Abstract
The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H−) or radical hydrogen (H•) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chirik, P. J. Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics 29, 1500–1517 (2010).
Field, L. D., Lindall, C. M., Masters, A. F. & Clentsmith, G. K. B. Penta-arylcyclopentadienyl complexes. Coord. Chem. Rev. 255, 1733–1790 (2011).
Mas-Rosello, J., Herraiz, A. G., Audic, B., Laverny, A. & Cramer, N. Chiral cyclopentadienyl ligands: design, syntheses, and applications in asymmetric catalysis. Angew. Chem. Int. Ed. 60, 13198–13224 (2021).
Shapiro, P. J. The evolution of the ansa-bridge and its effect on the scope of metallocene chemistry. Coord. Chem. Rev. 231, 67–81 (2002).
Enders, M. & Baker, W. R. Synthesis of aryl- and heteroaryl-substituted cyclopentadienes and indenes and their use in transition metal chemistry. Curr. Org. Chem. 10, 937–953 (2006).
Morris, R. H. Brønsted–Lowry acid strength of metal hydride and dihydrogen complexes. Chem. Rev. 116, 8588–8654 (2016).
Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).
Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).
Wiedner, E. S., Appel, A. M., Raugei, S., Shaw, W. J. & Bullock, R. M. Molecular catalysts with diphosphine ligands containing pendant amines. Chem. Rev. 122, 12427–12474 (2022).
Kuo, J. L., Lorenc, C., Abuyuan, J. M. & Norton, J. R. Catalysis of radical cyclizations from alkyl iodides under H2: evidence for electron transfer from [CpV(CO)3H]−. J. Am. Chem. Soc. 140, 4512–4516 (2018).
Kuo, J. L. et al. Thermodynamics of H+/H•/H−/e− transfer from [CpV(CO)3H]−: comparisons to the isoelectronic CpCr(CO)3H. Organometallics 38, 4319–4328 (2019).
Yao, C., Dahmen, T., Gansäuer, A. & Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 364, 764–767 (2019).
DuBois, D. L. & Berning, D. E. Hydricity of transition-metal hydrides and its role in CO2 reduction. Appl. Organomet. Chem. 14, 860–862 (2000).
Waldie, K. M., Ostericher, A. L., Reineke, M. H., Sasayama, A. F. & Kubiak, C. P. Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018).
Barlow, J. M. & Yang, J. Y. Thermodynamic considerations for optimizing selective CO2 reduction by molecular catalysts. ACS Cent. Sci. 5, 580–588 (2019).
Macomber, D. W., Hart, W. P. & Rausch, M. D. Advances in Organometallic Chemistry Vol. 21 (eds Stone, F. G. A. & West, R.) 1–55 (Academic, 1982).
Green, M. L. H., Pratt, L. & Wilkinson, G. 760. A new type of transition metal–cyclopentadiene compound. J. Chem. Soc. 1959, 3753–3767 (1959). The first characterization of Cp ring activation products with nucleophilic and radical reagents.
Fischer, E. O. & Herberich, G. E. Über aromatenkomplexe von metallen, XLIV. Über die reaktivität des di‐cyclopentadienyl‐kobalt(III)‐kations. Chem. Ber. 94, 1517–1523 (1961).
Churchill, M. R., Mason, R. & Nyholm, R. S. The crystal and molecular structure of π-cyclopentadienyl 1-phenylcyclopentadiene cobalt. Proc. Math. Phys. Eng. 279, 191–209 (1964). The first unambiguous structural determination of Cp ring activation using X-ray crystallography.
Lehmkuhl, H. & Nehl, H. F. Über (cyclopentadienyl)organylcobalt‐komplexe. Chem. Ber. 117, 3443–3456 (2006).
Davison, A., Green, M. L. H. & Wilkinson, G. 620. π-Cyclopentadienyl- and cyclopentadiene-iron carbonyl complexes. J. Chem. Soc. Dalton Trans. 1961, 3172–3177 (1961).
Angelici, R. J. & Fischer, E. O. New cyclopentadienyl complexes of rhodium. J. Am. Chem. Soc. 85, 3733–3735 (1963).
Davies, S. G., Green, M. L. H. & Mingos, D. M. P. Nucleophilic addition to organotransition metal cations containing unsaturated hydrocarbon ligands: a survey and interpretation. Tetrahedron 34, 3047–3077 (1978).
Yan, Y., Zhang, J., Qiao, Y. & Tang, C. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization. Macromol. Rapid Commun. 35, 254–259 (2014).
Yan, Y., Zhang, J., Wilbon, P., Qiao, Y. & Tang, C. Ring-opening metathesis polymerization of 18-e− cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization. Macromol. Rapid Commun. 35, 1840–1845 (2014).
Enders, M., Kohl, G. & Pritzkow, H. Synthesis of main group and transition metal complexes with the (8-quinolyl)cyclopentadienyl ligand and their application in the polymerization of ethylene. Organometallics 23, 3832–3839 (2004).
Yan, Y. et al. Syntheses of monosubstituted rhodocenium derivatives, monomers, and polymers. Macromolecules 48, 1644–1650 (2015).
Vanicek, S. et al. Chemoselective, practical synthesis of cobaltocenium carboxylic acid hexafluorophosphate. Organometallics 33, 1152–1156 (2014).
Pita-Milleiro, A. et al. Unveiling the latent reactivity of Cp* ligands (C5Me5−) toward carbon nucleophiles on an iridium complex. Inorg. Chem. 62, 5961–5971 (2023).
Broadhead, G. D., Osgerby, J. M. & Pauson, P. L. Ferrocene derivatives. Part V: Ferrocenealdehyde. J. Chem. Soc. 1958, 650–656 (1958).
Rosenblum, M., Santer, J. O. & Howells, W. G. The chemistry and structure of ferrocene. VIII: Interannular resonance and the mechanism of electrophilic substitution. J. Am. Chem. Soc. 85, 1450–1458 (1963).
Pauson, P. L. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2001).
Malischewski, M. et al. Protonation of ferrocene: a low-temperature X-ray diffraction study of [Cp2FeH](PF6) reveals an iron-bound hydrido ligand. Angew. Chem. Int. Ed. 56, 13372–13376 (2017).
Court, T. L. & Werner, H. Studies on the reactivity of metal π-complexes. J. Organomet. Chem. 65, 245–251 (1974).
El Murr, N. & Laviron, E. Electrochimie de composés organométalliques. I. Electrosynthèse de cyclopentadiène cyclopentadiényl cobalt substitués. Can. J. Chem. 54, 3350–3356 (1976).
El Murr, N. & Laviron, E. Syntheses using electrochemically generated cobaltocene or cobaltocene anion. Tetrahedr. Lett. 16, 875–878 (1975).
Koelle, U. & Khouzami, F. Permethylated electron-excess metallocenes. Angew. Chem. Int. Ed. Engl. 19, 640–641 (1980).
Werner, H. & Dernberger, T. Untersuchungen zur reaktivität von metall-π-komplexen. J. Organomet. Chem. 198, 97–103 (1980).
Wilkinson, G., Cotton, F. A. & Birmingham, J. M. On manganese cyclopentadienide and some chemical reactions of neutral bis-cyclopentadienyl metal compounds. J. Inorg. Nucl. Chem. 2, 95–113 (1956).
Katz, S., Weiher, J. F. & Voigt, A. F. Reaction of biscyclopentadienylcobalt(II) with organic halides. J. Am. Chem. Soc. 80, 6459 (1958).
Herberich, G. E., Bauer, E. & Schwarzer, J. Untersuchungen zur reaktivität organometallischer komplexe III. Über die reaktion von dicyclopentadienylkobalt mit halogenmethanen. J. Organomet. Chem. 17, 445–452 (1969).
Herberich, G. E. & Schwarzer, J. Free radical additions to dicyclopentadienylcobalt. Angew. Chem. Int. Ed. Engl. 9, 897–897 (1970). Strong mechanistic evidence for radical-based Cp ring activation.
Herberich, G. E. & Schwarzer, J. Untersuchungen zur reaktivität organometallischer komplexe. J. Organomet. Chem. 34, C43–C47 (1972).
Herberich, G. E., Carstensen, T., Klein, W. & Schmidt, M. U. Reaction of 19-valence-electron sandwich complexes with alkyl-halides — a radical-clock investigation. Organometallics 12, 1439–1441 (1993).
Gusev, O. V. et al. Synthesis of η5-1,2,3,4,5-pentamethylcyclopentadienyl-platinum complexes. J. Organomet. Chem. 472, 359–363 (1994).
Gusev, O. V. et al. Bis(η5-pentamethylcyclopentadienyl)-and(η5-cyclopentadienyl) (η5-pentamethylcyclopentadienyl)-platinium dications: Pt(IV) metallocenes. J. Organomet. Chem. 480, c16–c17 (1994).
Jernakoff, P., Fox, J. R. & Cooper, N. J. Electrophilic addition of CCl4 to a cyclopentadienyl ligand in the tungstenocene carbonyl [W(η5-C5H5)2(CO)] to give [W(η5-C5H5)(η4-C5H5-exo-CCl3)(CO)Cl]. J. Organomet. Chem. 512, 175–181 (1996).
O’Connor, J. M. & Casey, C. P. Ring-slippage chemistry of transition metal cyclopentadienyl and indenyl complexes. Chem. Rev. 87, 307–318 (2002).
Suvorova, O. N. et al. Reactions of metallocenes during intercalation into the layered TiSe2 lattice. Russ. Chem. Bull. 56, 910–914 (2007).
Tsai, W. M., Rausch, M. D. & Rogers, R. D. Improved synthesis of pentabenzylcyclopentadiene and study of the reaction between pentabenzylcyclopentadiene and iron pentacarbonyl. Organometallics 15, 2591–2594 (1996).
Donovan, B. T., Hughes, R. P., Kowalski, A. S., Trujillo, H. A. & Rheingold, A. L. Stereoselective rhodium-promoted ring closure of an η4-1,3-pentadienediyl ligand to an η4-1,3-cyclopentadiene, with subsequent regiospecific endo-H migration: molecular structure of [Rh(η5-C5H5)(1-4-η)-C5H3-1,2-exo-5-tBu3)]. Organometallics 12, 1038–1043 (2002).
Busetto, L., Marchetti, F., Zacchini, S. & Zanotti, V. Addition of isocyanides at Diiron μ-vinyliminium complexes: synthesis of novel ketenimine−bis(alkylidene) complexes. Organometallics 27, 5058–5066 (2008).
Bullock, R. M., Headford, C. E. L., Hennessy, K. M., Kegley, S. E. & Norton, J. R. Intramolecular hydrogen exchange among the coordinated methane fragments of Cp2W(H)CH3: evidence for the formation of a σ complex of methane prior to elimination. J. Am. Chem. Soc. 111, 3897–3908 (1989).
Cadenbach, T., Gemel, C., Schmid, R. & Fischer, R. A. Mechanistic insights into an unprecedented C-C bond activation on a Rh/Ga bimetallic complex: a combined experimental/computational approach. J. Am. Chem. Soc. 127, 17068–17078 (2005).
Cooper, R. L., Green, M. L. H. & Moelwyn-Hughes, J. T. Studies on the dicyclopentadienyl hydrides of rhenium and tungsten. J. Organomet. Chem. 3, 261–268 (1965).
Davidson, J. L., Green, M., Stone, F. G. A. & Welch, A. J. Syntheses involving co-ordinatively unsaturated cyclopentadienyl-molybdenum and -tungsten complexes: molecular and crystal structure of [Mo·C(CF3):C(CF3)·C5H5(CF3C2CF3)(η5-C5H5)]. J. Chem. Soc. Dalton Trans. 3, 287–294 (1977).
Gusev, O. V. et al. Electrochemical generation of 19- and 20-electron rhodocenium complexes and their properties. J. Organomet. Chem. 452, 219–222 (1993).
Davidson, J. L., Green, M., Stone, F. G. A. & Welch, A. J. Insertion reactions of hexafluorobut-2-yne, tetrafluoroethylene, and hexafluoroacetone with η5-cyclopentadienyl-iron, -ruthenium, -palladium, and -molybdenum complexes; molecular and crystal structures of [Fe2(CO){C4(CF3)4CO}(η5-C5H5)2] and [Fe{COCF2C5H5}(η5-C5H5)]. J. Chem. Soc. Dalton Trans. 20, 2044–2053 (1976).
Carpenter, N. E., Khan, M. A. & Nicholas, K. M. Selective metal-to-ring alkyl migration during irradiation of CpFe(CO)2[CHPh(OSiMe3)]. Organometallics 18, 1569–1570 (1999).
Jones, W. D. & Maguire, J. A. Preparation and reaction dynamics of (η4-C5H6)Re(PPh3)2H3 — a structurally characterized η4-cyclopentadiene complex. Organometallics 4, 951–953 (1985).
Rupp, R. et al. 4-Coordination of dienes and heterodienes to the tripodCobalt(I) template [CH3C(CH2PPh2)3Co]+: synthesis, structure, and dynamics. Eur. J. Inorg. Chem. 2000, 523–536 (2000).
Enders, M. et al. Coordination chemistry of neutral quinolyl- and aminophenylcyclopentadiene derivatives. J. Organomet. Chem. 641, 81–89 (2002).
Macías, R. et al. Effects of metal-centre orbital control on cluster character and electron distribution between borane and hydrocarbon ligands; significance of the structures of [μ-9,10-(SMe)-8,8-(PPh3)2-nido-8,7-IrSB9H9] and [μ-9,10-(SMe)-8-(η4-C5Me5H)-nido-8,7-RhSB9H9]. J. Chem. Soc. Dalton Trans. 2, 149–152(1997).
Hitchcock, P. B., Nixon, J. F. & Buyukkidan, N. S. Remarkable organophosphorus cage compounds from the reaction of cobaltocene and the triphosphole P3C2But2CH(SiMe3)2: crystal and molecular structures of [Co(η5-C5H5)(η4-C4H4CHCHP6C4But4)] and P6C4But4CH(SiMe3). Chem. Commun. 24, 2720–2721 (2001).
Nishihara, Y., Deck, K. J., Shang, M. & Fehlner, T. P. Cluster chemistry driven by ligand bulk. Significance of the synthesis of nido-1-(η5-C5Me5)Co-2-(η4-C5Me5H)CoB3H8 and its dehydrogenation to nido-2,4-{(η5-C5Me5)Co}2B3H7. J. Am. Chem. Soc. 115, 12224–12225 (2002).
Nishihara, Y. et al. Synthesis of cobaltaborane clusters from [Cp*CoCl]2 and monoboranes: new structures and mechanistic implications. Organometallics 13, 4510–4522 (2002).
Hodson, B. E., McGrath, T. D. & Stone, F. G.Synthesis, structure, and dynamics of nickelacarboranes incorporating the [nido-7,9-C2B9H11]2- ligand. Inorg. Chem. 43, 3090–3097 (2004).
Kefalidis, C.E. et al. Can a pentamethylcyclopentadienyl ligand act as a proton-relay in f-element chemistry? Insights from a joint experimental/theoretical study. Dalton Trans. 44, 2575–2587 (2015).
Jones, W. D., Kuykendall, V. L. & Selmeczy, A. D. Ring migration reactions of (C5Me5)Rh(PMe3)H2 — evidence for η3 slippage and metal-to-ring hydride migration. Organometallics 10, 1577–1586 (1991).
Jones, W. D., Rosini, G. P. & Maguire, J. A. Photochemical C−H activation and ligand exchange reactions of CpRe(PPh3)2H2: phosphine dissociation is not involved. Organometallics 18, 1754–1760 (1999).
Reger, D. L., Belmore, K. A., Atwood, J. L. & Hunter, W. E. The cis addition of hydride to η2-alkyne complexes by initial reaction at an η5-cyclopentadienyl (η5-C5H5) ring: crystal and molecular structure of the carbonyl-η5-cyclopentadienyliron complex (η5-C5H5)FeCO(PPh3)[η1-(E)-C(CO2Et)=C(H)Me]. J. Am. Chem. Soc. 105, 5710–5711 (2002).
Gleiter, R., Bleiholder, C. & Rominger, F. α-Metallocenylmethylium ions and isoelectronic fulvene complexes of d6 to d9 metals: structural considerations. Organometallics 26, 4850–4859 (2007).
Preethalayam, P. et al. Recent advances in the chemistry of pentafulvenes. Chem. Rev. 117, 3930–3989 (2017).
Kreindlin, A. Z. & Rybinskaya, M. I. Cationic and neutral transition metal complexes with a tetramethylfulvene or trimethylallyldiene ligand. Russ. Chem. Rev. 73, 417 (2004).
Astruc, D. Electron and proton reservoir complexes: thermodynamic basis for C−H activation and applications in redox and dendrimer chemistry. Acc. Chem. Res. 33, 287–298 (2000).
Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, 6391 (2018).
Agarwal, R. G. et al. Free energies of proton-coupled electron transfer reagents and their applications. Chem. Rev. 122, 1–49 (2022).
Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).
Rauchfuss, T. B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 48, 2107–2116 (2015).
Lubitz, W., Ogata, H., Rudiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).
Klug, C. M., Cardenas, A. J. P., Bullock, R. M., O’Hagan, M. & Wiedner, E. S. Reversing the tradeoff between rate and overpotential in molecular electrocatalysts for H2 production. ACS Catal. 8, 3286–3296 (2018).
Ruppert, R., Herrmann, S. & Steckhan, E. Efficient indirect electrochemical in-situ regeneration of nadh: electrochemically driven enzymatic reduction of pyruvate catalyzed by d-ldh. Tetrahedr. Lett. 28, 6583–6586 (1987).
Steckhan, E. et al. Analytical study of a series of substituted (2,2′-bipyridyl)(pentamethylcyclopentadienyl)rhodium and iridium complexes with regard to their effectiveness as redox catalysts for the indirect electrochemical and chemical-reduction of NAD(P)+. Organometallics 10, 1568–1577 (1991).
Lo, H. C. et al. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5′-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure–activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Inorg. Chem. 40, 6705–6716 (2001).
Ruppert, R., Herrmann, S. & Steckhan, E. Very efficient reduction of NAD(P)+ with formate catalyzed by cationic rhodium complexes. J. Chem. Soc. Chem. Commun. 17, 1150–1151 (1988).
Fukuzumi, S., Kobayashi, T. & Suenobu, T. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution. ChemSusChem 1, 827–834 (2008).
Kölle, U. & Grätzel, M. Organometallic rhodium(III) complexes as catalysts for the photoreduction of protons to hydrogen on colloidal TiO2. Angew. Chem. Int. Ed. Engl. 26, 567–570 (1987).
Cosnier, S., Deronzier, A. & Vlachopoulos, N. Carbon/poly {pyrrole-[(C5Me5)RhIII(bpy)Cl]+} modified electrodes; a molecularly-based material for hydrogen evolution (bpy = 2,2′-bipyridine). J. Chem. Soc. Chem. Commun. 17, 1259–1261 (1989).
Kölle, U., Kang, B. S., Infelta, P., Comte, P. & Grätzel, M. Elektrochemische und pulsradiolytische Reduktion von (pentamethylcyclopentadienyl)(polypyridyl)rhodium‐Komplexen. Chem. Ber. 122, 1869–1880 (1989).
Blakemore, J. D. et al. Pentamethylcyclopentadienyl rhodium complexes. Polyhedron 84, 14–18 (2014).
Quintana, L. M. et al. Proton-hydride tautomerism in hydrogen evolution catalysis. Proc. Natl Acad. Sci. USA 113, 6409–6414 (2016). Structural and spectroscopic evidence of metal-to-ligand tautomerism with Cp* ligands and their relevance to H2 production.
Kolthoff, I. M., Chantoon, M. K. & Bhowmik, S. Acid–base indicator constants in acetonitrile. Anal. Chem. 39, 315–320 (1967).
Appel, A. M. & Helm, M. L. Determining the overpotential for a molecular electrocatalyst. ACS Catal. 4, 630–633 (2014).
Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).
Johnson, S. I., Gray, H. B., Blakemore, J. D. & Goddard, W. A. III Role of ligand protonation in dihydrogen evolution from a pentamethylcyclopentadienyl rhodium catalyst. Inorg. Chem. 56, 11375–11386 (2017).
Peng, Y., Ramos-Garces, M. V., Lionetti, D. & Blakemore, J. D. Structural and electrochemical consequences of [Cp*] ligand protonation. Inorg. Chem. 56, 10824–10831 (2017).
Henke, W. C. et al. Ligand substituents govern the efficiency and mechanistic path of hydrogen production with [Cp*Rh] catalysts. ChemSusChem 10, 4589–4598 (2017).
Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, 6505 (2020).
Liu, T. B., DuBois, D. L. & Bullock, R. M. An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat. Chem. 5, 228–233 (2013).
Agarwal, T. & Kaur-Ghumaan, S. HER catalysed by iron complexes without a Fe2S2 core: a review. Coord. Chem. Rev. 397, 188–219 (2019).
Artero, V. & Fontecave, M. Hydrogen evolution catalyzed by {CpFe(CO)2}-based complexes. C. R. Chim. 11, 926–931 (2008).
Darmon, J. M. et al. Iron complexes for the electrocatalytic oxidation of hydrogen: tuning primary and secondary coordination spheres. ACS Catal. 4, 1246–1260 (2014).
Brazzolotto, D. et al. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nat. Chem. 8, 1054–1060 (2016).
Hemming, E. B. et al. [Fe(C5Ar5)(CO)2Br] complexes as hydrogenase mimics for the catalytic hydrogen evolution reaction. Appl. Catal. B 223, 234–241 (2018).
Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).
Carroll, M. E., Barton, B. E., Rauchfuss, T. B. & Carroll, P. J. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. J. Am. Chem. Soc. 134, 18843–18852 (2012).
Sanchez, P. et al. Ligand protonation at carbon, not nitrogen, during H2 production with amine-rich iron electrocatalysts. Inorg. Chem. 60, 17407–17413 (2021). Cp ring activation for an amine-rich Cp ligand (that is, not Cp or Cp*) coordinated to an Earth-abundant electrocatalyst for H2 production.
Bursch, M., Mewes, J.-M., Hansen, A. & Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. Int. Ed. 61, e202205735 (2022).
Kütt, A. et al. Strengths of acids in acetonitrile. Eur. J. Org. Chem. 2021, 1407–1419 (2021).
Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).
Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).
Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3, 120–125 (2011).
Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).
Kuriyama, S. et al. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nat. Commun. 7, 12181 (2016).
Eizawa, A. et al. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. Nat. Commun. 8, 14874 (2017).
Pappas, I. & Chirik, P. J. Catalytic proton coupled electron transfer from metal hydrides to titanocene amides, hydrazides and imides: determination of thermodynamic parameters relevant to nitrogen fixation. J. Am. Chem. Soc. 138, 13379–13389 (2016).
Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).
Bruch, Q. J. et al. Dinitrogen reduction to ammonium at rhenium utilizing light and proton-coupled electron transfer. J. Am. Chem. Soc. 141, 20198–20208 (2019).
Kuriyama, S. et al. Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J. Am. Chem. Soc. 136, 9719–9731 (2014).
Arashiba, K. et al. Catalytic reduction of dinitrogen to ammonia by use of molybdenum–nitride complexes bearing a tridentate triphosphine as catalysts. J. Am. Chem. Soc. 137, 5666–5669 (2015).
Hill, P. J., Doyle, L. R., Crawford, A. D., Myers, W. K. & Ashley, A. E. Selective catalytic reduction of N2 to N2H4 by a simple Fe complex. J. Am. Chem. Soc. 138, 13521–13524 (2016).
Chalkley, M. J., Del Castillo, T. J., Matson, B. D., Roddy, J. P. & Peters, J. C. Catalytic N2-to-NH3 conversion by Fe at lower driving force: a proposed role for metallocene-mediated PCET. ACS Cent. Sci. 3, 217–223 (2017). First proposal of ring-activated metallocenes behaving as PCET reagents that contain weak homolytic C–H bonds after protonation.
Chalkley, M. J., Oyala, P. H. & Peters, J. C. Cp* noninnocence leads to a remarkably weak C–H bond via metallocene protonation. J. Am. Chem. Soc. 141, 4721–4729 (2019). Unambiguous spectroscopic determination of weak C–H bonds in Cp*2Co and their relevance to PCET chemistry.
Chalkley, M. J., Del Castillo, T. J., Matson, B. D. & Peters, J. C. Fe-mediated nitrogen fixation with a metallocene mediator: exploring pKa effects and demonstrating electrocatalysis. J. Am. Chem. Soc. 140, 6122–6129 (2018).
Matson, B. D. & Peters, J. C. Fe-mediated HER vs N2RR: exploring factors that contribute to selectivity in P3(E)Fe(N2) (E = B, Si, C) catalyst model systems. ACS Catal. 8, 1448–1455 (2018).
Garrido-Barros, P., Derosa, J., Chalkley, M. J. & Peters, J. C. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature 609, 71–76 (2022).
Hamon, P., Toupet, L., Hamon, J. R. & Lapinte, C. Novel diamagnetic and paramagnetic iron(II), iron(III), and iron(IV) classical and nonclassical hyrides: X-ray crystal structure of [Fe(C5Me5)(dppe)D]PF6. Organometallics 11, 1429–1431 (1992).
Hamon, P., Hamon, J.-R. & Lapinte, C. Isolation and characterization of a cationic 19-electron iron(III) hydride complex; electron transfer induced hydride migration by carbon monoxide at an iron(III) centre. J. Chem. Soc. Chem. Commun. 21, 1602–1603 (1992).
Schild, D. J., Drover, M. W., Oyala, P. H. & Peters, J. C. Generating potent C-H PCET donors: ligand-induced Fe-to-ring proton migration from a Cp*Fe(III)-H complex demonstrates a promising strategy. J. Am. Chem. Soc. 142, 18963–18970 (2020). First account of piano-stool Cp*Fe complexes that can deliver H atoms via Cp* ring activation.
Wise, C. F., Agarwal, R. G. & Mayer, J. M. Determining proton-coupled standard potentials and X–H bond dissociation free energies in nonaqueous solvents using open-circuit potential measurements. J. Am. Chem. Soc. 142, 10681–10691 (2020).
Miller, A. J., Labinger, J. A. & Bercaw, J. E. Trialkylborane-assisted CO2 reduction by late transition metal hydrides. Organometallics 30, 4308–4314 (2011).
Pitman, C. L., Finster, O. N. & Miller, A. J. Cyclopentadiene-mediated hydride transfer from rhodium complexes. Chem. Commun. 52, 9105–9108 (2016). Experimental evidence that ring-activated Cp*Rh compounds might behave as hydride transfer agents to NAD+.
Pal, S. Cp* non-innocence and the implications of (η4-Cp*H)Rh intermediates in hydrogenation of CO2, NAD+, amino-borane, and the Cp* framework — a computational study. Dalton Trans. 52, 1182–1187 (2023).
Kurtz, D. A. et al. Redox-induced structural reorganization dictates kinetics of cobalt(III) hydride formation via proton-coupled electron transfer. J. Am. Chem. Soc. 143, 3393–3406 (2021). Evidence supporting that ring-activated Cp intermediates precede the formation of CoIIIH complexes under acidic conditions.
Chalkley, M. J., Garrido-Barros, P. & Peters, J. C. A molecular mediator for reductive concerted proton–electron transfers via electrocatalysis. Science 369, 850–854 (2020).
Acknowledgements
D.E.P. thanks Rutgers University — Newark and the National Science Foundation (2055097) for support. The authors thank M. Bullock and A. Hansen for constructive comments.
Author information
Authors and Affiliations
Contributions
D.E.P. developed the conceptual framework for this manuscript. All authors contributed to writing and editing the manuscript. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
VanderWeide, A., Prokopchuk, D.E. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nat Rev Chem 7, 561–572 (2023). https://doi.org/10.1038/s41570-023-00501-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-023-00501-1