177–3200 (1996).

    CAS  PubMed  Google Scholar 

  18. Bard, A. J., Faulkner, L. R. & White, H. L. In Electrochemical Methods: Fundamentals and Applications 3rd edn (Wiley, 2022).

  19. Pastor, E. et al. The role of crystal facets and disorder on photo-electrosynthesis. Nanoscale 14, 15596–15606 (2022).

    CAS  PubMed  Google Scholar 

  20. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    CAS  Google Scholar 

  21. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    ADS  CAS  PubMed  Google Scholar 

  22. Monteiro, M. C. O., Dattila, F., López, N. & Koper, M. T. M. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).

    CAS  PubMed  Google Scholar 

  23. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    CAS  Google Scholar 

  24. Yang, Y. et al. Operando methods: a new era of electrochemistry. Curr. Opin. Electrochem. 42, 101403 (2023).

    Google Scholar 

  25. Maibach, J., Rizell, J., Matic, A. & Mozhzhukhina, N. Toward operando characterization of interphases in batteries. ACS Mater. Lett. 5, 2431–2444 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Gourdin, G. & Doan-Nguyen, V. In situ, operando characterization of materials for electrochemical devices. Cell Rep. Phys. Sci. 2, 100660 (2021).

    CAS  Google Scholar 

  27. Zaera, F. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012).

    CAS  PubMed  Google Scholar 

  28. Cheng, W., Su, H. & Liu, Q. Tracking the oxygen dynamics of solid–liquid electrochemical interfaces by correlative in situ synchrotron spectroscopies. Acc. Chem. Res. 55, 1949–1959 (2022).

    CAS  PubMed  Google Scholar 

  29. Deng, J. et al. Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett. 5, 975–993 (2020).

    CAS  Google Scholar 

  30. Wang, X., Huang, S.-C., Hu, S., Yan, S. & Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2, 253–271 (2020).

    Google Scholar 

  31. Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Prim. 1, 41 (2021).

    CAS  Google Scholar 

  32. Du, J. et al. In situ crystallization of active NiOOH/CoOOH heterostructures with hydroxide ion adsorption sites on velutipes-like CoSe/NiSe nanorods as catalysts for oxygen evolution and cocatalysts for methanol oxidation. ACS Appl. Mater. Interf. 12, 686–697 (2020).

    CAS  Google Scholar 

  33. Polo-Garzon, F., Bao, Z., Zhang, X., Huang, W. & Wu, Z. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal. 9, 5692–5707 (2019).

    CAS  Google Scholar 

  34. Liu, X. et al. Comprehensive understandings into complete reconstruction of precatalysts: synthesis, applications, and characterizations. Adv. Mater. 33, 2007344 (2021).

    CAS  Google Scholar 

  35. Sarma, B. B., Maurer, F., Doronkin, D. E. & Grunwaldt, J.-D. Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem. Rev. 123, 379–444 (2023).

    CAS  PubMed  Google Scholar 

  36. Lassalle-Kaiser, B., Gul, S., Kern, J., Yachandra, V. K. & Yano, J. In situ/operando studies of electrocatalysts using hard X-ray spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 221, 18–27 (2017).

    CAS  Google Scholar 

  37. Timoshenko, J. & Cuenya, B. R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    CAS  PubMed  Google Scholar 

  38. De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Google Scholar 

  39. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    CAS  Google Scholar 

  40. Vavra, J. et al. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nat. Catal. 7, 89–97 (2024).

    CAS  Google Scholar 

  41. Grumelli, D. et al. Electrochemical stability of the reconstructed Fe3O4(001) surface. Angew. Chem. Int. Ed. 59, 21904–21908 (2020).

    CAS  Google Scholar 

  42. Zhu, C. et al. Product-specific active site motifs of Cu for electrochemical CO2 reduction. Chem 7, 406–420 (2021).

    CAS  Google Scholar 

  43. Ahn, S. T., Sen, S. & Palmore, G. T. R. Grazing incidence X-ray diffraction: identifying the dominant facet in copper foams that electrocatalyze the reduction of carbon dioxide to formate. Nanoscale 14, 13132–13140 (2022).

    CAS  PubMed  Google Scholar 

  44. Hejral, U., Shipilin, M., Gustafson, J., Stierle, A. & Lundgren, E. High energy surface X-ray diffraction applied to model catalyst surfaces at work. J. Phys. Condens. Matter 33, 073001 (2020).

    Google Scholar 

  45. Zu, L. et al. Self-assembly of Ir-based nanosheets with ordered interlayer space for enhanced electrocatalytic water oxidation. J. Am. Chem. Soc. 144, 2208–2217 (2022).

    CAS  PubMed  Google Scholar 

  46. Wu, X.-L. et al. Self-templated synthesis of novel carbon nanoarchitectures for efficient electrocatalysis. Sci. Rep. 6, 28049 (2016).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nyman, M. Small-angle X-ray scattering to determine solution speciation of metal-oxo clusters. Coord. Chem. Rev. 352, 461–472 (2017).

    CAS  Google Scholar 

  48. Yu, W., Fu, H. J., Mueller, T., Brunschwig, B. S. & Lewis, N. S. Atomic force microscopy: emerging illuminated and operando techniques for solar fuel research. J. Chem. Phys. 153, 020902 (2020).

    CAS  PubMed  Google Scholar 

  49. Simon, G. H., Kley, C. S. & Roldan Cuenya, B. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60, 2561–2568 (2021).

    CAS  Google Scholar 

  50. Munz, M., Poon, J., Frandsen, W., Roldan Cuenya, B. & Kley, C. S. Nanoscale electron transfer variations at electrocatalyst–electrolyte interfaces resolved by in situ conductive atomic force microscopy. J. Am. Chem. Soc. 145, 5242–5251 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhu, X., Revilla, R. I. & Hubin, A. Direct correlation between local surface potential measured by Kelvin probe force microscope and electrochemical potential of LiNi0.80Co0.15Al0.05O2 cathode at different state of charge. J. Phys. Chem. C 122, 28556–28563 (2018).

    CAS  Google Scholar 

  52. Li, S., Zhou, Y., Zi, Y., Zhang, G. & Wang, Z. L. Excluding contact electrification in surface potential measurement using Kelvin probe force microscopy. ACS Nano 10, 2528–2535 (2016).

    CAS  PubMed  Google Scholar 

  53. Nesbitt, N. T. & Smith, W. A. Operando topography and mechanical property mapping of CO2 reduction gas-diffusion electrodes operating at high current densities. J. Electrochem. Soc. 168, 044505 (2021).

    ADS  CAS  Google Scholar 

  54. Wang, Z., Ke, X. & Sui, M. Recent progress on revealing 3D structure of electrocatalysts using advanced 3D electron tomography: a mini review. Front. Chem. 10, 872117 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Meyer, Q., Zeng, Y. & Zhao, C. In situ and operando characterization of proton exchange membrane fuel cells. Adv. Mater. 31, 1901900 (2019).

    CAS  Google Scholar 

  56. Matsui, H. et al. Operando 3D visualization of migration and degradation of a platinum cathode catalyst in a polymer electrolyte fuel cell. Angew. Chem. Int. Ed. 129, 9499–9503 (2017).

    ADS  Google Scholar 

  57. Seitzman, N. et al. Operando X-ray tomography imaging of solid-state electrolyte response to Li evolution under realistic operating conditions. ACS Appl. Energy Mater. 4, 1346–1355 (2021).

    CAS  Google Scholar 

  58. Vamvakeros, A. et al. Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catal. Today 364, 242–255 (2021).

    CAS  Google Scholar 

  59. Vamvakeros, A. et al. 5D operando tomographic diffraction imaging of a catalyst bed. Nat. Commun. 9, 4751 (2018).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  60. Tang, P. & Arbiol, J. Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horiz. 4, 1256–1276 (2019).

    ADS  CAS  Google Scholar 

  61. Zhang, X. et al. From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts. J. Mater. Chem. A 7, 1616–1628 (2019).

    CAS  Google Scholar 

  62. Zhang, X. et al. Tailor-made metal–nitrogen–carbon bifunctional electrocatalysts for rechargeable Zn–air batteries via controllable MOF units. Energy Storage Mater. 17, 46–61 (2019).

    Google Scholar 

  63. He, Y. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  64. He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).

    CAS  Google Scholar 

  65. Liang, Z. et al. Molecular engineering to tune the ligand environment of atomically dispersed nickel for efficient alcohol electrochemical oxidation. Adv. Funct. Mater. 31, 2106349 (2021).

    CAS  Google Scholar 

  66. Zhang, T. et al. Site-specific axial oxygen coordinated FeN4 active sites for highly selective electroreduction of carbon dioxide. Adv. Funct. Mater. 32, 2111446 (2022).

    CAS  Google Scholar 

  67. Yang, D. et al. A high conductivity 1D π–d conjugated metal–organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium–sulfur batteries. Adv. Mater. 34, 2108835 (2022).

    CAS  Google Scholar 

  68. Liang, Z. et al. A novel π–d conjugated cobalt tetraaza[14]annulene based atomically dispersed electrocatalyst for efficient CO2 reduction. Chem. Eng. J. 442, 136129 (2022).

    CAS  Google Scholar 

  69. Liang, Z. et al. Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol. Appl. Catal. B 314, 121451 (2022).

    CAS  Google Scholar 

  70. Han, X. et al. Engineering the interfacial microenvironment via surface hydroxylation to realize the global optimization of electrochemical CO2 reduction. ACS Appl. Mater. Interf. 14, 32157–32165 (2022).

    CAS  Google Scholar 

  71. Zhang, T. et al. Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction. Energy Environ. Sci. 14, 4847–4857 (2021).

    CAS  Google Scholar 

  72. Han, X., Zhang, T. & Arbiol, J. Metal–organic framework-derived single atom catalysts for electrocatalytic reduction of carbon dioxide to C1 products. Energy Adv. 2, 252–267 (2023).

    CAS  Google Scholar 

  73. Tang, P.-Y. et al. Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv. Energy Mater. 9, 1901836 (2019).

    ADS  Google Scholar 

  74. Tang, P. et al. Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering. Energy Environ. Sci. 10, 2124–2136 (2017).

    CAS  Google Scholar 

  75. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    ADS  CAS  PubMed  Google Scholar 

  76. Hodnik, N., Dehm, G. & Mayrhofer, K. J. J. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49, 2015–2022 (2016).

    CAS  PubMed  Google Scholar 

  77. Ruiz-Zepeda, F. et al. Atomically resolved anisotropic electrochemical shaping of nano-electrocatalyst. Nano Lett. 19, 4919–4927 (2019).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  78. Altantzis, T. et al. Three-dimensional quantification of the facet evolution of Pt nanoparticles in a variable gaseous environment. Nano Lett. 19, 477–481 (2019).

    ADS  CAS  PubMed  Google Scholar 

  79. van Omme, J. T. et al. Liquid phase transmission electron microscopy with flow and temperature control. J. Mater. Chem. C 8, 10781–10790 (2020).

    Google Scholar 

  80. Beker, A. F. et al. In situ electrochemistry inside a TEM with controlled mass transport. Nanoscale 12, 22192–22201 (2020).

    CAS  PubMed  Google Scholar 

  81. Huang, Y. et al. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Mater. 46, 243–251 (2022).

    Google Scholar 

  82. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    ADS  CAS  PubMed  Google Scholar 

  83. Botifoll, M., Pinto-Huguet, I. & Arbiol, J. Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. Nanoscale Horiz. 7, 1427–1477 (2022).

    ADS  CAS  PubMed  Google Scholar 

  84. Wang, H.-L., You, E.-M., Panneerselvam, R., Ding, S.-Y. & Tian, Z.-Q. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light. Sci. Appl. 10, 161 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  85. Zhu, S., Li, T., Cai, W.-B. & Shao, M. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 4, 682–689 (2019).

    CAS  Google Scholar 

  86. Papasizza, M. & Cuesta, A. In situ monitoring using ATR-SEIRAS of the electrocatalytic reduction of CO2 on Au in an ionic liquid/water mixture. ACS Catal. 8, 6345–6352 (2018).

    CAS  Google Scholar 

  87. Yang, K., Kas, R. & Smith, W. A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141, 15891–15900 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Prim. 1, 87 (2022).

    Google Scholar 

  89. Devasia, D., Wilson, A. J., Heo, J., Mohan, V. & Jain, P. K. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat. Commun. 12, 2612 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  90. An, H. et al. Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).

    CAS  Google Scholar 

  91. Galloway, T. A. & Hardwick, L. J. Utilizing in situ electrochemical SHINERS for oxygen reduction reaction studies in aprotic electrolytes. J. Phys. Chem. Lett. 7, 2119–2124 (2016).

    CAS  PubMed  Google Scholar 

  92. Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous Gouy–Chapman screening. Angew. Chem. Int. Ed. 59, 711–715 (2020).

    CAS  Google Scholar 

  93. Ojha, K., Doblhoff-Dier, K. & Koper, M. T. M. Double-layer structure of the Pt(111)–aqueous electrolyte interface. Proc. Natl Acad. Sci. USA 119, e2116016119 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Doyle, R. L. & Lyons, M. E. G. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys. Chem. Chem. Phys. 15, 5224–5237 (2013).

    CAS  PubMed  Google Scholar 

  95. Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F. & Mahjani, M. G. Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode. Int. J. Hydrog. Energy 34, 859–869 (2009).

    CAS  Google Scholar 

  96. Connor, P., Schuch, J., Kaiser, B. & Jaegermann, W. The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Z. Phys. Chem. 234, 979–994 (2020).

    CAS  Google Scholar 

  97. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    CAS  PubMed  Google Scholar 

  98. Hegner, F. S. et al. Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting. ACS Appl. Mater. Interf. 9, 37671–37681 (2017).

    CAS  Google Scholar 

  99. Noguera-Gómez, J. et al. Solution-processed Ni-based nanocomposite electrocatalysts: an approach to highly efficient electrochemical water splitting. ACS Appl. Energy Mater. 4, 5255–5264 (2021).

    Google Scholar 

  100. Corby, S. et al. Separating bulk and surface processes in NiOx electrocatalysts for water oxidation. Sustain. Energy Fuels 4, 5024–5030 (2020).

    CAS  Google Scholar 

  101. Gimenez, S. et al. Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. J. Electroanal. Chem. 668, 119–125 (2012).

    CAS  Google Scholar 

  102. Bisquert, J., Giménez, S., Bertoluzzi, L. & Herraiz-Cardona, I. Analysis of photoelectrochemical systems by impedance spectroscopy. In Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices (eds Giménez, S. & Bisquert, J.) 281–321 (Springer, 2016).

  103. Heijne, A. T. et al. Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energy Environ. Sci. 4, 5035–5043 (2011).

    Google Scholar 

  104. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    ADS  CAS  Google Scholar 

  105. Lefebvre, M. C., Martin, R. B. & Pickup, P. G. Characterization of ionic conductivity profiles within proton exchange membrane fuel cell gas diffusion electrodes by impedance spectroscopy. Electrochem. Solid-State Lett. 2, 259 (1999).

    CAS  Google Scholar 

  106. Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  107. Xu, P., von Rueden, A. D., Schimmenti, R., Mavrikakis, M. & Suntivich, J. Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface. Nat. Mater. 22, 503–510 (2023).

    ADS  CAS  PubMed  Google Scholar 

  108. Zheng, W. Beginner’s guide to Raman spectroelectrochemistry for electrocatalysis study. Chem. Methods 3, e202200042 (2023).

    CAS  Google Scholar 

  109. Mozhzhukhina, N. et al. Direct operando observation of double layer charging and early solid electrolyte interphase formation in Li-ion battery electrolytes. J. Phys. Chem. Lett. 11, 4119–4123 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    ADS  CAS  PubMed  Google Scholar 

  111. Lee, J. et al. Investigating the effects of gas diffusion layer substrate thickness on polymer electrolyte membrane fuel cell performance via synchrotron X-ray radiography. Electrochim. Acta 236, 161–170 (2017).

    CAS  Google Scholar 

  112. Bui, J. C., Kim, C., Weber, A. Z. & Bell, A. T. Dynamic boundary layer simulation of pulsed CO2 electrolysis on a copper catalyst. ACS Energy Lett. 6, 1181–1188 (2021).

    ADS  CAS  Google Scholar 

  113. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    CAS  Google Scholar 

  114. Lee, S. H. et al. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 143, 588–592 (2021).

    CAS  PubMed  Google Scholar 

  115. García de Arquer, F. P. et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30, 1802858 (2018).

    Google Scholar 

  116. He, S. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. Int. Ed. 57, 16114–16119 (2018).

    CAS  Google Scholar 

  117. Lei, Q. et al. Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat. Commun. 13, 4857 (2022).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  118. Vavra, J., Shen, T.-H., Stoian, D., Tileli, V. & Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 60, 1347–1354 (2021).

    CAS  Google Scholar 

  119. Grosse, P. et al. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 12, 6736 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  120. Jeon, H. S. et al. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J. Am. Chem. Soc. 141, 19879–19887 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Pardo Pérez, L. C. et al. Determining structure-activity relationships in oxide derived Cu–Sn catalysts during CO2 electroreduction using X-ray spectroscopy. Adv. Energy Mater. 12, 2103328 (2022).

    Google Scholar 

  122. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    CAS  Google Scholar 

  123. Velasco-Velez, J.-J. et al. Revealing the active phase of copper during the electroreduction of CO2 in aqueous electrolyte by correlating in situ X-ray spectroscopy and in situ electron microscopy. ACS Energy Lett. 5, 2106–2111 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Pastor, E. et al. Electronic defects in metal oxide photocatalysts. Nat. Rev. Mater. 7, 503–521 (2022).

    ADS  CAS  Google Scholar 

  125. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    ADS  CAS  PubMed  Google Scholar 

  126. Divins, N. J., Angurell, I., Escudero, C., Pérez-Dieste, V. & Llorca, J. Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346, 620–623 (2014).

    ADS  CAS  PubMed  Google Scholar 

  127. Jovanovič, P. et al. Electrochemical dissolution of iridium and iridium oxide particles in acidic media: transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study. J. Am. Chem. Soc. 139, 12837–12846 (2017).

    PubMed  Google Scholar 

  128. Yoo, M. et al. A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ. Sci. 13, 1231–1239 (2020).

    CAS  Google Scholar 

  129. Wu, Y. A. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019).

    ADS  CAS  Google Scholar 

  130. Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    ADS  CAS  PubMed  Google Scholar 

  131. Li, Y. et al. Complex structural dynamics of nanocatalysts revealed in operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6, 7583 (2015).

    ADS  CAS  PubMed  Google Scholar 

  132. Parker, J. E. et al. A cell design for correlative hard X-ray nanoprobe and electron microscopy studies of catalysts under in situ conditions. J. Synchrotron Radiat. 29, 431–438 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).

    ADS  PubMed  Google Scholar 

  134. Pienpinijtham, P., Kitahama, Y. & Ozaki, Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years. Nanoscale 14, 5265–5288 (2022).

    CAS  PubMed  Google Scholar 

  135. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    ADS  Google Scholar 

  136. Nguyen, D. et al. Probing molecular-scale catalytic interactions between oxygen and cobalt phthalocyanine using tip-enhanced raman spectroscopy. J. Am. Chem. Soc. 140, 5948–5954 (2018).

    CAS  PubMed  Google Scholar 

  137. Zeng, Z.-C. et al. Electrochemical tip-enhanced raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).

    CAS  PubMed  Google Scholar 

  138. Altman, E. I., Baykara, M. Z. & Schwarz, U. D. Noncontact atomic force microscopy: an emerging tool for fundamental catalysis research. Acc. Chem. Res. 48, 2640–2648 (2015).

    CAS  PubMed  Google Scholar 

  139. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    ADS  CAS  PubMed  Google Scholar 

  140. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    ADS  CAS  PubMed  Google Scholar 

  141. Albrecht, F. et al. Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298–301 (2022).

    ADS  CAS  PubMed  Google Scholar 

  142. Wagner, M., Meyer, B., Setvin, M., Schmid, M. & Diebold, U. Direct assessment of the acidity of individual surface hydroxyls. Nature 592, 722–725 (2021).

    ADS  CAS  PubMed  Google Scholar 

  143. Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    ADS  CAS  PubMed  Google Scholar 

  144. Selim, S. et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes. J. Am. Chem. Soc. 141, 18791–18798 (2019).

    CAS  PubMed  Google Scholar 

  145. Arcas, R. et al. Direct observation of the chemical transformations in BiVO4 photoanodes upon prolonged light‐aging treatments. Sol. RRL 6, 2200132 (2022).

    CAS  Google Scholar 

  146. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    ADS  Google Scholar 

  147. Beverskog, B. & Puigdomenech, I. Revised Pourbaix diagrams for iron at 25–300 °C. Corros. Sci. 38, 2121–2135 (1996).

    CAS  Google Scholar 

  148. Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008).

    CAS  PubMed  Google Scholar 

  149. Dattila, F., Garcı́a-Muelas, R. & López, N. Active and selective ensembles in oxide-derived copper catalysts for CO2 reduction. ACS Energy Lett. 5, 3176–3184 (2020).

    CAS  Google Scholar 

  150. Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).

    CAS  Google Scholar 

  151. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    ADS  CAS  PubMed  Google Scholar 

  152. Feenstra, R. M. & Stroscio, J. A. Tunneling spectroscopy of the GaAs(110) surface. J. Vac. Sci. Technol. B 5, 923–929 (1987).

    CAS  Google Scholar 

  153. Barja, S. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 10, 3382 (2019).

    ADS  PubMed Central  PubMed  Google Scholar 

  154. Salmeron, M. & Eren, B. High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962–1006 (2021).

    CAS  PubMed  Google Scholar 

  155. Zhang, H. et al. Recent progress with in situ characterization of interfacial structures under a solid–gas atmosphere by HP-STM and AP-XPS. Materials 12, 3674 (2019).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  156. Böller, B., Durner, K. M. & Wintterlin, J. The active sites of a working Fischer–Tropsch catalyst revealed by operando scanning tunnelling microscopy. Nat. Catal. 2, 1027–1034 (2019).

    Google Scholar 

  157. Favaro, M. et al. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J. Mater. Chem. A 5, 11634–11643 (2017).

    CAS  Google Scholar 

  158. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  159. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    ADS  CAS  PubMed  Google Scholar 

  160. Zheng, Y. et al. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 138, 16174–16181 (2016).

    CAS  PubMed  Google Scholar 

  161. Zhou, Y. et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 5, 545–554 (2022).

    CAS  Google Scholar 

  162. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  PubMed  Google Scholar 

  163. Hörmann, N. G., Andreussi, O. & Marzari, N. Grand canonical simulations of electrochemical interfaces in implicit solvation models. J. Chem. Phys. 150, 041730 (2019).

    ADS  PubMed  Google Scholar 

  164. Sundararaman, R., Goddard, W. A. III & Arias, T. A. Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J. Chem. Phys. 146, 114104 (2017).

    ADS  PubMed  Google Scholar 

  165. Zhan, C. et al. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 11, 7694–7701 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Velasco-Velez, J. J. et al. Photoelectron spectroscopy at the graphene–liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew. Chem. Int. Ed. 54, 14554–14558 (2015).

    CAS  Google Scholar 

  167. Casalongue, H. S. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat. Commun. 4, 2817 (2013).

    ADS  Google Scholar 

  168. Saveleva, V. A. et al. Uncovering the stabilization mechanism in bimetallic ruthenium–iridium anodes for proton exchange membrane electrolyzers. J. Phys. Chem. Lett. 7, 3240–3245 (2016).

    CAS  PubMed  Google Scholar 

  169. Casalongue, H. G. S. et al. Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction. J. Phys. Chem. C 118, 29252–29259 (2014).

    CAS  Google Scholar 

  170. Favaro, M. et al. An operando investigation of (Ni–Fe–Co–Ce)Ox system as highly efficient electrocatalyst for oxygen evolution reaction. ACS Catal. 7, 1248–1258 (2017).

    CAS  Google Scholar 

  171. Zenyuk, I. V. et al. Investigating evaporation in gas diffusion layers for fuel cells with X-ray computed tomography. J. Phys. Chem. C 120, 28701–28711 (2016).

    CAS  Google Scholar 

  172. Haussener, S., Suter, S. & Gutierrez Perez, R. Solar fuels devices: multi-scale modeling and device design guidelines. In Springer Handbook of Inorganic Photochemistry (eds Bahnemann, D. & Patrocinio, A. O. T.) 965–983 (Springer, 2022).

  173. Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    ADS  CAS  Google Scholar 

  174. Hacene, M. et al. Accelerating VASP electronic structure calculations using graphic processing units. J. Comput. Chem. 33, 2581–2589 (2012).

    CAS  PubMed  Google Scholar 

  175. Glaser, J. et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015).

    ADS  CAS  Google Scholar 

  176. Chang, C., Deringer, V. L., Katti, K. S., Van Speybroeck, V. & Wolverton, C. M. Simulations in the era of exascale computing. Nat. Rev. Mater. 8, 309–313 (2023).

    ADS  PubMed Central  PubMed  Google Scholar 

  177. Gavini, V. et al. Roadmap on electronic structure codes in the exascale era. Model. Simul. Mater. Sci. Eng. 31, 063301 (2023).

    ADS  Google Scholar 

  178. Manathunga, M., Aktulga, H. M., Götz, A. W. & Merz, K. M. Jr Quantum mechanics/molecular mechanics simulations on NVIDIA and AMD graphics processing units. J. Chem. Inf. Model. 63, 711–717 (2023).

    CAS  PubMed  Google Scholar 

  179. Yu, V. W. & Govoni, M. GPU acceleration of large-scale full-frequency GW calculations. J. Chem. Theory Comput. 18, 4690–4707 (2022).

    CAS  PubMed  Google Scholar 

  180. Wang, Z., Guo, X., Montoya, J. & Nørskov, J. K. Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. npj Comput. Mater. 6, 160 (2020).

    ADS  Google Scholar 

  181. Bracco G. & Holst B. In Surface Science Techniques (Springer, 2013).

  182. Bergmann, U. & Glatzel, P. X-ray emission spectroscopy. Photosynth. Res. 102, 255–266 (2009).

    CAS  PubMed  Google Scholar 

  183. Corby, S. et al. Charge separation, band-bending, and recombination in WO 3 photoanodes. J. Phys. Chem. Lett. 10, 5395–5401 (2019).

    CAS  PubMed  Google Scholar 

  184. Pastor, E. et al. Nonthermal breaking of magnetic order via photogenerated spin defects in the spin-orbit coupled insulator Sr 3 Ir 2 O 7. Phys. Rev. B 105, 064409 (2022).

    ADS  CAS  Google Scholar 

  185. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    CAS  PubMed  Google Scholar 

  186. Mesa, C. A., Pastor, E. & Francàs, L. UV–vis operando spectroelectrochemistry for (photo)electrocatalysis: principles and guidelines. Curr. Opin. Electrochem. 35, 101098 (2022).

    CAS  Google Scholar 

  187. Billinge, S. J. L. The rise of the X-ray atomic pair distribution function method: a series of fortunate events. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 377, 20180413 (2019).

    ADS  CAS  Google Scholar 

  188. Cliffe, M. J., Dove, M. T., Drabold, D. A. & Goodwin, A. L. Structure determination of disordered materials from diffraction data. Phys. Rev. Lett. 104, 125501 (2010).

    ADS  PubMed  Google Scholar 

  189. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy (Springer, 2009).

  190. Davies, P. R. & Morgan, D. J. Practical guide for X-ray photoelectron spectroscopy: applications to the study of catalysts. J. Vac. Sci. Technol. A 38, 033204 (2020).

    CAS  Google Scholar 

  191. Hansen, W. N. & Kolb, D. M. The work function of emersed electrodes. J. Electroanal. Chem. Interfacial Electrochem. 100, 493–500 (1979).

    CAS  Google Scholar 

  192. Stuve, E. M., Krasnopoler, A. & Sauer, D. E. Relating the in-situ, ex-situ, and non-situ environments in surface electrochemistry. Surf. Sci. 335, 177–185 (1995).

    ADS  CAS  Google Scholar 

  193. Reniers, F. The development of a transfer mechanism between UHV and electrochemistry environments. J. Phys. Appl. Phys. 35, R169 (2002).

    ADS  CAS  Google Scholar 

  194. Soriaga, M. P. et al. Electrochemical surface science of CO2 reduction at well-defined Cu electrodes: surface characterization by emersion, ex situ, in situ, and operando methods. In Encyclopedia of Interfacial Chemistry (ed. Wandelt, K.) 562–576 (Elsevier, 2018).

  195. Woehl, T. J., Moser, T., Evans, J. E. & Ross, F. M. Electron-beam-driven chemical processes during liquid phase transmission electron microscopy. MRS Bull. 45, 746–753 (2020).

    ADS  Google Scholar 

  196. Lian, Z., Yang, M., Jan, F. & Li, B. Machine learning derived blueprint for rational design of the effective single-atom cathode catalyst of the lithium–sulfur battery. J. Phys. Chem. Lett. 12, 7053–7059 (2021).

    CAS  PubMed  Google Scholar 

  197. Pablo-García, S. et al. Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022).

    Google Scholar 

  198. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following projects for support: RED2022-134508-T, PID2021-124796OB-I00, PID2020-116093RB-C41, PID2020-116093RB-C43 and PID2020-116093RB-C44, funded by MCIN/AEI. The Institut de Ciències Fotòniques (ICFO) acknowledges CEX2019-000910-S, Fundació Cellex, Fundació Mir-Puig and the La Caixa Foundation (100010434, EU Horizon 2020 Marie Skłodowska-Curie grant agreement 847648). The Institute of Chemical Research of Catalonia (ICIQ) acknowledges support from the Ministerio de Ciencia e Innovación through the ‘Severo Ochoa’ Excellence Accreditation CEX2021-001214-S. D.E. acknowledges funding from PID2019-108532GB-I00, PID2022-136961NB-I00, QUIMTRONIC-CM Y2018/NMT-4783, the European Union NextGenerationEU (PRTR-C17.I1) (MAD2D-CM)-MRR project, and ERC CoG 766555. IMDEA Nanoscience acknowledges support from the ‘Severo Ochoa’ Program for Centers of Excellence in R&D (CEX2020-001039-S). The Catalan Institute of Nanoscience and Nanotechnology (ICN2) acknowledges support from MCIN/AEI for CEX2021-001214-S, NextGenerationEU (PRTR-C17.I1) PID2020-116093RB-C41 and PID2020-116093RB-C43, and the Generalitat de Catalunya for 2021SGR00457 and PRTR-C17.I1. S.B. acknowledges support from the grants RYC-2017-21931 and EUR2020-112066 funded by MCIN/AEI, from ESF Investing in your future, from the European Union NextGenerationEU/PRTR, and from the Basque Government (grant IT1591-22). ICFO, ICIQ and ICN2 are funded by CERCA — Generalitat de Catalunya. Z.L. and N.L. acknowledge support from Marie Skłodowska-Curie grant agreement number 101064867, the Spanish Ministry of Science and Innovation (PID2021-122516OB-I00 and the ‘Severo Ochoa’ Program for Centers of Excellence CEX2019-000925-S). E.P. acknowledges the support of the CNRS and the French Agence Nationale de la Recherche (ANR), under grant ANR-22-CPJ2-0053-01.

Author information

Authors and Affiliations

Authors

Contributions

E.P. and F.P.G.d.A. conceived the initial idea and led article preparation. All authors contributed to the writing and editing of this manuscript.

Corresponding authors

Correspondence to Ernest Pastor or F. Pelayo García de Arquer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CSIC-Crystallography: https://www.xtal.iqfr.csic.es/Cristalografia/index-en.html

The Electrochemical Society, the birth of electrochemistry: https://www.electrochem.org/birth-of-electrochemistry

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor, E., Lian, Z., Xia, L. et al. Complementary probes for the electrochemical interface. Nat Rev Chem 8, 159–178 (2024). https://doi.org/10.1038/s41570-024-00575-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00575-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing