Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing electrolytes and interphases for high-energy lithium batteries

Subjects

Abstract

High-energy and stable lithium-ion batteries are desired for next-generation electric devices and vehicles. To achieve their development, the formation of stable interfaces on high-capacity anodes and high-voltage cathodes is crucial. However, such interphases in certain commercialized Li-ion batteries are not stable. Due to internal stresses during operation, cracks are formed in the interphase and electrodes; the presence of such cracks allows for the formation of Li dendrites and new interphases, resulting in a decay of the energy capacity. In this Review, we highlight electrolyte design strategies to form LiF-rich interphases in different battery systems. In aqueous electrolytes, the hydrophobic LiF can extend the electrochemical stability window of aqueous electrolytes. In organic liquid electrolytes, the highly lithiophobic LiF can suppress Li dendrite formation and growth. Electrolyte design aimed at forming LiF-rich interphases has substantially advanced high-energy aqueous and non-aqueous Li-ion batteries. The electrolyte and interphase design principles discussed here are also applicable to solid-state batteries, as a strategy to achieve long cycle life under low stack pressure, as well as to construct other metal batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key scientific challenges when designing electrolytes.
Fig. 2: Illustration of the universal electrolyte design principles.
Fig. 3: Design strategies for the LiF-rich solid electrolyte interphase (SEI).
Fig. 4: Li dendrite growth in an all-solid-state battery.
Fig. 5: Cell failure (lithium dendrite growth and/or crack formation) mechanism and strategies to prevent dendrite growth and crack formation.
Fig. 6: Interface design for lithium dendrite suppression.

Similar content being viewed by others

References

  1. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigues, M.-T. F. et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017).

    Article  CAS  Google Scholar 

  3. Feng, X. et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018).

    Article  Google Scholar 

  4. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kurzweil, P. Gaston Planté and his invention of the lead–acid battery — the genesis of the first practical rechargeable battery. J. Power Sources 195, 4424–4434 (2010).

    Article  CAS  Google Scholar 

  6. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4||Li4Ti5O12 pouch cells. Nat. Energy 7, 186–193 (2022).

    Article  CAS  Google Scholar 

  9. Fong, R., von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    Article  CAS  Google Scholar 

  10. Pistoia, G., De Rossi, M. & Scrosati, B. Study of the behavior of ethylene carbonate as a nonaqueous battery solvent. J. Electrochem. Soc. 117, 500–502 (1970).

    Article  CAS  Google Scholar 

  11. Xu, K. Whether EC and PC differ in interphasial chemistry on graphitic anode and how. J. Electrochem. Soc. 156, A751–A755 (2009).

    Article  CAS  Google Scholar 

  12. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  CAS  Google Scholar 

  13. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  CAS  Google Scholar 

  14. Zhang, Q. et al. In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5, 1235–1250 (2022).

    Article  CAS  Google Scholar 

  15. Abe, T., Fukuda, H., Iriyama, Y. & Ogumi, Z. Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120–A1123 (2004).

    Article  CAS  Google Scholar 

  16. Borodin, O. et al. Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50, 2886–2894 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, J. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev. 52, 2713–2763 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article  CAS  Google Scholar 

  20. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  21. Wang, C. et al. Identifying soft breakdown in all-solid-state lithium battery. Joule 6, 1770–1781 (2022).

    Article  CAS  Google Scholar 

  22. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  23. Wan, H. et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023).

    Article  CAS  Google Scholar 

  24. Xu, K. Navigating the minefield of battery literature. Commun. Mater. 3, 31 (2022).

    Article  Google Scholar 

  25. Fong, K. D. et al. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Cent. Sci. 5, 1250–1260 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, J. et al. Interfacial design for a 4.6 V high‐voltage single‐crystalline LiCoO2 cathode. Adv. Mater. 34, e2108353 (2022).

    Article  PubMed  Google Scholar 

  27. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Borodin, O. Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode–electrolyte stabilization. Curr. Opin. Electrochem. 13, 86–93 (2019).

    Article  CAS  Google Scholar 

  29. Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).

    Article  CAS  Google Scholar 

  30. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Scharf, J. et al. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 17, 446–459 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Xie, X. et al. Data-driven prediction of formation mechanisms of lithium ethylene monocarbonate with an automated reaction network. J. Am. Chem. Soc. 143, 13245–13258 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Blau, S. M. et al. A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation. Chem. Sci. 12, 4931–4939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  35. Stephan, A. K. Standardized battery reporting guidelines. Joule 5, 1–2 (2021).

    Article  Google Scholar 

  36. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  CAS  Google Scholar 

  37. Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M. & Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries–a post-mortem study. J. Power Sources 262, 129–135 (2014).

    Article  CAS  Google Scholar 

  38. Nowak, S. & Winter, M. Chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium ion batteries: method development, application and lessons learned. J. Electrochem. Soc. 162, A2500–A2508 (2015).

    Article  CAS  Google Scholar 

  39. Campion, C. L., Li, W. & Lucht, B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 152, A2327–A2334 (2005).

    Article  CAS  Google Scholar 

  40. Chen, Y. et al. Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60 °C. Adv. Energy Mater. 12, 2201631 (2022).

    Article  CAS  Google Scholar 

  41. Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).

    Article  CAS  Google Scholar 

  43. Borodin, O., Self, J., Persson, K. A., Wang, C. & Xu, K. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).

    Article  CAS  Google Scholar 

  44. Chen, L. et al. A 63 m superconcentrated aqueous electrolyte for high-energy Li-ion batteries. ACS Energy Lett. 5, 968–974 (2020).

    Article  CAS  Google Scholar 

  45. Yue, J. et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 13, 1061–1069 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, J. et al. Improving electrochemical stability and low‐temperature performance with water/acetonitrile hybrid electrolytes. Adv. Energy Mater. 10, 1902654 (2020).

    Article  CAS  Google Scholar 

  47. Wang, F. et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2, 927–937 (2018).

    Article  CAS  Google Scholar 

  48. Shang, Y. et al. An “Ether‐in‐Water” electrolyte boosts stable interfacial chemistry for aqueous lithium‐ion batteries. Adv. Mater. 32, 2004017 (2020).

    Article  CAS  Google Scholar 

  49. Giffin, G. A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13, 5250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yao, Y. X. et al. Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021).

    Article  CAS  Google Scholar 

  52. Dixit, M. B. et al. In situ investigation of chemomechanical effects in thiophosphate solid electrolytes. Matter 3, 2138–2159 (2020).

    Article  Google Scholar 

  53. Tu, Q., Shi, T., Chakravarthy, S. & Ceder, G. Understanding metal propagation in solid electrolytes due to mixed ionic-electronic conduction. Matter 4, 3248–3268 (2021).

    Article  CAS  Google Scholar 

  54. Fu, C. et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  CAS  Google Scholar 

  56. Park, R. J. Y. et al. Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy 6, 314–322 (2021).

    Article  CAS  Google Scholar 

  57. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  CAS  Google Scholar 

  62. Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    Article  CAS  Google Scholar 

  63. Michan, A. L., Leskes, M. & Grey, C. P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: monitoring the formation of organic decomposition products. Chem. Mater. 28, 385–398 (2016).

    Article  CAS  Google Scholar 

  64. Shkrob, I. A., Wishart, J. F. & Abraham, D. P. What makes fluoroethylene carbonate different? J. Phys. Chem. C 119, 14954–14964 (2015).

    Article  CAS  Google Scholar 

  65. Shin, H., Park, J., Han, S., Sastry, A. M. & Lu, W. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: experimental and computational studies. J. Power Sources 277, 169–179 (2015).

    Article  CAS  Google Scholar 

  66. Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Choi, S., Kwon, T.-w, Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

    Article  CAS  Google Scholar 

  69. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article  CAS  Google Scholar 

  70. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  CAS  Google Scholar 

  71. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  CAS  Google Scholar 

  72. Xue, W. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13, 212–220 (2020).

    Article  CAS  Google Scholar 

  73. Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, S. et al. An inorganic‐rich solid electrolyte interphase for advanced lithium‐metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60, 3661–3671 (2021).

    Article  CAS  Google Scholar 

  75. Chen, J. et al. Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020).

    Article  Google Scholar 

  76. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  Google Scholar 

  77. Wang, Z. et al. An anion‐tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater. 10, 1903843 (2020).

    Article  CAS  Google Scholar 

  78. Li, T. et al. Stable anion‐derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 60, 22865–22869 (2021).

    Article  Google Scholar 

  79. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, S. et al. High‐voltage lithium‐metal batteries enabled by localized high‐concentration electrolytes. Adv. Mater. 30, e1706102 (2018).

    Article  PubMed  Google Scholar 

  81. Phan, A. L. et al. Solvent-free electrolyte for high-temperature rechargeable lithium metal batteries. Adv. Funct. Mater. 33, 2301177 (2023).

    Article  CAS  Google Scholar 

  82. Ikeya, M. Electrical properties of lithium hydride. J. Phys. Soc. Jpn. 42, 168–174 (1977).

    Article  CAS  Google Scholar 

  83. Pan, J., Cheng, Y.-T. & Qi, Y. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys. Rev. B 91, 134116 (2015).

    Article  Google Scholar 

  84. Aurbach, D. & Weissman, I. On the possibility of LiH formation on Li surfaces in wet electrolyte solutions. Electrochem. Commun. 1, 324–331 (1999).

    Article  CAS  Google Scholar 

  85. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, G. et al. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angew. Chem. Int. Ed. 133, 7849–7855 (2021).

    Article  Google Scholar 

  90. Zhang, H., Ju, S., Xia, G. & Yu, X. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 8, eabl8245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, L. et al. Uncovering LiH triggered thermal runaway mechanism of a high‐energy LiNi0.5Co0.2Mn0.3O2/graphite pouch cell. Adv. Sci. 8, 2100676 (2021).

    Article  CAS  Google Scholar 

  92. Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Jia, H. & Xu, W. Electrolytes for high-voltage lithium batteries. Trends Chem. 4, 627–642 (2022).

    Article  CAS  Google Scholar 

  94. Xu, J. Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14, 166 (2022).

    Article  Google Scholar 

  95. Tebbe, J. L., Fuerst, T. F. & Musgrave, C. B. Degradation of ethylene carbonate electrolytes of lithium ion batteries via ring opening activated by LiCoO2 cathode surfaces and electrolyte species. ACS Appl. Mater. Interfaces 8, 26664–26674 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Cárdenas, C. et al. Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J. Phys. Chem. A 113, 8660–8667 (2009).

    Article  PubMed  Google Scholar 

  97. Dose, W. M. et al. Onset potential for electrolyte oxidation and Ni-rich cathode degradation in lithium-ion batteries. ACS Energy Lett. 7, 3524–3530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, Y.-Q. et al. An electrolyte additive with boron-nitrogen-oxygen alkyl group enabled stable cycling for high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. J. Power Sources 477, 228473 (2020).

    Article  CAS  Google Scholar 

  99. Deng, T. et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3, 2550–2564 (2019).

    Article  CAS  Google Scholar 

  100. Chen, R. et al. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 306, 70–77 (2016).

    Article  CAS  Google Scholar 

  101. Pham, H. Q., Lee, H.-Y., Hwang, E.-H., Kwon, Y.-G. & Song, S.-W. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. J. Power Sources 404, 13–19 (2018).

    Article  CAS  Google Scholar 

  102. Wang, C. et al. Lithium difluorophosphate as a promising electrolyte lithium additive for high-voltage lithium-ion batteries. ACS Appl. Energy Mater. 1, 2647–2656 (2018).

    Article  CAS  Google Scholar 

  103. von Aspern, N. et al. Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. J. Fluor. Chem. 198, 24–33 (2017).

    Article  Google Scholar 

  104. Wu, S. et al. Stabilizing LiCoO2/graphite at high voltages with an electrolyte additive. ACS Appl. Mater. Interfaces 11, 17940–17951 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Klein, S. et al. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Rep. Phys. Sci. 2, 100521 (2021).

    Article  CAS  Google Scholar 

  106. Tan, S. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022).

    Article  CAS  Google Scholar 

  107. Cherkashinin, G. et al. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte–cathode interface impacted by the electrochemical cycling: x-ray photoelectron spectroscopy investigation. Phys. Chem. Chem. Phys. 14, 12321–12331 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Xue, W. et al. Stabilizing electrode–electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte. Energy Environ. Sci. 14, 6030–6040 (2021).

    Article  CAS  Google Scholar 

  110. Zheng, Q. et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat. Energy 5, 291–298 (2020).

    Article  CAS  Google Scholar 

  111. Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article  CAS  Google Scholar 

  112. Zhang, X. et al. Electrolyte regulating toward stabilization of cobalt-free ultrahigh-nickel layered oxide cathode in lithium-ion batteries. ACS Energy Lett. 6, 1324–1332 (2021).

    Article  CAS  Google Scholar 

  113. Ren, X. et al. Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V Li||LiCoO2 batteries. Adv. Mater. 32, e2004898 (2020).

    Article  PubMed  Google Scholar 

  114. Liu, W. et al. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat. Commun. 11, 3629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu, J. et al. Lithium halide cathodes for Li metal batteries. Joule 7, 83–94 (2023).

    Article  CAS  Google Scholar 

  116. Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).

    Article  CAS  Google Scholar 

  117. Mao, M. et al. In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 78, 105282 (2020).

    Article  CAS  Google Scholar 

  118. Bai, P. et al. Formation of LiF‐rich cathode‐electrolyte interphase by electrolyte reduction. Angew. Chem. Int. Ed. 61, e202202731 (2022).

    Article  CAS  Google Scholar 

  119. Tian, H.-K., Xu, B. & Qi, Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018).

    Article  CAS  Google Scholar 

  120. Mo, F. et al. Inside or outside: origin of lithium dendrite formation of all solid‐state electrolytes. Adv. Energy Mater. 9, 1902123 (2019).

    Article  CAS  Google Scholar 

  121. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  122. Zhang, L. et al. Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Narayanan, S. et al. Effect of current density on the solid electrolyte interphase formation at the lithiumLi6PS5Cl interface. Nat. Commun. 13, 7237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Han, F., Yue, J., Zhu, X. & Wang, C. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018).

    Article  Google Scholar 

  125. Otto, S. K. et al. In situ investigation of lithium metal–solid electrolyte anode interfaces with ToF‐SIMS. Adv. Mater. Interfaces 9, 2102387 (2022).

    Article  CAS  Google Scholar 

  126. LePage, W. S. et al. Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166, A89–A97 (2019).

    Article  CAS  Google Scholar 

  127. Kim, S. Y. & Li, J. Porous mixed ionic electronic conductor interlayers for solid-state batteries. Energy Mater. Adv. 2021, 1519569 (2021).

    Article  Google Scholar 

  128. Jow, T. R. & Liang, C. C. Interface between solid electrode and solid electrolyte — a study of the Li/LiI (Al2O3) solid‐electrolyte system. J. Electrochem. Soc. 130, 737–740 (1983).

    Article  CAS  Google Scholar 

  129. Lu, Y. et al. The void formation behaviors in working solid-state Li metal batteries. Sci. Adv. 8, eadd0510 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bay, M. C. et al. Sodium plating from Na‐β”‐Alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Adv. Energy Mater. 10, 1902899 (2020).

    Article  CAS  Google Scholar 

  131. Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).

    Article  CAS  Google Scholar 

  132. Yan, H. et al. How does the creep stress regulate void formation at the lithium‐solid electrolyte interface during stripping? Adv. Energy Mater. 12, 2102283 (2022).

    Article  CAS  Google Scholar 

  133. Choi, H. J. et al. In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv. Sci. 9, 2103826 (2022).

    Article  CAS  Google Scholar 

  134. Zhong, Y. et al. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew. Chem. Int. Ed. 59, 14003–14008 (2020).

    Article  CAS  Google Scholar 

  135. Meng, J., Zhang, Y., Zhou, X., Lei, M. & Li, C. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nat. Commun. 11, 3716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhao, F. et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett. 5, 1035–1043 (2020).

    Article  CAS  Google Scholar 

  137. Otoyama, M. et al. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte. ACS Appl. Mater. Interfaces 13, 5000–5007 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. McConohy, G. et al. Mechanical regulation of lithium intrusion probability in garnet solid electrolytes. Nat. Energy 8, 241–250 (2023).

    Article  CAS  Google Scholar 

  139. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wan, H. et al. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium–sulfur battery. ACS Energy Lett. 6, 862–868 (2021).

    Article  CAS  Google Scholar 

  141. Jin, S. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).

    Article  PubMed  Google Scholar 

  142. Ji, X. et al. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 32, e2002741 (2020).

    Article  PubMed  Google Scholar 

  143. Yuan, C., Lu, W. & Xu, J. Unlocking the electrochemical–mechanical coupling behaviors of dendrite growth and crack propagation in all‐solid‐state batteries. Adv. Energy Mater. 11, 2101807 (2021).

    Article  CAS  Google Scholar 

  144. Kinzer, B. et al. Operando analysis of the molten Li|LLZO interface: understanding how the physical properties of Li affect the critical current density. Matter 4, 1947–1961 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the US Department of Energy (DOE) under Award number DEEE0008856, ARPA-E under Award of DE-AR0000781, Advanced Battery Materials Research (BMR) Program (Battery500 Consortium Phase 2) under DOE contract no. DE-AC05-76RL01830 from the Pacific Northwest National Laboratory (PNNL) and the US Department of Energy (DOE) through ARPA-E grant DEAR0000389.

Author information

Authors and Affiliations

Authors

Contributions

H. W., J. X. and C. W. conceived the idea and wrote the draft. All the authors edited and revised the manuscript.

Corresponding authors

Correspondence to Jijian Xu or Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat Rev Chem 8, 30–44 (2024). https://doi.org/10.1038/s41570-023-00557-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00557-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing