Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ratcheting synthesis

Abstract

Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ratcheting synthesis.
Fig. 2: Ratchets for synthesis (biology and artificial systems).
Fig. 3: Driven and spontaneous catalyst dynamics can accelerate the rate of catalysis.
Fig. 4: Ratchets in endergonic synthesis.
Fig. 5: Endergonic synthesis in synthetic methodology.
Fig. 6: Small-molecule machines for programmable synthesis.
Fig. 7: Oligonucleotide-based sequence-programmable synthesis.

Similar content being viewed by others

References

  1. Lin, K.-C. Understanding product optimization: kinetic versus thermodynamic control. J. Chem. Ed. 65, 857–860 (1988).

    Article  CAS  Google Scholar 

  2. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, 1995).

  3. Numata, M., Yagai, S. & Hamura, T. (eds) Kinetic Control in Synthesis and Self-Assembly (Academic, 2018).

  4. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley, 2017).

  5. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007). This seminal review provided an explanation of ratchet mechanisms for chemistry. It dispelled the view, prevalent in the artificial molecular machines community at the time, that molecular switches were molecular motors and provided a framework for translating the physics literature on ratchets to chemical systems.

    Article  CAS  Google Scholar 

  6. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018). This perspective provides a detailed analysis of the energy consumption in chemical fuel-driven self-assembly and introduces the term ‘ratcheting constant’ for Astumian’s directionality, r0, that quantifies the tendency of a system to shift one way or the other when driven away from equilibrium by input energy.

    Article  CAS  PubMed  Google Scholar 

  7. Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    Article  CAS  Google Scholar 

  8. Astumian, R. D. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Lau, B., Kedem, O., Schwabacher, J., Kwasnieski, D. & Weiss, E. A. An introduction to ratchets in chemistry and biology. Mater. Horiz. 4, 310–318 (2017).

    Article  CAS  Google Scholar 

  11. Bier, M. Brownian ratchets in physics and biology. Contemp. Phys. 38, 371–379 (1997).

    Article  CAS  Google Scholar 

  12. Branscomb, E., Biancalani, T., Goldenfeld, N. & Russell, M. Escapement mechanisms and the conversion of disequilibria; the engines of creation. Phys. Rep. 667, 1–60 (2017).

    Article  Google Scholar 

  13. Krishna, P. E. S., Dev, V. V., Ramakrishnan, R. & Hariharan, M. Retaining Hückel aromaticity in the triplet excited state of azobenzene. ChemPhysChem 23, e202200045 (2022).

    Article  Google Scholar 

  14. Borsley, S., Leigh, D. A. & Roberts, B. M. W. Chemical fuels for molecular machinery. Nat. Chem. 14, 728–738 (2022). This review explains what a chemical fuel is and the features it should possess and discusses how energy is transduced from the fuel-to-waste reaction by molecular machines.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, L. et al. An electric molecular motor. Nature 613, 280–286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hein, J. E., Huynh Cao, B., Viedma, C., Kellogg, R. M. & Blackmond, D. G. Pasteur’s tweezers revisited: on the mechanism of attrition-enhanced deracemization and resolution of chiral conglomerate solids. J. Am. Chem. Soc. 134, 12629–12636 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Astumian, R. D. & Robertson, B. Imposed oscillations of kinetic barriers can cause an enzyme to drive a chemical reaction away from equilibrium. J. Am. Chem. Soc. 115, 11063–11068 (1993). This seminal paper pointed out that the addition of a catalyst to a chemical reaction initially at equilibrium but exposed to an oscillating field could, in principle, cause the reaction to proceed away from equilibrium.

    Article  CAS  Google Scholar 

  18. von Delius, M., Geertsema, E. M., Leigh, D. A. & Tang, D.-T. D. Design, synthesis, and operation of small molecules that walk along tracks. J. Am. Chem. Soc. 132, 16134–16145 (2010).

    Article  Google Scholar 

  19. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021). This perspective describes the chemical engine cycle as a key element of nonequilibrium systems, in which a fuel-to-waste reaction is coupled to an orthogonal dynamic process.

    Article  CAS  PubMed  Google Scholar 

  20. Stroock, D. W. An Introduction to Markov Processes (Springer, 2013).

  21. Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).

    Article  CAS  Google Scholar 

  22. Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016). This paper describes the physics and physical chemistry of molecular machines, specifically describing synthesis of ATP by ATP synthase, a strongly coupled ratchet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019). This paper describes the kinetics of molecular motors through a framework that has come to be known as trajectory thermodynamics, useful for the understanding of ratchets.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022). This paper reports an autonomous single-bond rotary motor driven by catalysis and reveals an implicit connection between motor operation and faster catalysis.

    Article  CAS  PubMed  Google Scholar 

  28. Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  PubMed  Google Scholar 

  29. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Geertsema, E. M., van der Molen, S. J., Martens, M. & Feringa, B. L. Optimizing rotary processes in synthetic molecular motors. Proc. Natl Acad. Sci. USA 106, 16919–16924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Shi, X. et al. Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore. Nat. Phys. 18, 1105–1111 (2022).

    Article  CAS  Google Scholar 

  35. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Borsley, S., Leigh, D. A., Roberts, B. M. W. & Vitorica-Yrezabal, I. J. Tuning the force, speed, and efficiency of an autonomous chemically fueled information ratchet. J. Am. Chem. Soc. 144, 17241–17248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Qui, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    Article  Google Scholar 

  41. Feng, L. et al. Active mechanisorption driven by pumping cassettes. Science 374, 1215–1221 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Thomas, D. et al. Pumping between phases with a pulsed-fuel molecular ratchet. Nat. Nanotechnol. 17, 701–707 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, E. et al. A molecular information ratchet using a cone-shaped macrocycle. Chem https://doi.org/10.1016/j.chempr.2022.12.017 (2023).

  44. Binks, L. et al. The role of kinetic asymmetry and power strokes in an information ratchet. Chem https://doi.org/10.1016/j.chempr.2023.05.035 (2023).

  45. Parrondo, J. M. R. & Dinís, L. Brownian motion and gambling: from ratchets to paradoxical games. Contemp. Phys. 45, 147–157 (2004).

    Article  Google Scholar 

  46. Kurtz, T. G. The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972).

    Article  CAS  Google Scholar 

  47. Anderson, D. F. & Kurtz, T. G. in Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology (eds Koeppl, H. et al.) 3–42 (Springer, 2011). This book chapter describes chemical reactions as stochastic Brownian processes, describing reaction networks through continuous-time Markov chain models.

  48. Carrillo, L., Escobar, J. A., Clempner, J. B. & Poznyak, A. S. Optimization problems in chemical reactions using continuous-time Markov chains. J. Math. Chem. 54, 1233–1254 (2016).

    Article  CAS  Google Scholar 

  49. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, L. B. Mitochondrial membrane potential in living cells. Ann. Rev. Cell Biol. 4, 155–181 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Khatter, H., Myasnikov, A. G., Natchiar, S. K. & Klaholz, B. P. Structure of the human 80S ribosome. Nature 520, 640–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Spirin, A. S. & Finkelstein, A. V. in Molecular Machines in Biology: Workshop of the Cell (ed. Frank J.) 158–190 (Cambridge Univ. Press, 2012). This book chapter describes the operation of a ribosome, relating its directional motion and sequence-specific peptide synthesis to a Brownian ratchet mechanism.

  55. Beese, L. S., Derbyshire, V. & Steitz, T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Bar-Nahum, G. et al. A ratchet mechanism of transcription elongation and its control. Cell 120, 183–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Vassylyev, D. G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Galburt, E. A., Parrondo, J. M. R. & Grill, S. W. RNA polymerase pushing. Biophys. Chem. 157, 43–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Anselmi, C., Grininger, M., Gipson, P. & Faraldo-Gómez, J. D. Mechanism of substrate shuttling by the acyl-carrier protein within the fatty acid mega-synthase. J. Am. Chem. Soc. 132, 12357–12364 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Guo, H., Suzuki, T. & Rubinstein, J. L. Structure of a bacterial ATP synthase. eLife 8, e43128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Buttgereit, F. & Brand, M. D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312, 163–167 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Russell, J. B. & Cook, G. M. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol. Rev. 59, 48–62 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Penocchio, E., Rao, R. & Esposito, M. Nonequilibrium thermodynamics of light-induced reactions. J. Chem. Phys. 155, 114101 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).

    Article  Google Scholar 

  66. Amano, S. et al. Using catalysis to drive chemistry away from equilibrium: relating kinetic asymmetry, power strokes, and the Curtin-Hammett principle in Brownian ratchets. J. Am. Chem. Soc. 144, 20153–20164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Penocchio, E. & Ragazzon, G. Kinetic barrier diagrams to visualize and engineer molecular nonequilibrium systems. Small 19, 2206188 (2023).

  68. Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. 14, 530–537 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Ehrich, J. & Sivak, D. A. Energy and information flows in autonomous systems. Front. Phys. 11, 1108357 (2023).

    Article  Google Scholar 

  70. Rao, R. & Esposito, M. Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics. Phys. Rev. X 6, 041064 (2016).

    Google Scholar 

  71. Wyman, J. The turning wheel: a study in steady states. Proc. Natl Acad. Sci. USA 72, 3983–3987 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rozenbaum, V. M., Yang, D.-Y., Lin, S. H. & Tsong, T. Y. Catalytic wheel as a Brownian motor. J. Phys. Chem. B 108, 15880–15889 (2004).

    Article  CAS  Google Scholar 

  73. Herges, R. Molecular assemblers: molecular machines performing chemical synthesis. Chem. Sci. 11, 9048–9055 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van Dijk, L. et al. Molecular machines for catalysis. Nat. Rev. Chem. 2, 0117 (2018).

    Article  Google Scholar 

  75. Heard, A. W., Suárez, J. M. & Goldup, S. M. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat. Rev. Chem. 6, 182–196 (2022).

    Article  PubMed  Google Scholar 

  76. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013). This paper reports an artificial small-molecule machine that transfers sequence information, in the form of building blocks, from a strand in order to synthesize sequence-specific oligomers.

    Article  CAS  PubMed  Google Scholar 

  77. De, Bo,G. et al. Efficient assembly of threaded molecular machines for sequence-specific synthesis. J. Am. Chem. Soc. 136, 5811–5814 (2014).

    Article  Google Scholar 

  78. De Bo, G. et al. Sequence-specific β-peptide synthesis by a rotaxane-based molecular machine. J. Am. Chem. Soc. 139, 10875–10879 (2017).

    Article  PubMed  Google Scholar 

  79. De Bo, G. et al. An artificial molecular machine that builds an asymmetric catalyst. Nat. Nanotechnol. 13, 381–385 (2018).

    Article  PubMed  Google Scholar 

  80. McTernan, C. T., De Bo, G. & Leigh, D. A. A track-based molecular synthesizer that builds a single-sequence oligomer through iterative carbon-carbon bond formation. Chem 6, 2964–2973 (2020).

    Article  CAS  Google Scholar 

  81. Echavarren, J. et al. Sequence-selective decapeptide synthesis by the parallel operation of two artificial molecular machines. J. Am. Chem. Soc. 143, 5158–5165 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 549, 374–378 (2017). This paper describes a molecular machine that can synthesize any of four diastereomeric products in a programmable manner by physically manipulating the substrate to be proximal to the desired active site.

    Article  CAS  PubMed  Google Scholar 

  83. Sell, H. et al. Towards a light driven molecular assembler. Commun. Chem. 2, 62 (2019). This paper describes a molecular machine designed to perform endergonic synthesis of a tetramer by physically bringing the monomers into close proximity.

    Article  Google Scholar 

  84. Meng, W. et al. An autonomous molecular assembler for programmable chemical synthesis. Nat. Chem. 8, 542–548 (2016). This paper describes an oligonucleotide-based machine capable of synthesizing a sequence-specific oligomer in a programmable manner.

    Article  CAS  PubMed  Google Scholar 

  85. Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Ekland, E. H., Szostak, J. W. & Bartel, D. P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269, 364–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Ekland, E. H. & Bartel, D. P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. & Bartel, D. P. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001). This paper describes a ribozyme capable of autonomously synthesizing a complementary ribonucleotide.

    Article  CAS  PubMed  Google Scholar 

  89. Paul, N. & Joyce, G. F. A self-replicating ligase ribozyme. Proc. Natl Acad. Sci. USA 99, 12733–12740 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shechner, D. M. et al. Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326, 1271–1275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mutschler, H., Wochner, A. & Holliger, P. Freeze–thaw cycles as drivers of complex ribozyme assembly. Nat. Chem. 7, 502–508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Attwater, J., Raguram, A., Morgunov, A. S., Gianni, E. & Holliger, P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 7, e35255 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. McRae, E. K. S. et al. Cryo-EM structure and functional landscape of an RNA polymerase ribozyme. Preprint at https://doi.org/10.1101/2022.08.23.504927 (2022).

  96. Ardagh, M. A., Birol, T., Zhang, Q., Abdelrahman, O. A. & Dauenhauer, P. J. Catalytic resonance theory: super volcanoes, catalytic molecular pumps, and oscillatory steady state. Catal. Sci. Technol. 9, 5058–5076 (2019). This seminal work describes the concept of catalytic resonance, in which alternating the potential applied across a surface during a reaction allows the Sabatier limit to be exceeded.

    Article  CAS  Google Scholar 

  97. Ardagh, M. A., Abdelrahman, O. A. & Dauenhauer, P. J. Principles of dynamic heterogeneous catalysis: surface resonance and turnover frequency response. ACS Catal. 9, 6929–6937 (2019).

    Article  CAS  Google Scholar 

  98. Shetty, M. et al. The catalytic mechanics of dynamic surfaces: stimulating methods for promoting catalytic resonance. ACS Catal. 10, 12666–12695 (2020).

    Article  CAS  Google Scholar 

  99. Ardagh, M. A. et al. Catalytic resonance theory: parallel reaction pathway control. Chem. Sci. 11, 3501–3510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qi, J. et al. Dynamic control of elementary step energetics via pulsed illumination enhances photocatalysis on metal nanoparticles. ACS Energy Lett. 5, 3518–3525 (2020).

    Article  CAS  Google Scholar 

  101. Gopeesingh, J. et al. Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation. ACS Catal. 10, 9932–9942 (2020).

    Article  CAS  Google Scholar 

  102. Wittreich, G. R., Liu, S., Dauenhauer, P. J. & Vlachos, D. G. Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain. Sci. Adv. 8, eabl6576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gathmann, S. R., Ardagh, M. A. & Dauenhauer, P. J. Catalytic resonance theory: negative dynamic surfaces for programmable catalysts. Chem. Catal. 2, 140–163 (2022).

    Article  CAS  Google Scholar 

  104. Baz, A., Lyons, M. & Holewinski, A. Dynamic electrocatalysis: examining resonant catalytic rate enhancement under oscillating electrochemical potential. Chem. Catal. 2, 3497–3516 (2022).

    Article  CAS  Google Scholar 

  105. Dong, Q. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 605, 470–476 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Psarellis, Y. M., Kavousanakis, M., Dauenhauer, P. J. & Kevrekidis, I. G. Writing the programs of programmable catalysis. ACS Catal. 13, 7457–7471 (2023).

    Article  CAS  Google Scholar 

  107. Abdelrahman, O. A. & Dauenhauer, P. J. Energy flows in static and programmable catalysts. ACS Energy Lett. 8, 2292–2299 (2023).

    Article  CAS  Google Scholar 

  108. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science 355, 380–385 (2017). This seminal work describes how an unfavourable step in a catalytic cycle is overcome by accessing a photochemically generated excited state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Le, C., Chen, T. Q., Liang, T., Zhang, P. & MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 360, 1010–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kornfilt, D. J. P. & MacMillan, D. W. C. Copper-catalyzed trifluoromethylation of alkyl bromides. J. Am. Chem. Soc. 141, 6853–6858 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kawamata, Y. et al. Electrochemically driven, Ni-catalyzed aryl amination: scope, mechanism, and applications. J. Am. Chem. Soc. 141, 6392–6402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kawamata, Y. et al. Chemoselective electrosynthesis using rapid alternating polarity. J. Am. Chem. Soc. 143, 16580–16588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, L., Israel, E. M., Yan, J. & Ritter, T. Copper-mediated etherification via aryl radicals generated from triplet states. Nat. Synth. 1, 376–381 (2022).

    Article  Google Scholar 

  114. Wang, H., Tian, Y.-M. & König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat. Rev. Chem. 6, 745–755 (2022). This review describes a range of photochemically driven endergonic syntheses, quantifying the work done.

    Article  CAS  PubMed  Google Scholar 

  115. Singh, K., Staig, S. J. & Weaver, J. D. Facile synthesis of Z-alkenes via uphill catalysis. J. Am. Chem. Soc. 136, 5275–5278 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  Google Scholar 

  117. Musacchio, A. J. et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 355, 727–730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ota, E., Wang, H., Frye, N. L. & Knowles, R. R. A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. J. Am. Chem. Soc. 141, 1457–1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Molloy, J. J., Metternich, J. B., Daniliuc, C. G., Watson, A. J. B. & Gilmour, R. Contra‐thermodynamic, photocatalytic E→Z isomerization of styrenyl boron species: vectors to facilitate exploration of two‐dimensional chemical space. Angew. Chem. Int. Ed. 57, 3168–3172 (2018).

    Article  CAS  Google Scholar 

  120. Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Zhao, K. & Knowles, R. R. Contra-thermodynamic positional isomerization of olefins. J. Am. Chem. Soc. 144, 137–144 (2021).

    Article  PubMed  Google Scholar 

  122. Neveselý, T. et al. Leveraging the n→π* interaction in alkene isomerization by selective energy transfer catalysis. Angew. Chem. Int. Ed. 61, e202113600 (2022).

    Article  Google Scholar 

  123. DeHovitz, J. S. & Hyster, T. K. Photoinduced dynamic radical processes for isomerizations, deracemizations, and dynamic kinetic resolutions. ACS Catal. 12, 8911–8924 (2022).

    Article  CAS  Google Scholar 

  124. Wang, P. Z., Xiao, W. J. & Chen, J. R. Light-empowered contra-thermodynamic stereochemical editing. Nat. Rev. Chem. 7, 35–50 (2023).

    Article  PubMed  Google Scholar 

  125. Alexeeva, M., Enright, A., Dawson, M. J., Mahmoudian, M. & Turner, N. J. Deracemization of α-methylbenzylamine using an enzyme obtained by in vitro evolution. Angew. Chem. Int. Ed. 41, 3177–3180 (2002).

    Article  CAS  Google Scholar 

  126. Lackner, A. D., Samant, A. V. & Toste, F. D. Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation. J. Am. Chem. Soc. 135, 14090–14093 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Ji, Y., Shi, L., Chen, M.-W., Feng, G.-S. & Zhou, Y.-G. Concise redox deracemization of secondary and tertiary amines with a tetrahydroisoquinoline core via a nonenzymatic process. J. Am. Chem. Soc. 137, 10496–10499 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    Article  PubMed  Google Scholar 

  129. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019). This paper is an important representative example of photochemically driven deracemization reminiscent of a ratchet mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lautens, M. & Loup, J. α-Deracemization of pyridylketones by photoredox catalysis. Synfacts 17, 1228 (2021).

    Article  Google Scholar 

  131. Zhang, Z. & Hu, X. Visible-light-driven catalytic deracemization of secondary alcohols. Angew. Chem. Int. Ed. 60, 22833–22838 (2021).

    Article  CAS  Google Scholar 

  132. Zhang, C. et al. Catalytic α-deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Wingstrand, E., Laurell, A., Fransson, L., Hult, K. & Moberg, C. Minor enantiomer recycling: metal catalyst, organocatalyst and biocatalyst working in concert. Chem. Eur. J. 15, 12107–12113 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Laurell, A. & Moberg, C. Opposite enantiomers from minor enantiomer recycling and dynamic kinetic resolution using a single biocatalyst. Eur. J. Org. Chem. 2011, 3980–3984 (2011).

    Article  CAS  Google Scholar 

  135. Wen, Y.-Q., Hertzberg, R., Gonzalez, I. & Moberg, C. Minor enantiomer recycling: application to enantioselective syntheses of beta blockers. Chem. Eur. J. 20, 3806–3812 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Laurell Nash, A., Widyan, K. & Moberg, C. Recycling powered by release of carbon dioxide. ChemCatChem 6, 3314–3317 (2014).

    Article  CAS  Google Scholar 

  137. Moberg, C. Recycling in asymmetric catalysis. Acc. Chem. Res. 49, 2736–2745 (2016). This account summarizes the Moberg group’s work on minor enantiomer recycling, in which stereoselective reactions are improved by expanding energy to kinetically recycle the incorrect enantiomer.

    Article  CAS  PubMed  Google Scholar 

  138. Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Surendranath, Y., Bediako, D. K. & Nocera, D. G. Interplay of oxygen evolution kinetics and photovoltaic power curves on the construction of artificial leaves. Proc. Natl Acad. Sci. USA 109, 15617–15621 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012). This account summarizes the Nocera group’s work on artificial photosynthesis, using photovoltaics to achieve biomimetic water splitting.

    Article  CAS  PubMed  Google Scholar 

  142. Concepcion, J. J., House, R. L., Papanikolas, J. M. & Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl Acad. Sci. USA 109, 15560–15564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Dogutan, D. K. & Nocera, D. G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 52, 3143–3148 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Keijer, T., Bouwens, T., Hessels, J. & Reek, J. N. H. Supramolecular strategies in artificial photosynthesis. Chem. Sci. 12, 50–70 (2021).

    Article  CAS  Google Scholar 

  146. Teitsworth, T. S. et al. Water splitting with silicon p–i–n superlattices suspended in solution. Nature 614, 270–274 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Sabatier, P. La Catalyse en Chimie Organique (C. Béranger, 1920).

  148. Balandin, A. A. Modern state of the multiplet theory of heterogeneous catalysis. Adv. Catal. 19, 1–210 (1969).

    CAS  Google Scholar 

  149. Foley, B. & Razdan, N. Dynamic catalysis fundamentals: I. Fast calculation of limit cycles in dynamic catalysis. Preprint at https://doi.org/10.26434/chemrxiv-2021-10hk4 (2022).

  150. Foley, B. & Razdan, N. Dynamic catalysis fundamentals: II. Consequences of scaling relationships on mechanisms and kinetics. Preprint at https://doi.org/10.26434/chemrxiv-2022-sgc5w (2022).

  151. Boerner, L. K. Industrial ammonia production emits more CO2 than any other chemical-making reaction. Chemists want to change that. Chem. Eng. News 97, 1–9 (2019). 

    Google Scholar 

  152. Ritter, S. K. The Haber-Bosch reaction: an early chemical impact on sustainability. Chem. Eng. N. 86, 53 (2008).

    Article  Google Scholar 

  153. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  PubMed  Google Scholar 

  154. Busch, M., Wodrich, M. D. & Corminboeuf, C. Linear scaling relationships and volcano plots in homogeneous catalysis — revisiting the Suzuki reaction. Chem. Sci. 6, 6754–6761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wodrich, M. D., Busch, M. & Corminboeuf, C. Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chem. Sci. 7, 5723–5735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wodrich, M. D., Sawatlon, B., Busch, M. & Corminboeuf, C. The genesis of molecular volcano plots. Acc. Chem. Res. 54, 1107–1117 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Ragazzon, G. et al. Autonomous non-equilibrium self-assembly and molecular movements powered by electrical energy. Angew. Chem. Int. Ed. 62, e202214265 (2023).

    Article  CAS  Google Scholar 

  158. Borsley, S. et al. Electrostatic forces in field-perturbed equilibria: nanopore analysis of cage complexes. Chem 5, 1275–1292 (2019).

    Article  CAS  Google Scholar 

  159. Kedema, O., Lau, B., Ratner, M. A. & Weiss, E. A. Light-responsive organic flashing electron ratchet. Proc. Natl Acad. Sci. USA 114, 8698–8703 (2017).

    Article  Google Scholar 

  160. Kedem, O., Lau, B. & Weiss, E. A. How to drive a flashing electron ratchet to maximize current. Nano Lett. 17, 5848–5854 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  162. Wolfenden, R. & Snider, M. J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34, 938–945 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Pauling, L. Nature of forces between large molecules of biological interest. Nature 161, 707–709 (1948).

    Article  CAS  PubMed  Google Scholar 

  164. Pauling, L. Molecular architecture and biological reactions. Chem. Eng. N. 24, 1375–1377 (1946).

    Article  CAS  Google Scholar 

  165. Gurd, F. R. N. & Rothges, T. M. Motions in proteins. Adv. Protein Chem. 33, 73–165 (1979).

    Article  CAS  PubMed  Google Scholar 

  166. Koshland, D. E. Jr & Neet, K. E. The catalytic and regulatory properties of enzymes. Ann. Rev. Biochem. 37, 359–411 (1968).

    Article  CAS  PubMed  Google Scholar 

  167. Straub, F. B. Formation of the secondary and tertiary structure of enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 26, 89–114 (1964).

    Google Scholar 

  168. Citri, N. Conformational adaptability in enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 37, 397–648 (1973).

    Article  CAS  PubMed  Google Scholar 

  169. Yon, J. M., Perahia, D. & Ghelis, C. Conformational dynamics and enzyme activity. Biochimie 80, 33–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Eisenmesser, E. Z., Bosco, D. A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1570–1573 (2002).

    Article  Google Scholar 

  171. Hammes, G. G. Multiple conformational changes in enzyme catalysis. Biochemistry 41, 8221–8228 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Eisenmesser, E. Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Hammes-Schiffer, S. & Benkovic, S. J. Relating protein motion to catalysis. Annu. Rev. Biochem. 75, 519–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Hanson, J. A. et al. Illuminating the mechanistic roles of enzyme conformational dynamics. Proc. Natl Acad. Sci. USA 104, 18055–18060 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fraser, J. S. et al. Hidden alternative structures of proline isomerase essential for catalysis. Nature 462, 669–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ma, B. & Nussinov, R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol. 14, 652–659 (2010). This key work describes the theory of general conformational selection for enzymatic rate enhancement through dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nashine, V. C., Hammes-Schiffer, S. & Benkovic, S. J. Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 14, 644–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ma, B. & Nussinov, R. Conformational footprints. Nat. Chem. Biol. 12, 890–891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Warshel, A. Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J. Biol. Chem. 273, 27035–27038 (1998).

    Article  CAS  PubMed  Google Scholar 

  182. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Kamerlin, S. C. L. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010). This paper argues against a causal link between enzyme conformational dynamics and rate accelerations in enzyme-catalysed reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kohen, A. Role of dynamics in enzyme catalysis: substantial versus semantic controversies. Acc. Chem. Res. 48, 466–473 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Warshel, A. & Bora, R. P. Defining and quantifying the role of dynamics in enzyme catalysis. J. Chem. Phys. 144, 180901 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442–1446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hanoian, P., Liu, C. T., Hammes-Schiffer, S. & Benkovic, S. Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc. Chem. Res. 48, 482–489 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Závodszky, P., Kardos, J., Svingor, Á. & Petsko, G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl Acad. Sci. USA 95, 7406–7411 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wolf-Watz, M. et al. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nat. Struct. Mol. Biol. 11, 945–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Bhabha, G. et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Otten, R. et al. Rescue of conformational dynamics in enzyme catalysis by directed evolution. Nat. Commun. 9, 1314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Singh, P. et al. Evolution of the chemical step in enzyme catalysis. ACS Catal. 11, 6726–6732 (2021).

    Article  CAS  Google Scholar 

  193. Corey, E. J. & Ishihara, K. Highly enantioselective catalytic Diels–Alder addition promoted by a chiral bis(oxazoline)-magnesium complex. Tetrahedron Lett. 33, 6807–6810 (1992).

    Article  CAS  Google Scholar 

  194. Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000).

    Article  CAS  Google Scholar 

  195. Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Čorić, I. & List, B. Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483, 315–319 (2012).

    Article  PubMed  Google Scholar 

  197. Crawford, J. M. & Sigman, M. S. Conformational dynamics in asymmetric catalysis: is catalyst flexibility a design element? Synthesis 51, 1021–1036 (2019). This paper explores the benefits of conformational dynamics in asymmetric catalysis and argues that conformational dynamics may affect rate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Fanourakis, A., Docherty, P. J., Chuentragool, P. & Phipps, R. J. Recent developments in enantioselective transition metal catalysis featuring attractive noncovalent interactions between ligand and substrate. ACS Catal. 10, 10672–10714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fierman, M. B., O’Leary, D. J., Steinmetz, W. E. & Miller, S. J. Structure-selectivity relationships and structure for a peptide-based enantioselective acylation catalyst. J. Am. Chem. Soc. 126, 6967–6971 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Sohtome, Y., Tanaka, S., Takada, K., Yamaguchi, T. & Nagasawa, K. Solvent‐dependent enantiodivergent Mannich‐type reaction: utilizing a conformationally flexible guanidine/bisthiourea organocatalyst. Angew. Chem. Int. Ed. 49, 9254–9257 (2010).

    Article  CAS  Google Scholar 

  202. Bellini, R. et al. Conformational preferences of a tropos biphenyl phosphinooxazoline — a ligand with wide substrate scope. ACS Catal. 6, 1701–1712 (2016).

    Article  CAS  Google Scholar 

  203. Crawford, J. M., Stone, E. A., Metrano, A. J., Miller, S. J. & Sigman, M. S. Parameterization and analysis of peptide-based catalysts for the atroposelective bromination of 3-arylquinazolin-4(3H)-ones. J. Am. Chem. Soc. 140, 868–871 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Stone, E. A. et al. Isolating conformers to assess dynamics of peptidic catalysts using computationally designed macrocyclic peptides. ACS Catal. 11, 4395–4400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Shao, H., Chakrabarty, S., Qi, X., Takacs, J. M. & Liu, P. Ligand conformational flexibility enables enantioselective tertiary C–B bond formation in the phosphonate-directed catalytic asymmetric alkene hydroboration. J. Am. Chem. Soc. 143, 4801–4808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Jarvo, E. R., Copeland, G. T., Papaioannou, N., Bonitatebus, P. J. & Miller, S. J. A biomimetic approach to asymmetric acyl transfer catalysis. J. Am. Chem. Soc. 121, 11638–11643 (1999).

    Article  CAS  Google Scholar 

  207. Kawabata, T., Nagato, M., Takasu, K. & Fuji, K. Nonenzymatic kinetic resolution of racemic alcohols through an “induced fit” process. J. Am. Chem. Soc. 119, 3169–3170 (1997).

    Article  CAS  Google Scholar 

  208. Yamada, S., Misono, T. & Iwai, Y. Kinetic resolution of sec-alcohols by a new class of pyridine catalysts having a conformation switch system. Tetrahedron Lett. 46, 2239–2242 (2005).

    Article  CAS  Google Scholar 

  209. Horvath, S., Fernandez, L. E., Soudackov, A. V. & Hammes-Schiffer, S. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production. Proc. Natl Acad. Sci. USA 109, 15663–15668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Biswas, P. K., Saha, S., Paululat, T. & Schmittel, M. Rotating catalysts are superior: suppressing product inhibition by anchimeric assistance in four-component catalytic machinery. J. Am. Chem. Soc. 140, 9038–9041 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Orsino, A. F., Gutiérrez del Campo, M., Lutz, M. & Moret, M.-E. Enhanced catalytic activity of nickel complexes of an adaptive diphosphine–benzophenone ligand in alkyne cyclotrimerization. ACS Catal. 9, 2458–2481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Elramadi, E. et al. Catalytic machinery in motion: controlling catalysis via speed. Chem. Commun. 58, 8073–8076 (2022).

    Article  CAS  Google Scholar 

  213. Veth, L. & Dydio, P. Shapeshifting xantphos. Nat. Chem. 14, 1088 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Newman-Stonebraker, S. H., Wang, J. Y., Jeffrey, P. D. & Doyle, A. G. Structure–reactivity relationships of Buchwald-type phosphines in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 144, 19635–19648 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Adams, G. M. & Weller, A. S. POP-type ligands: variable coordination and hemilabile behaviour. Coord. Chem. Rev. 355, 150–172 (2018).

    Article  CAS  Google Scholar 

  216. Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).

    Article  PubMed  Google Scholar 

  217. Frenkel-Pinter, M. et al. Adaptation and exaptation: from small molecules to feathers. J. Mol. Evol. 90, 166–175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944–950 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry (Oxford Univ. Press, 2012).

  221. Efremov, A. & Wang, Z. Universal optimal working cycles of molecular motors. Phys. Chem. Chem. Phys. 13, 6223–6233 (2011).

    Article  CAS  PubMed  Google Scholar 

  222. Steinberg-Yfrach, G. et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385, 239–241 (1997).

    Article  CAS  Google Scholar 

  223. Steinberg-Yfrach, G. et al. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392, 479–482 (1998). This paper couples a light-driven transmembrane proton pump to ATP synthase to enable light-driven ATP synthesis.

    Article  CAS  PubMed  Google Scholar 

  224. Liu, F. & Morokuma, K. Computational study on the working mechanism of a stilbene light-driven molecular rotary motor: sloped minimal energy path and unidirectional nonadiabatic photoisomerization. J. Am. Chem. Soc. 134, 4864–4876 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Rosing, J. & Slater, E. C. The value of ΔG° for the hydrolysis of ATP. Biochim. Biophys. Acta Bioenerg. 267, 275–290 (1972).

    Article  CAS  Google Scholar 

  226. Yan, J., Magnasco, M. O. & Marko, J. F. A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401, 932–935 (1999).

    Article  CAS  PubMed  Google Scholar 

  227. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974). This seminal paper identifies and proposes a mechanism of kinetic proofreading, addressing longstanding questions about how biology achieves such high sequence fidelity in replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Eigen, M. Self organization of matter and evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  CAS  PubMed  Google Scholar 

  229. Orgel, L. E. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA 49, 517–521 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Blackmond, D. G. “If pigs could fly” chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Ed. 48, 2648–2654 (2009).

    Article  CAS  Google Scholar 

  231. Smith, J. M. The concept of information in biology. Philos. Sci. 67, 177–194 (2000).

    Article  Google Scholar 

  232. Bennett, C. H. The thermodynamics of computation — a review. Int. J. Theor. Phys. 21, 905–940 (1982).

    Article  CAS  Google Scholar 

  233. Heil, C. S., Wehrheim, S. S., Paithankar, K. S. & Grininger, M. Fatty acid biosynthesis: chain‐length regulation and control. ChemBioChem 20, 2298–2321 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Barrell, M. J., Campaña, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light‐driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

    Article  CAS  Google Scholar 

  236. Rutten, M. G. T. A., Vaandrager, F. W., Elemans, J. A. A. W. & Nolte, R. J. M. Encoding information into polymers. Nat. Rev. Chem. 2, 365–381 (2018).

    Article  Google Scholar 

  237. Crowley, J. D., Goldup, S. M., Lee, A. L., Leigh, D. A. & McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 38, 1530–1541 (2009).

    Article  CAS  PubMed  Google Scholar 

  238. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  239. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  240. van Dongen, S. F. M., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Processive catalysis. Angew. Chem. Int. Ed. Engl. 53, 11420–11428 (2014).

    Article  PubMed  Google Scholar 

  241. Ren, Y., Jamagne, R., Tetlow, D. J. & Leigh, D. A. A tape-reading molecular ratchet. Nature 612, 78–82 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. 46, 2543–2554 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Ramezani, H. & Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  246. Pan, J., Li, F., Cha, T.-G., Chen, H. & Choi, J. H. Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015).

    Article  PubMed  Google Scholar 

  247. Paun, G., Rozenberg, G. & Salomaa, A. in DNA Computing: New Computing Paradigms (Springer, 2005).

  248. Srinivas, N. et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  250. Cech, T. R. Crawling out of the RNA world. Cell 136, 599–602 (2009).

    Article  CAS  PubMed  Google Scholar 

  251. Feynman, R. in Feynman and Computation 63–76 (CRC, 2018).

  252. Drexler, K. E. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl Acad. Sci. USA 78, 5275–5278 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Kelly, T. R., Tellitu, I. & Sestelo, J. P. In search of molecular ratchets. Angew. Chem. Int. Ed. Engl. 36, 1866–1868 (1997).

    Article  CAS  Google Scholar 

  254. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  255. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  256. Marchetti, T., Frezzato, D., Gabrielli, L. & Prins, L. J. ATP drives the formation of a catalytic hydrazone through an energy ratchet mechanism. Angew. Chem. Int. Ed. 62, e202307530 (2023).

    Article  CAS  Google Scholar 

  257. Gallagher, J. M., Olivieri, E., Mrad, T. W., Betts, A. & Leigh, D. A. Endergonic synthesis driven by chemical fuelling. Preprint at https://doi.org/10.26434/chemrxiv-2023-6nqn3 (2023).

  258. Leigh, D. A. Conformational selection accelerates catalysis by an organocatalytic molecular motor. Chem 10, 1–12 (2024).

    Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC; grant number EP/P027067/1) and the European Research Council (ERC; advanced grant number 786630) for the funding. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks R. Astumian, C. Moberg, P. Dauenhauer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Brownian ratchet

A mechanism for rectifying stochastic motion on an asymmetric potential energy surface in response to an energy input.

Catalytic resonance

The exploitation of periodic changes in binding energy to enhance the rate and control the outcome of heterogeneous catalysed reactions.

Catalyst dynamics

Consequential conformational changes in a catalyst that occur during the catalytic cycle.

Chemical engine cycle

Catalytic cycle for the fuel-to-waste reaction encompassing different chemical and orthogonal dynamic (for example, mechanical) states of a molecular ratchet.

Chemical fuels

The reactants in a fuel-to-waste reaction that release free energy that is transduced to drive an orthogonal nonequilibrium process, either continuously (via an information ratchet mechanism) or through pulsed or sequential operations (often via an energy ratchet mechanism). We find it helpful to use the term ‘fuel’ (as explained here14) to differentiate such reactants from the more typical use of chemical reagents to react directly with functional groups in the transformation to be powered.  

Endergonic synthesis

The synthesis of a molecule that, under the reaction conditions, has a more positive free-energy (higher chemical potential) than the starting materials.

Energy ratchets

Brownian ratchets that transition between two (or more) potential energy surfaces allowing a particle to relax directionally to a local minimum, driving the system away from the global equilibrium.

Fuel-to-waste reaction

The exergonic (that is, free-energy-releasing) conversion of chemical fuel into waste products that provides the chemical potential gradient necessary to drive chemical systems away from equilibrium.

Information ratchets

Brownian ratchets in which differences in the rate of an energy-dissipating process dependant on a stochastic process (for example, dynamics) kinetically drive the system out of equilibrium.

Kinetic asymmetry

The overall kinetic bias in a chemical engine cycle, characterized by the ratcheting constant, Kr, which represents the number of forward cycles divided by the number of backward cycles.

Kinetic gating

The kinetic bias in a process depending on the state of a ratchet, usually represented as a ratio of rates, corresponding to the relative activation energies.

Kinetic proofreading

Kinetic selection of incorrect products for removal, resulting in selectivities exceeding the native thermodynamic preference.

Markov process

A stochastic process in which the probability of an event does not depend on the history of events in the system.

Programmable synthesis

The translation of external inputs into a controlled sequence of reactions.

Ratcheted synthesis

The exploitation of a Brownian ratchet to control reaction pathways and outcomes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsley, S., Gallagher, J.M., Leigh, D.A. et al. Ratcheting synthesis. Nat Rev Chem 8, 8–29 (2024). https://doi.org/10.1038/s41570-023-00558-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00558-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing