Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cyclopentadienyl ring activation in organometallic chemistry and catalysis

Abstract

The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H) or radical hydrogen (H) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The active role of Cp ligands in transition metal complexes.
Fig. 2: Discovery timeline of selected ring-activated cyclopentadiene complexes.
Fig. 3: Cyclopentadiene ring activation in H2 production using [Cp*RhIII(NCMe)(bpy)]2+ catalysts.
Fig. 4: Proposed endo-selective protonation and ligand-to-metal proton migration during H2 production using [enCpNHiPrFe(NCMe)(CO)2]+ catalysts107.
Fig. 5: The role of cyclopentadiene ring activation of decamethylcobaltocene in N2 reduction catalysis.
Fig. 6: Metal-to-ligand proton migration for generating reactive PCET donors.
Fig. 7: Ring-activated Cp*Rh and CpCo complexes for hydride and proton transfer.

Similar content being viewed by others

References

  1. Chirik, P. J. Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics 29, 1500–1517 (2010).

    Article  CAS  Google Scholar 

  2. Field, L. D., Lindall, C. M., Masters, A. F. & Clentsmith, G. K. B. Penta-arylcyclopentadienyl complexes. Coord. Chem. Rev. 255, 1733–1790 (2011).

    Article  CAS  Google Scholar 

  3. Mas-Rosello, J., Herraiz, A. G., Audic, B., Laverny, A. & Cramer, N. Chiral cyclopentadienyl ligands: design, syntheses, and applications in asymmetric catalysis. Angew. Chem. Int. Ed. 60, 13198–13224 (2021).

    Article  CAS  Google Scholar 

  4. Shapiro, P. J. The evolution of the ansa-bridge and its effect on the scope of metallocene chemistry. Coord. Chem. Rev. 231, 67–81 (2002).

    Article  CAS  Google Scholar 

  5. Enders, M. & Baker, W. R. Synthesis of aryl- and heteroaryl-substituted cyclopentadienes and indenes and their use in transition metal chemistry. Curr. Org. Chem. 10, 937–953 (2006).

    Article  CAS  Google Scholar 

  6. Morris, R. H. Brønsted–Lowry acid strength of metal hydride and dihydrogen complexes. Chem. Rev. 116, 8588–8654 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Wiedner, E. S., Appel, A. M., Raugei, S., Shaw, W. J. & Bullock, R. M. Molecular catalysts with diphosphine ligands containing pendant amines. Chem. Rev. 122, 12427–12474 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Kuo, J. L., Lorenc, C., Abuyuan, J. M. & Norton, J. R. Catalysis of radical cyclizations from alkyl iodides under H2: evidence for electron transfer from [CpV(CO)3H]. J. Am. Chem. Soc. 140, 4512–4516 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuo, J. L. et al. Thermodynamics of H+/H/H/e transfer from [CpV(CO)3H]: comparisons to the isoelectronic CpCr(CO)3H. Organometallics 38, 4319–4328 (2019).

    Article  CAS  Google Scholar 

  12. Yao, C., Dahmen, T., Gansäuer, A. & Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 364, 764–767 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. DuBois, D. L. & Berning, D. E. Hydricity of transition-metal hydrides and its role in CO2 reduction. Appl. Organomet. Chem. 14, 860–862 (2000).

    Article  CAS  Google Scholar 

  14. Waldie, K. M., Ostericher, A. L., Reineke, M. H., Sasayama, A. F. & Kubiak, C. P. Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018).

    Article  CAS  Google Scholar 

  15. Barlow, J. M. & Yang, J. Y. Thermodynamic considerations for optimizing selective CO2 reduction by molecular catalysts. ACS Cent. Sci. 5, 580–588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Macomber, D. W., Hart, W. P. & Rausch, M. D. Advances in Organometallic Chemistry Vol. 21 (eds Stone, F. G. A. & West, R.) 1–55 (Academic, 1982).

  17. Green, M. L. H., Pratt, L. & Wilkinson, G. 760. A new type of transition metal–cyclopentadiene compound. J. Chem. Soc. 1959, 3753–3767 (1959). The first characterization of Cp ring activation products with nucleophilic and radical reagents.

    Article  Google Scholar 

  18. Fischer, E. O. & Herberich, G. E. Über aromatenkomplexe von metallen, XLIV. Über die reaktivität des di‐cyclopentadienyl‐kobalt(III)‐kations. Chem. Ber. 94, 1517–1523 (1961).

    Article  CAS  Google Scholar 

  19. Churchill, M. R., Mason, R. & Nyholm, R. S. The crystal and molecular structure of π-cyclopentadienyl 1-phenylcyclopentadiene cobalt. Proc. Math. Phys. Eng. 279, 191–209 (1964). The first unambiguous structural determination of Cp ring activation using X-ray crystallography.

    CAS  Google Scholar 

  20. Lehmkuhl, H. & Nehl, H. F. Über (cyclopentadienyl)organylcobalt‐komplexe. Chem. Ber. 117, 3443–3456 (2006).

    Article  Google Scholar 

  21. Davison, A., Green, M. L. H. & Wilkinson, G. 620. π-Cyclopentadienyl- and cyclopentadiene-iron carbonyl complexes. J. Chem. Soc. Dalton Trans. 1961, 3172–3177 (1961).

    Google Scholar 

  22. Angelici, R. J. & Fischer, E. O. New cyclopentadienyl complexes of rhodium. J. Am. Chem. Soc. 85, 3733–3735 (1963).

    Article  CAS  Google Scholar 

  23. Davies, S. G., Green, M. L. H. & Mingos, D. M. P. Nucleophilic addition to organotransition metal cations containing unsaturated hydrocarbon ligands: a survey and interpretation. Tetrahedron 34, 3047–3077 (1978).

    Article  CAS  Google Scholar 

  24. Yan, Y., Zhang, J., Qiao, Y. & Tang, C. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization. Macromol. Rapid Commun. 35, 254–259 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, Y., Zhang, J., Wilbon, P., Qiao, Y. & Tang, C. Ring-opening metathesis polymerization of 18-e cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization. Macromol. Rapid Commun. 35, 1840–1845 (2014).

    CAS  PubMed  Google Scholar 

  26. Enders, M., Kohl, G. & Pritzkow, H. Synthesis of main group and transition metal complexes with the (8-quinolyl)cyclopentadienyl ligand and their application in the polymerization of ethylene. Organometallics 23, 3832–3839 (2004).

    Article  CAS  Google Scholar 

  27. Yan, Y. et al. Syntheses of monosubstituted rhodocenium derivatives, monomers, and polymers. Macromolecules 48, 1644–1650 (2015).

    Article  CAS  Google Scholar 

  28. Vanicek, S. et al. Chemoselective, practical synthesis of cobaltocenium carboxylic acid hexafluorophosphate. Organometallics 33, 1152–1156 (2014).

    Article  CAS  Google Scholar 

  29. Pita-Milleiro, A. et al. Unveiling the latent reactivity of Cp* ligands (C5Me5) toward carbon nucleophiles on an iridium complex. Inorg. Chem. 62, 5961–5971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Broadhead, G. D., Osgerby, J. M. & Pauson, P. L. Ferrocene derivatives. Part V: Ferrocenealdehyde. J. Chem. Soc. 1958, 650–656 (1958).

    Article  Google Scholar 

  31. Rosenblum, M., Santer, J. O. & Howells, W. G. The chemistry and structure of ferrocene. VIII: Interannular resonance and the mechanism of electrophilic substitution. J. Am. Chem. Soc. 85, 1450–1458 (1963).

    Article  CAS  Google Scholar 

  32. Pauson, P. L. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2001).

  33. Malischewski, M. et al. Protonation of ferrocene: a low-temperature X-ray diffraction study of [Cp2FeH](PF6) reveals an iron-bound hydrido ligand. Angew. Chem. Int. Ed. 56, 13372–13376 (2017).

    Article  CAS  Google Scholar 

  34. Court, T. L. & Werner, H. Studies on the reactivity of metal π-complexes. J. Organomet. Chem. 65, 245–251 (1974).

    Article  CAS  Google Scholar 

  35. El Murr, N. & Laviron, E. Electrochimie de composés organométalliques. I. Electrosynthèse de cyclopentadiène cyclopentadiényl cobalt substitués. Can. J. Chem. 54, 3350–3356 (1976).

    Article  CAS  Google Scholar 

  36. El Murr, N. & Laviron, E. Syntheses using electrochemically generated cobaltocene or cobaltocene anion. Tetrahedr. Lett. 16, 875–878 (1975).

    Article  Google Scholar 

  37. Koelle, U. & Khouzami, F. Permethylated electron-excess metallocenes. Angew. Chem. Int. Ed. Engl. 19, 640–641 (1980).

    Article  Google Scholar 

  38. Werner, H. & Dernberger, T. Untersuchungen zur reaktivität von metall-π-komplexen. J. Organomet. Chem. 198, 97–103 (1980).

    Article  CAS  Google Scholar 

  39. Wilkinson, G., Cotton, F. A. & Birmingham, J. M. On manganese cyclopentadienide and some chemical reactions of neutral bis-cyclopentadienyl metal compounds. J. Inorg. Nucl. Chem. 2, 95–113 (1956).

    Article  CAS  Google Scholar 

  40. Katz, S., Weiher, J. F. & Voigt, A. F. Reaction of biscyclopentadienylcobalt(II) with organic halides. J. Am. Chem. Soc. 80, 6459 (1958).

    Article  CAS  Google Scholar 

  41. Herberich, G. E., Bauer, E. & Schwarzer, J. Untersuchungen zur reaktivität organometallischer komplexe III. Über die reaktion von dicyclopentadienylkobalt mit halogenmethanen. J. Organomet. Chem. 17, 445–452 (1969).

    Article  CAS  Google Scholar 

  42. Herberich, G. E. & Schwarzer, J. Free radical additions to dicyclopentadienylcobalt. Angew. Chem. Int. Ed. Engl. 9, 897–897 (1970). Strong mechanistic evidence for radical-based Cp ring activation.

    Article  CAS  Google Scholar 

  43. Herberich, G. E. & Schwarzer, J. Untersuchungen zur reaktivität organometallischer komplexe. J. Organomet. Chem. 34, C43–C47 (1972).

    Article  CAS  Google Scholar 

  44. Herberich, G. E., Carstensen, T., Klein, W. & Schmidt, M. U. Reaction of 19-valence-electron sandwich complexes with alkyl-halides — a radical-clock investigation. Organometallics 12, 1439–1441 (1993).

    Article  CAS  Google Scholar 

  45. Gusev, O. V. et al. Synthesis of η5-1,2,3,4,5-pentamethylcyclopentadienyl-platinum complexes. J. Organomet. Chem. 472, 359–363 (1994).

    Article  CAS  Google Scholar 

  46. Gusev, O. V. et al. Bis(η5-pentamethylcyclopentadienyl)-and(η5-cyclopentadienyl) (η5-pentamethylcyclopentadienyl)-platinium dications: Pt(IV) metallocenes. J. Organomet. Chem. 480, c16–c17 (1994).

    Article  CAS  Google Scholar 

  47. Jernakoff, P., Fox, J. R. & Cooper, N. J. Electrophilic addition of CCl4 to a cyclopentadienyl ligand in the tungstenocene carbonyl [W(η5-C5H5)2(CO)] to give [W(η5-C5H5)(η4-C5H5-exo-CCl3)(CO)Cl]. J. Organomet. Chem. 512, 175–181 (1996).

    Article  CAS  Google Scholar 

  48. O’Connor, J. M. & Casey, C. P. Ring-slippage chemistry of transition metal cyclopentadienyl and indenyl complexes. Chem. Rev. 87, 307–318 (2002).

    Article  Google Scholar 

  49. Suvorova, O. N. et al. Reactions of metallocenes during intercalation into the layered TiSe2 lattice. Russ. Chem. Bull. 56, 910–914 (2007).

    Article  CAS  Google Scholar 

  50. Tsai, W. M., Rausch, M. D. & Rogers, R. D. Improved synthesis of pentabenzylcyclopentadiene and study of the reaction between pentabenzylcyclopentadiene and iron pentacarbonyl. Organometallics 15, 2591–2594 (1996).

    Article  CAS  Google Scholar 

  51. Donovan, B. T., Hughes, R. P., Kowalski, A. S., Trujillo, H. A. & Rheingold, A. L. Stereoselective rhodium-promoted ring closure of an η4-1,3-pentadienediyl ligand to an η4-1,3-cyclopentadiene, with subsequent regiospecific endo-H migration: molecular structure of [Rh(η5-C5H5)(1-4-η)-C5H3-1,2-exo-5-tBu3)]. Organometallics 12, 1038–1043 (2002).

    Article  Google Scholar 

  52. Busetto, L., Marchetti, F., Zacchini, S. & Zanotti, V. Addition of isocyanides at Diiron μ-vinyliminium complexes: synthesis of novel ketenimine−bis(alkylidene) complexes. Organometallics 27, 5058–5066 (2008).

    Article  CAS  Google Scholar 

  53. Bullock, R. M., Headford, C. E. L., Hennessy, K. M., Kegley, S. E. & Norton, J. R. Intramolecular hydrogen exchange among the coordinated methane fragments of Cp2W(H)CH3: evidence for the formation of a σ complex of methane prior to elimination. J. Am. Chem. Soc. 111, 3897–3908 (1989).

    Article  CAS  Google Scholar 

  54. Cadenbach, T., Gemel, C., Schmid, R. & Fischer, R. A. Mechanistic insights into an unprecedented C-C bond activation on a Rh/Ga bimetallic complex: a combined experimental/computational approach. J. Am. Chem. Soc. 127, 17068–17078 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Cooper, R. L., Green, M. L. H. & Moelwyn-Hughes, J. T. Studies on the dicyclopentadienyl hydrides of rhenium and tungsten. J. Organomet. Chem. 3, 261–268 (1965).

    Article  CAS  Google Scholar 

  56. Davidson, J. L., Green, M., Stone, F. G. A. & Welch, A. J. Syntheses involving co-ordinatively unsaturated cyclopentadienyl-molybdenum and -tungsten complexes: molecular and crystal structure of [Mo·C(CF3):C(CF3)·C5H5(CF3C2CF3)(η5-C5H5)]. J. Chem. Soc. Dalton Trans. 3, 287–294 (1977).

    Article  Google Scholar 

  57. Gusev, O. V. et al. Electrochemical generation of 19- and 20-electron rhodocenium complexes and their properties. J. Organomet. Chem. 452, 219–222 (1993).

    Article  CAS  Google Scholar 

  58. Davidson, J. L., Green, M., Stone, F. G. A. & Welch, A. J. Insertion reactions of hexafluorobut-2-yne, tetrafluoroethylene, and hexafluoroacetone with η5-cyclopentadienyl-iron, -ruthenium, -palladium, and -molybdenum complexes; molecular and crystal structures of [Fe2(CO){C4(CF3)4CO}(η5-C5H5)2] and [Fe{COCF2C5H5}(η5-C5H5)]. J. Chem. Soc. Dalton Trans. 20, 2044–2053 (1976).

    Article  Google Scholar 

  59. Carpenter, N. E., Khan, M. A. & Nicholas, K. M. Selective metal-to-ring alkyl migration during irradiation of CpFe(CO)2[CHPh(OSiMe3)]. Organometallics 18, 1569–1570 (1999).

    Article  CAS  Google Scholar 

  60. Jones, W. D. & Maguire, J. A. Preparation and reaction dynamics of (η4-C5H6)Re(PPh3)2H3 — a structurally characterized η4-cyclopentadiene complex. Organometallics 4, 951–953 (1985).

    Article  CAS  Google Scholar 

  61. Rupp, R. et al. 4-Coordination of dienes and heterodienes to the tripodCobalt(I) template [CH3C(CH2PPh2)3Co]+: synthesis, structure, and dynamics. Eur. J. Inorg. Chem. 2000, 523–536 (2000).

    Article  Google Scholar 

  62. Enders, M. et al. Coordination chemistry of neutral quinolyl- and aminophenylcyclopentadiene derivatives. J. Organomet. Chem. 641, 81–89 (2002).

    Article  CAS  Google Scholar 

  63. Macías, R. et al. Effects of metal-centre orbital control on cluster character and electron distribution between borane and hydrocarbon ligands; significance of the structures of [μ-9,10-(SMe)-8,8-(PPh3)2-nido-8,7-IrSB9H9] and [μ-9,10-(SMe)-8-(η4-C5Me5H)-nido-8,7-RhSB9H9]. J. Chem. Soc. Dalton Trans. 2, 149–152(1997).

    Article  Google Scholar 

  64. Hitchcock, P. B., Nixon, J. F. & Buyukkidan, N. S. Remarkable organophosphorus cage compounds from the reaction of cobaltocene and the triphosphole P3C2But2CH(SiMe3)2: crystal and molecular structures of [Co(η5-C5H5)(η4-C4H4CHCHP6C4But4)] and P6C4But4CH(SiMe3). Chem. Commun. 24, 2720–2721 (2001).

    Article  Google Scholar 

  65. Nishihara, Y., Deck, K. J., Shang, M. & Fehlner, T. P. Cluster chemistry driven by ligand bulk. Significance of the synthesis of nido-1-(η5-C5Me5)Co-2-(η4-C5Me5H)CoB3H8 and its dehydrogenation to nido-2,4-{(η5-C5Me5)Co}2B3H7. J. Am. Chem. Soc. 115, 12224–12225 (2002).

    Article  Google Scholar 

  66. Nishihara, Y. et al. Synthesis of cobaltaborane clusters from [Cp*CoCl]2 and monoboranes: new structures and mechanistic implications. Organometallics 13, 4510–4522 (2002).

    Article  Google Scholar 

  67. Hodson, B. E., McGrath, T. D. & Stone, F. G.Synthesis, structure, and dynamics of nickelacarboranes incorporating the [nido-7,9-C2B9H11]2- ligand. Inorg. Chem. 43, 3090–3097 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Kefalidis, C.E. et al. Can a pentamethylcyclopentadienyl ligand act as a proton-relay in f-element chemistry? Insights from a joint experimental/theoretical study. Dalton Trans. 44, 2575–2587 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Jones, W. D., Kuykendall, V. L. & Selmeczy, A. D. Ring migration reactions of (C5Me5)Rh(PMe3)H2 — evidence for η3 slippage and metal-to-ring hydride migration. Organometallics 10, 1577–1586 (1991).

    Article  CAS  Google Scholar 

  70. Jones, W. D., Rosini, G. P. & Maguire, J. A. Photochemical C−H activation and ligand exchange reactions of CpRe(PPh3)2H2: phosphine dissociation is not involved. Organometallics 18, 1754–1760 (1999).

    Article  CAS  Google Scholar 

  71. Reger, D. L., Belmore, K. A., Atwood, J. L. & Hunter, W. E. The cis addition of hydride to η2-alkyne complexes by initial reaction at an η5-cyclopentadienyl (η5-C5H5) ring: crystal and molecular structure of the carbonyl-η5-cyclopentadienyliron complex (η5-C5H5)FeCO(PPh3)[η1-(E)-C(CO2Et)=C(H)Me]. J. Am. Chem. Soc. 105, 5710–5711 (2002).

    Article  Google Scholar 

  72. Gleiter, R., Bleiholder, C. & Rominger, F. α-Metallocenylmethylium ions and isoelectronic fulvene complexes of d6 to d9 metals: structural considerations. Organometallics 26, 4850–4859 (2007).

    Article  CAS  Google Scholar 

  73. Preethalayam, P. et al. Recent advances in the chemistry of pentafulvenes. Chem. Rev. 117, 3930–3989 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Kreindlin, A. Z. & Rybinskaya, M. I. Cationic and neutral transition metal complexes with a tetramethylfulvene or trimethylallyldiene ligand. Russ. Chem. Rev. 73, 417 (2004).

    Article  CAS  Google Scholar 

  75. Astruc, D. Electron and proton reservoir complexes: thermodynamic basis for C−H activation and applications in redox and dendrimer chemistry. Acc. Chem. Res. 33, 287–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, 6391 (2018).

    Article  Google Scholar 

  77. Agarwal, R. G. et al. Free energies of proton-coupled electron transfer reagents and their applications. Chem. Rev. 122, 1–49 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rauchfuss, T. B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 48, 2107–2116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lubitz, W., Ogata, H., Rudiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Klug, C. M., Cardenas, A. J. P., Bullock, R. M., O’Hagan, M. & Wiedner, E. S. Reversing the tradeoff between rate and overpotential in molecular electrocatalysts for H2 production. ACS Catal. 8, 3286–3296 (2018).

    Article  CAS  Google Scholar 

  82. Ruppert, R., Herrmann, S. & Steckhan, E. Efficient indirect electrochemical in-situ regeneration of nadh: electrochemically driven enzymatic reduction of pyruvate catalyzed by d-ldh. Tetrahedr. Lett. 28, 6583–6586 (1987).

    Article  CAS  Google Scholar 

  83. Steckhan, E. et al. Analytical study of a series of substituted (2,2′-bipyridyl)(pentamethylcyclopentadienyl)rhodium and iridium complexes with regard to their effectiveness as redox catalysts for the indirect electrochemical and chemical-reduction of NAD(P)+. Organometallics 10, 1568–1577 (1991).

    Article  CAS  Google Scholar 

  84. Lo, H. C. et al. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5′-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure–activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Inorg. Chem. 40, 6705–6716 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Ruppert, R., Herrmann, S. & Steckhan, E. Very efficient reduction of NAD(P)+ with formate catalyzed by cationic rhodium complexes. J. Chem. Soc. Chem. Commun. 17, 1150–1151 (1988).

    Article  Google Scholar 

  86. Fukuzumi, S., Kobayashi, T. & Suenobu, T. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution. ChemSusChem 1, 827–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Kölle, U. & Grätzel, M. Organometallic rhodium(III) complexes as catalysts for the photoreduction of protons to hydrogen on colloidal TiO2. Angew. Chem. Int. Ed. Engl. 26, 567–570 (1987).

    Article  Google Scholar 

  88. Cosnier, S., Deronzier, A. & Vlachopoulos, N. Carbon/poly {pyrrole-[(C5Me5)RhIII(bpy)Cl]+} modified electrodes; a molecularly-based material for hydrogen evolution (bpy = 2,2′-bipyridine). J. Chem. Soc. Chem. Commun. 17, 1259–1261 (1989).

    Article  Google Scholar 

  89. Kölle, U., Kang, B. S., Infelta, P., Comte, P. & Grätzel, M. Elektrochemische und pulsradiolytische Reduktion von (pentamethylcyclopentadienyl)(polypyridyl)rhodium‐Komplexen. Chem. Ber. 122, 1869–1880 (1989).

    Article  Google Scholar 

  90. Blakemore, J. D. et al. Pentamethylcyclopentadienyl rhodium complexes. Polyhedron 84, 14–18 (2014).

    Article  CAS  Google Scholar 

  91. Quintana, L. M. et al. Proton-hydride tautomerism in hydrogen evolution catalysis. Proc. Natl Acad. Sci. USA 113, 6409–6414 (2016). Structural and spectroscopic evidence of metal-to-ligand tautomerism with Cp* ligands and their relevance to H2 production.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kolthoff, I. M., Chantoon, M. K. & Bhowmik, S. Acid–base indicator constants in acetonitrile. Anal. Chem. 39, 315–320 (1967).

    Article  CAS  Google Scholar 

  93. Appel, A. M. & Helm, M. L. Determining the overpotential for a molecular electrocatalyst. ACS Catal. 4, 630–633 (2014).

    Article  CAS  Google Scholar 

  94. Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Johnson, S. I., Gray, H. B., Blakemore, J. D. & Goddard, W. A. III Role of ligand protonation in dihydrogen evolution from a pentamethylcyclopentadienyl rhodium catalyst. Inorg. Chem. 56, 11375–11386 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Peng, Y., Ramos-Garces, M. V., Lionetti, D. & Blakemore, J. D. Structural and electrochemical consequences of [Cp*] ligand protonation. Inorg. Chem. 56, 10824–10831 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Henke, W. C. et al. Ligand substituents govern the efficiency and mechanistic path of hydrogen production with [Cp*Rh] catalysts. ChemSusChem 10, 4589–4598 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, 6505 (2020).

    Article  Google Scholar 

  99. Liu, T. B., DuBois, D. L. & Bullock, R. M. An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat. Chem. 5, 228–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Agarwal, T. & Kaur-Ghumaan, S. HER catalysed by iron complexes without a Fe2S2 core: a review. Coord. Chem. Rev. 397, 188–219 (2019).

    Article  CAS  Google Scholar 

  101. Artero, V. & Fontecave, M. Hydrogen evolution catalyzed by {CpFe(CO)2}-based complexes. C. R. Chim. 11, 926–931 (2008).

    Article  CAS  Google Scholar 

  102. Darmon, J. M. et al. Iron complexes for the electrocatalytic oxidation of hydrogen: tuning primary and secondary coordination spheres. ACS Catal. 4, 1246–1260 (2014).

    Article  CAS  Google Scholar 

  103. Brazzolotto, D. et al. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nat. Chem. 8, 1054–1060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hemming, E. B. et al. [Fe(C5Ar5)(CO)2Br] complexes as hydrogenase mimics for the catalytic hydrogen evolution reaction. Appl. Catal. B 223, 234–241 (2018).

    Article  CAS  Google Scholar 

  105. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Carroll, M. E., Barton, B. E., Rauchfuss, T. B. & Carroll, P. J. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. J. Am. Chem. Soc. 134, 18843–18852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sanchez, P. et al. Ligand protonation at carbon, not nitrogen, during H2 production with amine-rich iron electrocatalysts. Inorg. Chem. 60, 17407–17413 (2021). Cp ring activation for an amine-rich Cp ligand (that is, not Cp or Cp*) coordinated to an Earth-abundant electrocatalyst for H2 production.

    Article  CAS  PubMed  Google Scholar 

  108. Bursch, M., Mewes, J.-M., Hansen, A. & Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. Int. Ed. 61, e202205735 (2022).

    Article  CAS  Google Scholar 

  109. Kütt, A. et al. Strengths of acids in acetonitrile. Eur. J. Org. Chem. 2021, 1407–1419 (2021).

    Article  Google Scholar 

  110. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  111. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3, 120–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kuriyama, S. et al. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nat. Commun. 7, 12181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eizawa, A. et al. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. Nat. Commun. 8, 14874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pappas, I. & Chirik, P. J. Catalytic proton coupled electron transfer from metal hydrides to titanocene amides, hydrazides and imides: determination of thermodynamic parameters relevant to nitrogen fixation. J. Am. Chem. Soc. 138, 13379–13389 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Bruch, Q. J. et al. Dinitrogen reduction to ammonium at rhenium utilizing light and proton-coupled electron transfer. J. Am. Chem. Soc. 141, 20198–20208 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Kuriyama, S. et al. Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J. Am. Chem. Soc. 136, 9719–9731 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Arashiba, K. et al. Catalytic reduction of dinitrogen to ammonia by use of molybdenum–nitride complexes bearing a tridentate triphosphine as catalysts. J. Am. Chem. Soc. 137, 5666–5669 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Hill, P. J., Doyle, L. R., Crawford, A. D., Myers, W. K. & Ashley, A. E. Selective catalytic reduction of N2 to N2H4 by a simple Fe complex. J. Am. Chem. Soc. 138, 13521–13524 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Chalkley, M. J., Del Castillo, T. J., Matson, B. D., Roddy, J. P. & Peters, J. C. Catalytic N2-to-NH3 conversion by Fe at lower driving force: a proposed role for metallocene-mediated PCET. ACS Cent. Sci. 3, 217–223 (2017). First proposal of ring-activated metallocenes behaving as PCET reagents that contain weak homolytic C–H bonds after protonation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chalkley, M. J., Oyala, P. H. & Peters, J. C. Cp* noninnocence leads to a remarkably weak CH bond via metallocene protonation. J. Am. Chem. Soc. 141, 4721–4729 (2019). Unambiguous spectroscopic determination of weak C–H bonds in Cp*2Co and their relevance to PCET chemistry.

    Article  CAS  PubMed  Google Scholar 

  124. Chalkley, M. J., Del Castillo, T. J., Matson, B. D. & Peters, J. C. Fe-mediated nitrogen fixation with a metallocene mediator: exploring pKa effects and demonstrating electrocatalysis. J. Am. Chem. Soc. 140, 6122–6129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Matson, B. D. & Peters, J. C. Fe-mediated HER vs N2RR: exploring factors that contribute to selectivity in P3(E)Fe(N2) (E = B, Si, C) catalyst model systems. ACS Catal. 8, 1448–1455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Garrido-Barros, P., Derosa, J., Chalkley, M. J. & Peters, J. C. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature 609, 71–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Hamon, P., Toupet, L., Hamon, J. R. & Lapinte, C. Novel diamagnetic and paramagnetic iron(II), iron(III), and iron(IV) classical and nonclassical hyrides: X-ray crystal structure of [Fe(C5Me5)(dppe)D]PF6. Organometallics 11, 1429–1431 (1992).

    Article  CAS  Google Scholar 

  128. Hamon, P., Hamon, J.-R. & Lapinte, C. Isolation and characterization of a cationic 19-electron iron(III) hydride complex; electron transfer induced hydride migration by carbon monoxide at an iron(III) centre. J. Chem. Soc. Chem. Commun. 21, 1602–1603 (1992).

    Article  Google Scholar 

  129. Schild, D. J., Drover, M. W., Oyala, P. H. & Peters, J. C. Generating potent C-H PCET donors: ligand-induced Fe-to-ring proton migration from a Cp*Fe(III)-H complex demonstrates a promising strategy. J. Am. Chem. Soc. 142, 18963–18970 (2020). First account of piano-stool Cp*Fe complexes that can deliver H atoms via Cp* ring activation.

    Article  CAS  PubMed  Google Scholar 

  130. Wise, C. F., Agarwal, R. G. & Mayer, J. M. Determining proton-coupled standard potentials and X–H bond dissociation free energies in nonaqueous solvents using open-circuit potential measurements. J. Am. Chem. Soc. 142, 10681–10691 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Miller, A. J., Labinger, J. A. & Bercaw, J. E. Trialkylborane-assisted CO2 reduction by late transition metal hydrides. Organometallics 30, 4308–4314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pitman, C. L., Finster, O. N. & Miller, A. J. Cyclopentadiene-mediated hydride transfer from rhodium complexes. Chem. Commun. 52, 9105–9108 (2016). Experimental evidence that ring-activated Cp*Rh compounds might behave as hydride transfer agents to NAD+.

    Article  CAS  Google Scholar 

  133. Pal, S. Cp* non-innocence and the implications of (η4-Cp*H)Rh intermediates in hydrogenation of CO2, NAD+, amino-borane, and the Cp* framework — a computational study. Dalton Trans. 52, 1182–1187 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Kurtz, D. A. et al. Redox-induced structural reorganization dictates kinetics of cobalt(III) hydride formation via proton-coupled electron transfer. J. Am. Chem. Soc. 143, 3393–3406 (2021). Evidence supporting that ring-activated Cp intermediates precede the formation of CoIIIH complexes under acidic conditions.

    Article  CAS  PubMed  Google Scholar 

  135. Chalkley, M. J., Garrido-Barros, P. & Peters, J. C. A molecular mediator for reductive concerted proton–electron transfers via electrocatalysis. Science 369, 850–854 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.E.P. thanks Rutgers University — Newark and the National Science Foundation (2055097) for support. The authors thank M. Bullock and A. Hansen for constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

D.E.P. developed the conceptual framework for this manuscript. All authors contributed to writing and editing the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Demyan E. Prokopchuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanderWeide, A., Prokopchuk, D.E. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nat Rev Chem 7, 561–572 (2023). https://doi.org/10.1038/s41570-023-00501-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00501-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing