Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Machine learning

Spectrum of the past

Thirty-four years ago, Curry and Rumelhart described a neural network-based approach to annotate tandem mass spectra. Their ideas foreshadowed several important developments in computational mass spectrometry over the past decade, but many of the challenges they discuss remain relevant today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the design of MSnet.


  1. Aksenov, A. A., da Silva, R., Knight, R., Lopes, N. P. & Dorrestein, P. C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 1, 0054 (2017).

    Article  CAS  Google Scholar 

  2. da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl Acad. Sci. USA 112, 12549–12550 (2015).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  3. Smith, D. H., Gray, N. A. B., Nourse, J. G. & Crandell, C. W. The dendral project: recent advances in computer-assisted structure elucidation. Anal. Chim. Acta 133, 471–497 (1981).

    Article  CAS  Google Scholar 

  4. Dayringer, H. E., Pesyna, G. M., Venkataraghavan, R. & McLafferty, F. W. Computer-aided interpretation of mass spectra. Information on substructural probabilities form stirs. Org. Mass Spectrom. 11, 529–542 (1976).

    Article  CAS  Google Scholar 

  5. Lohninger, H. & Varmuza, K. Selective detection of classes of chemical compounds by gas chromatography/mass spectrometry/pattern recognition: polycyclic aromatic hydrocarbons and alkanes. Anal. Chem. 59, 236–244 (1987).

    Article  CAS  Google Scholar 

  6. Curry, B. & Rumelhart, D. E. MSnet: A neural network which classifies mass spectra. Tetrahedron Comput. Methodol. 3, 213–237 (1990).

    Article  CAS  Google Scholar 

  7. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  ADS  Google Scholar 

  8. Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl Acad. Sci. USA 112, 12580–12585 (2015).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Voronov, G. et al. Multi-scale sinusoidal embeddings enable learning on high resolution mass spectrometry data. Preprint at (2023).

  10. Palmer, P. T. Gas chromatography/mass spectrometry. In Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation (ed. Meyers, R. A.) (Wiley, 2007).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael A. Skinnider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Related links

Caffeine on the National Institute of Standards and Technology (NIST) chemistry webbook:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skinnider, M.A. Spectrum of the past. Nat Rev Chem 8, 85–86 (2024).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing