Abstract
The homochirality of biomolecules in nature, such as DNA, RNA, peptides and proteins, has played a critical role in establishing and sustaining life on Earth. This chiral bias has also given synthetic chemists the opportunity to generate molecules with inverted chirality, unlocking valuable new properties and applications. Advances in the field of chemical protein synthesis have underpinned the generation of numerous ‘mirror-image’ proteins (those comprised entirely of d-amino acids instead of canonical l-amino acids), which cannot be accessed using recombinant expression technologies. This Review seeks to highlight recent work on synthetic mirror-image proteins, with a focus on modern synthetic strategies that have been leveraged to access these complex biomolecules as well as their applications in protein crystallography, drug discovery and the creation of mirror-image life.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pasteur, L. Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. C. R. Acad. Sci. 26, 535–538 (1848).
Snelders, H. A. M. in van’t Hoff-Le Bel Centennial Vol. 12, Ch. 5, 66–73 (American Chemical Society, 1975).
Cahn, R. S. & Ingold, C. K. Specification of configuration about quadricovalent asymmetric atoms. J. Chem. Soc. 131, 612–622 (1951).
Rosanoff, M. A. On Fischer’s classification of stereo-isomers. J. Am. Chem. Soc. 28, 114–121 (1906).
Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 11, a032540 (2019).
Xie, J. & Schultz, P. G. A chemical toolkit for proteins — an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006).
Rosano, G. L., Morales, E. S. & Ceccarelli, E. A. New tools for recombinant protein production in Escherichia coli: a 5‐year update. Protein Sci. 28, 1412–1422 (2019).
Wright, T. H., Vallée, M. R. J. & Davis, B. G. From chemical mutagenesis to post‐expression mutagenesis: a 50 year odyssey. Angew. Chem. Int. Ed. 55, 5896–5903 (2016).
Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188 (1989).
Kreil, G. Conversion of l- to d-amino acids: a posttranslational reaction. Science 266, 996–997 (1994).
Mor, A., Amiche, M. & Nicolas, P. Enter a new post-translational modification: d-amino acids in gene-encoded peptides. Trends Biochem. Sci. 17, 481–485 (1992).
Liu, W. R., Wang, Y.-S. & Wan, W. Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. Mol. Biosyst. 7, 38–47 (2011).
Zhao, L. & Lu, W. Mirror image proteins. Curr. Opin. Chem. Biol. 22, 56–61 (2014).
Abboud, S. A., Cisse, E. H., Doudeau, M., Bénédetti, H. & Aucagne, V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem. Sci. 12, 3194–3201 (2021).
Giesler, R. J., Erickson, P. W. & Kay, M. S. Enhancing native chemical ligation for challenging chemical protein syntheses. Curr. Opin. Chem. Biol. 58, 37–44 (2020).
Fuchs, O., Trunschke, S., Hanebrink, H., Reimann, M. & Seitz, O. Enabling cysteine‐free native chemical ligation at challenging junctions with a ligation auxiliary capable of base catalysis. Angew. Chem. Int. Ed. 60, 19483–19490 (2021).
Mitchell, N. J. et al. Rapid additive-free selenocystine–selenoester peptide ligation. J. Am. Chem. Soc. 137, 14011–14014 (2015).
Zhang, Y., Xu, C., Lam, H. Y., Lee, C. L. & Li, X. Protein chemical synthesis by serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657–6662 (2013).
Bang, D., Pentelute, B. L. & Kent, S. B. H. Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew. Chem. Int. Ed. 45, 3985–3988 (2006).
Hackenberger, C. P. R. & Schwarzer, D. Chemoselective ligation and modification strategies for peptides and proteins. Angew. Chem. Int. Ed. 47, 10030–10074 (2008).
Saxon, E., Armstrong, J. I. & Bertozzi, C. R. A ‘traceless’ Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141–2143 (2000).
Muir, T. W., Sondhi, D. & Cole, P. A. Expressed protein ligation: a general method for protein engineering. Proc. Natl Acad. Sci. USA 95, 6705–6710 (1998).
Gao, X., Ma, Q. & Zhu, H. Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl. Microbiol. Biotechnol. 99, 3341–3349 (2015).
Zhang, D.-P. et al. Highly selective synthesis of d-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb. Cell Fact. 20, 11 (2021).
Milton, R., Milton, S. & Kent, S. Total chemical synthesis of a d-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected]. Science 256, 1445–1448 (1992). This publication marked the landmark synthesis of a mirror-image protein and provided critical experimental evidence demonstrating reciprocal chiral specificity of proteins.
Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl Acad. Sci. USA 111, 11679–11684 (2014). This pivotal work pushed the frontier of chemical protein synthesis and uncovered the ambidextrous folding ability of the GroEL–ES chaperone, priming the field for development of a generalizable strategy for folding mirror-image proteins.
Petersen, M. E., Jacobsen, M. T. & Kay, M. S. Synthesis of tumor necrosis factor α for use as a mirror-image phage display target. Org. Biomol. Chem. 14, 5298–5303 (2016).
Feldmann, M. & Maini, R. N. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med. 9, 1245–1250 (2003).
Levinson, A. M. et al. Total chemical synthesis and folding of all-l and all-d variants of oncogenic KRas(G12V). J. Am. Chem. Soc. 139, 7632–7639 (2017).
Wilson, R. M. et al. A fascinating journey into history: exploration of the world of isonitriles en route to complex amides. Angew. Chem. Int. Ed. 51, 2834–2848 (2012).
Noguchi, T. et al. Synthesis of Grb2 SH2 domain proteins for mirror-image screening systems. Bioconjug. Chem. 28, 609–619 (2017).
Schmidt, N., Abendroth, F., Vázquez, O. & Hantschel, O. Synthesis of the l- and d-SH2 domain of the leukaemia oncogene Bcr-Abl. RSC Chem. Biol. 3, 1008–1012 (2022).
De Rosa, L., Di Stasi, R. & D’Andrea, L. D. Total chemical synthesis by native chemical ligation of the all-d immunoglobulin-like domain 2 of Axl. Tetrahedron 75, 894–905 (2019).
Callahan, A. J. et al. Single-shot flow synthesis of d-proteins for mirror-image phage display. ChemRxiv https://doi.org/10.26434/chemrxiv-2023-x86xp (2023).
Kent, S. B. H. Novel protein science enabled by total chemical synthesis. Protein Sci. 28, 313–328 (2019).
Yeung, H. et al. Radiation damage and racemic protein crystallography reveal the unique structure of the GASA/snakin protein superfamily. Angew. Chem. Int. Ed. 55, 7930–7933 (2016).
Hung, L.-W., Kohmura, M., Ariyoshi, Y. & Kim, S.-H. Structural differences in d and l-monellin in the crystals of racemic mixture. J. Mol. Biol. 285, 311–321 (1999).
Payne, C. D. et al. Solution NMR and racemic crystallography provide insights into a novel structural class of cyclic plant peptides. RSC Chem. Biol. 2, 1682–1691 (2021).
Avital-Shmilovici, M. et al. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography. J. Am. Chem. Soc. 135, 3173–3185 (2013).
Mandal, K., Pentelute, B. L., Tereshko, V., Kossiakoff, A. A. & Kent, S. B. H. X-ray structure of native scorpion toxin BmBKTx1 by racemic protein crystallography using direct methods. J. Am. Chem. Soc. 131, 1362–1363 (2009).
Mandal, K. et al. Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods. Protein Sci. 18, 1146–1154 (2009).
Pentelute, B. L. et al. Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography. Chem. Commun. 46, 8174–8176 (2010).
Banigan, J. R. et al. Determination of the X-ray structure of the snake venom protein omwaprin by total chemical synthesis and racemic protein crystallography. Protein Sci. 19, 1840–1849 (2010).
Luisier, S., Avital-Shmilovici, M., Weiss, M. A. & Kent, S. B. H. Total chemical synthesis of human proinsulin. Chem. Commun. 46, 8177–8179 (2010).
Dang, B. et al. Elucidation of the covalent and tertiary structures of biologically active Ts3 toxin. Angew. Chem. Int. Ed. 55, 8639–8642 (2016).
Huang, Y. C. et al. Synthesis of l‐ and d‐ubiquitin by one‐pot ligation and metal‐free desulfurization. Chem. Eur. J. 22, 7623–7628 (2016).
Teng, P. et al. The folding propensity of α/sulfono-γ-AA peptidic foldamers with both left- and right-handedness. Commun. Chem. 4, 58 (2021).
Yeates, T. O. & Kent, S. B. H. Racemic protein crystallography. Annu. Rev. Biophys. 41, 41–61 (2012).
Mackay, A. L. Crystal enigma. Nature 342, 133 (1989).
Zawadzke, L. E. & Berg, J. M. The structure of a centrosymmetric protein crystal. Proteins Struct. Funct. Genet. 16, 301–305 (1993).
Bunker, R. D. et al. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography. Proc. Natl Acad. Sci. USA 112, 4310–4315 (2015). This example showcases the power of racemic protein X-ray crystallography for revealing important structural and functional information from targets that were previously intractable by standard techniques.
Voskuil, M. I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–713 (2003).
Gupta, V. K., Kumar, M. M., Singh, D., Bisht, D. & Sharma, S. Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality? Infect. Dis. 50, 81–94 (2018).
Chen, C.-C. et al. Racemic X-ray structure of l-type calcium channel antagonist Calciseptine prepared by total chemical synthesis. Sci. China Chem. 61, 702–707 (2018).
Nandakumar, K. S. et al. A recombinant vaccine effectively induces C5a-specific neutralizing antibodies and prevents arthritis. PLoS ONE 5, e13511 (2010).
Zuo, C. et al. Chemical synthesis and racemic crystallization of rat C5a-desArg. Chin. Chem. Lett. 31, 693–696 (2020).
Cook, W. J., Galakatos, N., Boyar, W. C., Walter, R. L. & Ealick, S. E. Structure of human desArg-C5a. Acta Crystallogr. D 66, 190–197 (2010).
Wang, C. K. et al. Mirror images of antimicrobial peptides provide reflections on their functions and amyloidogenic properties. J. Am. Chem. Soc. 138, 5706–5713 (2016).
Kurgan, K. W. et al. Retention of native quaternary structure in racemic melittin crystals. J. Am. Chem. Soc. 141, 7704–7708 (2019). This article highlights the potential utility of racemic crystallography for the characterization of native polypeptide quaternary structures.
Anderson, D., Terwilliger, T. C., Wickner, W. & Eisenberg, D. Melittin forms crystals which are suitable for high resolution X-ray structural analysis and which reveal a molecular 2-fold axis of symmetry. J. Biol. Chem. 255, 2578–2582 (1980).
Yan, B., Ye, L., Xu, W. & Liu, L. Recent advances in racemic protein crystallography. Bioorg. Med. Chem. 25, 4953–4965 (2017).
Kent, S. B. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis. Curr. Opin. Chem. Biol. 46, 1–9 (2018).
Qu, Q. et al. Synthesis of disulfide surrogate peptides incorporating large‐span surrogate bridges through a native‐chemical‐ligation‐assisted diaminodiacid strategy. Angew. Chem. Int. Ed. 59, 6037–6045 (2020).
Pentelute, B. L., Gates, Z. P., Dashnau, J. L., Vanderkooi, J. M. & Kent, S. B. H. Mirror image forms of snow flea antifreeze protein prepared by total chemical synthesis have identical antifreeze activities. J. Am. Chem. Soc. 130, 9702–9707 (2008).
Pentelute, B. L. et al. X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J. Am. Chem. Soc. 130, 9695–9701 (2008).
Okamoto, R. et al. (Quasi-)racemic X-ray structures of glycosylated and non-glycosylated forms of the chemokine Ser-CCL1 prepared by total chemical synthesis. Angew. Chem. Int. Ed. 53, 5194–5198 (2014).
Dwek, R. A. Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996).
Gao, S. et al. Monomer/oligomer quasi-racemic protein crystallography. J. Am. Chem. Soc. 138, 14497–14502 (2016). This work describes the application of quasi-racemic protein crystallography to facilitate the first successful crystallization of ubiquitin oligomers.
Beeton, C. et al. The d-diastereomer of ShK toxin selectively blocks voltage-gated K+ channels and inhibits T lymphocyte proliferation. J. Biol. Chem. 283, 988–997 (2008).
Dang, B., Kubota, T., Mandal, K., Bezanilla, F. & Kent, S. B. H. Native chemical ligation at Asx-Cys, Glx-Cys: chemical synthesis and high-resolution X-ray structure of ShK toxin by racemic protein crystallography. J. Am. Chem. Soc. 135, 11911–11919 (2013).
Dang, B. et al. Inversion of the side-chain stereochemistry of indvidual Thr or Ile residues in a protein molecule: impact on the folding, stability, and structure of the ShK toxin. Angew. Chem. Int. Ed. 56, 3324–3328 (2017).
Dang, B., Chhabra, S., Pennington, M. W., Norton, R. S. & Kent, S. B. H. Reinvestigation of the biological activity of d-allo-ShK protein. J. Biol. Chem. 292, 12599–12605 (2017).
Wulff, H., Castle, N. A. & Pardo, L. A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 8, 982–1001 (2009).
Kent, S. B. H. Inventing Synthetic Methods to Discover How Enzymes Work. 283–288 (GNT-Verlag GmbH, 2022).
Li, Y., Cao, X. X., Tian, C. L. & Zheng, J. S. Chemical protein synthesis-assisted high-throughput screening strategies for D-peptides in drug discovery. Chin. Chem. Lett. 31, 2365–2374 (2020).
D’Aloisio, V., Dognini, P., Hutcheon, G. A. & Coxon, C. R. PepTherDia: database and structural composition analysis of approved peptide therapeutics and diagnostics. Drug Discov. 26, 1409–1419 (2021).
Wang, L. et al. Therapeutic peptides: current applications and future directions. Sig. Transduct. Target. Ther. 7, 48 (2022).
Lyu, X. et al. The global landscape of approved antibody therapies. Antib. Ther. 5, 233–257 (2022).
Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
Poduslo, J. F., Curran, G. L., Kumar, A., Frangione, B. & Soto, C. Beta-sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood–brain barrier permeability and resistance to proteolytic degradation in plasma. J. Neurobiol. 39, 371–382 (1999).
Dintzis, H. M., Symer, D. E., Dintzis, R. Z., Zawadzke, L. E. & Berg, J. M. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins 16, 306–308 (1993).
Darmostuk, M., Rimpelova, S., Gbelcova, H. & Ruml, T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol. Adv. 33, 1141–1161 (2015).
Scott, J. & Smith, G. Searching for peptide ligands with an epitope library. Science 249, 386–390 (1990).
Guo, Q.-Y. et al. Channel activity of mirror-image M2 proton channel of influenza A virus is blocked by achiral or chiral inhibitors. Protein Cell 10, 211–216 (2019).
Adaligil, E., Patil, K., Rodenstein, M. & Kumar, K. Discovery of peptide antibiotics composed of d-amino acids. ACS Chem. Biol. 14, 1498–1506 (2019).
Zhou, J., Du, X., Li, J., Yamagata, N. & Xu, B. Taurine boosts cellular uptake of small d-peptides for enzyme-instructed intracellular molecular self-assembly. J. Am. Chem. Soc. 137, 10040–10043 (2015).
Schumacher, T. N. et al. Identification of d-peptide ligands through mirror-image phage display. Science 271, 1854–1857 (1996). This seminal work established mirror-image phage display as a powerful technology for generating high-affinity d-configured peptide ligands of native l-proteins.
Wiesehan, K. et al. Selection of d-amino-acid peptides that bind to Alzheimer’s disease amyloid peptide Aβ142 by mirror image phage display. ChemBioChem 4, 748–753 (2003).
Fish, P. V., Steadman, D., Bayle, E. D. & Whiting, P. New approaches for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 29, 125–133 (2019).
Van Groen, T. et al. Reduction of Alzheimer’s disease amyloid plaque load in transgenic mice by D3, a d-enantiomeric peptide identified by mirror image phage display. ChemMedChem 3, 1848–1852 (2008).
Bocharov, E. V. et al. All-d-enantiomeric peptide D3 designed for Alzheimer’s disease treatment dynamically interacts with membrane-bound amyloid-β precursors. J. Med. Chem. 64, 16464–16479 (2021).
Kutzsche, J. et al. Safety and pharmacokinetics of the orally available antiprionic compound PRI-002: a single and multiple ascending dose phase I study. Alzheimers Dement. 6, e12001 (2020).
Funke, S. A. et al. Oral treatment with the d-enantiomeric peptide D3 improves the pathology and behavior of Alzheimer’s disease transgenic mice. ACS Chem. Neurosci. 1, 639–648 (2010).
Jiang, N. et al. Preclinical pharmacokinetic studies of the tritium labelled d-enantiomeric peptide D3 developed for the treatment of Alzheimer´s disease. PLoS ONE 10, e0128553 (2015).
Leithold, L. H. E. et al. Pharmacokinetic properties of a novel d-peptide developed to be therapeutically active against toxic β-amyloid oligomers. Pharm. Res. 33, 328–336 (2016).
Van Groen, T. et al. The Aβ oligomer eliminating d-enantiomeric peptide RD2 improves cognition without changing plaque pathology. Sci. Rep. 7, 16275 (2017).
Schemmert, S. et al. In vitro and in vivo efficacies of the linear and the cyclic version of an all-d-enantiomeric peptide developed for the treatment of Alzheimer’s disease. Int. J. Mol. Sci. 22, 6553 (2021).
Malhis, M. et al. Potent Tau aggregation inhibitor d-peptides selected against Tau-repeat 2 using mirror image phage display. ChemBioChem 22, 3049–3059 (2021).
Zhang, X. et al. Brain targeting and Aβ binding bifunctional nanoparticles inhibit amyloid protein aggregation in APP/PS1 transgenic mice. ACS Chem. Neurosci. 12, 2110–2121 (2021).
Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. & Lane, D. P. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873 (2009).
Pazgier, M. et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl Acad. Sci. USA 106, 4665–4670 (2009).
Liu, M. et al. A left-handed solution to peptide inhibition of the p53–MDM2 interaction. Angew. Chem. Int. Ed. 49, 3649–3652 (2010).
Liu, M. et al. d-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl Acad. Sci. USA 107, 14321–14326 (2010).
Chen, X. et al. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation. J. Control. Rel. 218, 29–35 (2015).
Bian, Z. et al. Awakening p53 in vivo by d-peptides-functionalized ultra-small nanoparticles: overcoming biological barriers to d-peptide drug delivery. Theranostics 8, 5320–5335 (2018).
Zhan, C. et al. An ultrahigh affinity d-peptide antagonist of MDM2. J. Med. Chem. 55, 6237–6241 (2012).
Kannan, S. et al. Macrocyclization of an all-d linear α-helical peptide imparts cellular permeability. Chem. Sci. 11, 5577–5591 (2020).
Noguchi, T. et al. Screening of a virtual mirror-image library of natural products. Chem. Commun. 52, 7653–7656 (2016).
Shu, K. et al. Development of mirror-image screening systems for XIAP BIR3 domain inhibitors. Bioconjug. Chem. 30, 1395–1404 (2019).
Zhou, X. et al. A novel d‐peptide identified by mirror‐image phage display blocks TIGIT/PVR for cancer immunotherapy. Angew. Chem. Int. Ed. 59, 15114–15118 (2020).
Chang, H. N. et al. Blocking of the PD‐1/PD‐L1 interaction by a d‐peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 54, 11760–11764 (2015).
Díaz‐Perlas, C. et al. Protein chemical synthesis combined with mirror‐image phage display yields d‐peptide EGF ligands that block the EGF–EGFR interaction. ChemBioChem 20, 2079–2084 (2019).
Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry. Cell 99, 103–115 (1999).
Welch, B. D., Vandemark, A. P., Heroux, A., Hill, C. P. & Kay, M. S. Potent d-peptide inhibitors of HIV-1 entry. Proc. Natl Acad. Sci. USA 104, 16828–16833 (2007).
Welch, B. D. et al. Design of a potent d-peptide HIV-1 entry inhibitor with a strong barrier to resistance. Virol. J. 84, 11235–11244 (2010).
Redman, J. S. et al. Pharmacokinetic and chemical synthesis optimization of a potent d-peptide HIV entry inhibitor suitable for extended-release delivery. Mol. Pharm. 15, 1169–1179 (2018).
Mandal, K. et al. Chemical synthesis and X-ray structure of a heterochiral {d-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc. Natl Acad. Sci. USA 109, 14779–14784 (2012). This article expanded the scope of mirror-image phase display by demonstrating the value of screening protein (rather than peptide) libraries for generating ligands with excellent selectivity and affinity.
Uppalapati, M. et al. A potent d-protein antagonist of VEGF-A is nonimmunogenic, metabolically stable, and longer-circulating in vivo. ACS Chem. Biol. 11, 1058–1065 (2016).
Marinec, P. S. et al. A non-immunogenic bivalent d-protein potently inhibits retinal vascularization and tumor growth. ACS Chem. Biol. 16, 548–556 (2021).
Olea, C. Jr, Weidmann, J., Dawson, P. E. & Joyce, G. F. An l-RNA aptamer that binds and inhibits RNase. Chem. Biol. 22, 1437–1441 (2015).
Chen, J., Chen, M. & Zhu, T. F. Directed evolution and selection of biostable l-DNA aptamers with a mirror-image DNA polymerase. Nat. Biotechnol. 40, 1601–1609 (2022). This report discloses an innovative alternative strategy for the generation of mirror-image aptamer binders, relying on the panning of a mirror-image library against a native target of interest and amplification via mirror-image PCR.
Klußmann, S., Nolte, A., Bald, R., Erdmann, V. A. & Fürste, J. P. Mirror-image RNA that binds d-adenosine. Nat. Biotechnol. 14, 1112–1115 (1996). These back-to-back publications disclosed the development of selection-reflection as a next-generation combinatorial screening tool for the discovery of stable aptamer ligands.
Nolte, A., Klußmann, S., Bald, R., Erdmann, V. A. & Fürste, J. P. Mirror-design of l-oligonucleotide ligands binding to l-arginine. Nat. Biotechnol. 14, 1116–1119 (1996). These back-to-back publications disclosed the development of selection-reflection as a next-generation combinatorial screening tool for the discovery of stable aptamer ligands.
Williams, K. P. et al. Bioactive and nuclease-resistant l-DNA ligand of vasopressin. Proc. Natl Acad. Sci. USA 94, 11285–11290 (1997).
Purschke, W. G., Eulberg, D., Buchner, K., Vonhoff, S. & Klussmann, S. An l-RNA-based aquaretic agent that inhibits vasopressin in vivo. Proc. Natl Acad. Sci. USA 103, 5173–5178 (2006).
Sczepanski, J. T. & Joyce, G. F. Binding of a structured d-RNA molecule by an l-RNA aptamer. J. Am. Chem. Soc. 135, 13290–13293 (2013).
Umar, M. I. & Kwok, C. K. Specific suppression of d-RNA G-quadruplex–protein interaction with an l-RNA aptamer. Nucleic Acids Res. 48, 10125–10141 (2020).
Yatime, L. et al. Structural basis for the targeting of complement anaphylatoxin C5a using a mixed l-RNA/l-DNA aptamer. Nat. Commun. 6, 6481 (2015).
Rohden, F., Hoheisel, J. D. & Wieden, H.-J. Through the looking glass: milestones on the road towards mirroring life. Trends Biochem. Sci. 46, 931–943 (2021).
Wang, Z., Xu, W., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016).
Joyce, G. F. et al. Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310, 602–604 (1984).
Pech, A. et al. A thermostable d-polymerase for mirror-image PCR. Nucleic Acids Res. 45, 3997–4005 (2017).
Xu, W. et al. Total chemical synthesis of a thermostable enzyme capable of polymerase chain reaction. Cell Discov. 3, 17008 (2017).
Sherrer, S. M., Beyer, D. C., Xia, C. X., Fowler, J. D. & Suo, Z. Kinetic basis of sugar selection by a Y-family DNA polymerase from Sulfolobus solfataricus P2. Biochemistry 49, 10179–10186 (2010).
Jiang, W. et al. Mirror-image polymerase chain reaction. Cell Discov. 3, 17037 (2017).
Wang, M. et al. Mirror-image gene transcription and reverse transcription. Chem 5, 848–857 (2019).
Fan, C., Deng, Q. & Zhu, T. F. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nat. Biotechnol. 39, 1548–1555 (2021).
Xiong, A. S. et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 32, e98 (2004).
Xu, Y. & Zhu, T. F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 378, 405–412 (2022). The assembly of a functional mirror-image T7 RNA polymerase represents a monumental feat of total chemical synthesis and a pivotal breakthrough on the journey towards mirror-image life.
Sczepanski, J. T. & Joyce, G. F. A cross-chiral RNA polymerase ribozyme. Nature 515, 440–442 (2014).
Tjhung, K. F., Sczepanski, J. T., Murtfeldt, E. R. & Joyce, G. F. RNA-catalyzed cross-chiral polymerization of RNA. J. Am. Chem. Soc. 142, 15331–15339 (2020).
Bare, G. A. L. & Joyce, G. F. Cross-chiral, RNA-catalyzed exponential amplification of RNA. J. Am. Chem. Soc. 143, 19160–19166 (2021).
Weidmann, J., Schnölzer, M., Dawson, P. E. & Hoheisel, J. D. Copying life: synthesis of an enzymatically active mirror-image DNA-ligase made of d-amino acids. Cell Chem. Biol. 26, 645–651 (2019).
Ling, J. J. et al. Mirror‐image 5S ribonucleoprotein complexes. Angew. Chem. Int. Ed. 59, 3724–3731 (2020).
Jin, X., Park, O.-J. & Hong, S. H. Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications. Appl. Microbiol. Biotechnol. 103, 2947–2958 (2019).
Li, X. & Liu, C. C. Biological applications of expanded genetic codes. ChemBioChem 15, 2335–2341 (2014).
Katoh, T., Passioura, T. & Suga, H. Advances in in vitro genetic code reprogramming in 2014–2017. Synth. Biol. 3, ysy008 (2018).
Katoh, T., Tajima, K. & Suga, H. Consecutive elongation of d-amino acids in translation. Cell Chem. Biol. 24, 46–54 (2017).
Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).
Chen, J., Chen, M. & Zhu, T. F. Translating protein enzymes without aminoacyl-tRNA synthetases. Chem 7, 786–798 (2021).
Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).
Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).
Bedau, M. et al. Life after the synthetic cell. Nature 465, 422–424 (2010).
Fanalista, F. et al. Shape and size control of artificial cells for bottom-up biology. ACS Nano 13, 5439–5450 (2019).
Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).
van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).
Murase, Y., Nakanishi, H., Tsuji, G., Sunami, T. & Ichihashi, N. In vitro evolution of unmodified 16S rRNA for simple ribosome reconstitution. ACS Synth. Biol. 7, 576–583 (2018).
Mirwaldt, C., Korndorfer, I. & Huber, R. The crystal structure of dihydrodipicolinate synthase from Escherichia coli at 2.5 Å resolution. J. Mol. Biol. 246, 227–239 (1995).
Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).
Conibear, A. C., Watson, E. E., Payne, R. J. & Becker, C. F. W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev. 47, 9046–9068 (2018).
Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).
Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).
Thompson, R. E. & Muir, T. W. Chemoenzymatic semisynthesis of proteins. Chem. Rev. 120, 3051–3126 (2020).
Agouridas, V. et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 119, 7328–7443 (2019).
Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994). The trailblazing development of the native chemical ligation technology underpins the area of chemical protein synthesis and has enabled construction of larger and more complex polypeptide architectures.
Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).
Jin, K., Li, T., Chow, H. Y., Liu, H. & Li, X. P−B desulfurization: an enabling method for protein chemical synthesis and site-specific deuteration. Angew. Chem. Int. Ed. 56, 14607–14611 (2017).
Chisholm, T. S., Clayton, D., Dowman, L. J., Sayers, J. & Payne, R. J. Native chemical ligation–photodesulfurization in flow. J. Am. Chem. Soc. 140, 9020–9024 (2018).
Fang, G.-M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645–7649 (2011).
Zheng, J.-S., Tang, S., Qi, Y.-K., Wang, Z.-P. & Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 8, 2483–2495 (2013).
Flood, D. T. et al. Leveraging the Knorr pyrazole synthesis for the facile generation of thioester surrogates for use in native chemical ligation. Angew. Chem. Int. Ed. 57, 11634–11639 (2018).
Fang, G.-M., Wang, J.-X. & Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 51, 10347–10350 (2012).
Acknowledgements
The authors acknowledge the Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (CE200100012) and the NHMRC Investigator Grant APP1174941 (to R.J.P.) for funding and the Research Training Scholarship Program for PhD support (to A.S.M., L.K. and J.W.C.M.).
Author information
Authors and Affiliations
Contributions
K.H. researched data for the article and contributed to writing, preparation of figures and reviewing and editing the manuscript. A.S.M. contributed to writing, preparation of figures and reviewing and editing the manuscript. L.K. and J.W.C.M contributed to preparation of the figures and revised the manuscript. R.J.P. revised the manuscript and conceived the overall direction of the manuscript. All authors have given approval to the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Wuyuan Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Harrison, K., Mackay, A.S., Kambanis, L. et al. Synthesis and applications of mirror-image proteins. Nat Rev Chem 7, 383–404 (2023). https://doi.org/10.1038/s41570-023-00493-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-023-00493-y
This article is cited by
-
Mirror-image trypsin digestion and sequencing of D-proteins
Nature Chemistry (2024)
-
Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins
Nature Communications (2024)
-
Recent advances in chemical protein synthesis: method developments and biological applications
Science China Chemistry (2024)
-
Roles of inter- and intramolecular tryptophan interactions in membrane-active proteins revealed by racemic protein crystallography
Communications Chemistry (2023)