Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stabilization of photoactive phases for perovskite photovoltaics

Abstract

Interest in photovoltaics (PVs) based on Earth-abundant halide perovskites has increased markedly in recent years owing to the remarkable properties of these materials and their suitability for energy-efficient and scalable solution processing. Formamidinium lead triiodide (FAPbI3)-rich perovskite absorbers have emerged as the frontrunners for commercialization, but commercial success is reliant on the stability meeting the highest industrial standards and the photoactive FAPbI3 phase suffers from instabilities that lead to degradation — an effect that is accelerated under working conditions. Here, we critically assess the current understanding of these phase instabilities and summarize the approaches for stabilizing the desired phases, covering aspects from fundamental research to device engineering. We subsequently analyse the remaining challenges for state-of-the-art perovskite PVs and demonstrate the opportunities to enhance phase stability with ongoing materials discovery and in operando analysis. Finally, we propose future directions towards upscaling perovskite modules, multijunction PVs and other potential applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of perovskite photovoltaics and characteristic properties of FAPbI3.
Fig. 2: External stimuli-induced photoactive phase failure mechanisms of FAPbI3-rich perovskites under working conditions.
Fig. 3: Stabilized photoactive perovskites with optimal bandgaps.
Fig. 4: Long-term lifetime as a function of area (aperture or designated) for laboratory-scale FAPbI3-rich perovskite photovoltaic devices and upscaling modules produced by various manufacturing techniques.
Fig. 5: Current challenges and future outlook for stabilized perovskites in devices.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Koh, T. M. et al. Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014). One of the earliest studies of FAPbI3 in halide perovskite photovoltaic cells.

    Article  CAS  Google Scholar 

  3. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  4. Liu, Z. et al. Efficient and stable FA‐rich perovskite photovoltaics: from material properties to device optimization. Adv. Energy Mater. 12, 2200111 (2022).

    Article  CAS  Google Scholar 

  5. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Best research-cell efficiency chart. National Renewable Energy Laboratory https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf (2022).

  7. Ding, Y. et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, R. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photon. 15, 411–425 (2021).

    Article  CAS  Google Scholar 

  9. Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016). A detailed study of the thermodynamic and kinetic mechanisms of the FAPbI3 phase transition.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015). One of the first reports of the light-induced phase segregation and its reversibility in mixed halide perovskites.

    Article  CAS  PubMed  Google Scholar 

  11. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead Iodide solid-state alloys. Chem. Mater. 28, 284–292 (2015). Demonstration of the relationship between perovskite component alloying and Goldschmidt tolerance factor, phase transition temperature, system free energy and perovskite film stability.

    Article  Google Scholar 

  12. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022). An excellent example illustrating the impact of phase purity on the stability of perovskites.

    Article  CAS  PubMed  Google Scholar 

  13. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, C. et al. From structural design to functional construction: amine molecules in high‐performance formamidinium‐based perovskite solar cells. Angew. Chem. Int. Ed. 134, e202117067 (2022).

    Article  Google Scholar 

  15. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  CAS  Google Scholar 

  19. Xiang, W. et al. Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6, 315–339 (2022).

    Article  CAS  Google Scholar 

  20. Lee, J.-W. et al. Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mei, A. et al. Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9000-h operational tracking. Joule 4, 2646–2660 (2020).

    Article  CAS  Google Scholar 

  22. Holzhey, P. & Saliba, M. A full overview of international standards assessing the long-term stability of perovskite solar cells. J. Mater. Chem. A 6, 21794–21808 (2018).

    Article  CAS  Google Scholar 

  23. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  24. Wang, K. et al. Isothermally crystallized perovskites at room-temperature. Energy Environ. Sci. 13, 3412–3422 (2020).

    Article  CAS  Google Scholar 

  25. Xiang, W., Liu, S. & Tress, W. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090–2113 (2021).

    Article  CAS  Google Scholar 

  26. Hao, F., Stoumpos, C. C., Chang, R. P. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Qiu, Z., Li, N., Huang, Z., Chen, Q. & Zhou, H. Recent advances in improving phase stability of perovskite solar cells. Small Methods 4, 1900877 (2020).

    Article  CAS  Google Scholar 

  29. Huang, T. et al. Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7, eabj1799 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mao, W. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61 (2020).

    Article  PubMed  Google Scholar 

  31. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    Article  CAS  Google Scholar 

  34. Kubicki, D. J. et al. Cation dynamics in mixed-cation (MA)x(FA)1−xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 10055–10061 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, H. et al. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29, 1603072 (2017).

    Article  Google Scholar 

  37. Ceratti, D. R. et al. Eppur si muove: proton diffusion in halide perovskite single crystals. Adv. Mater. 32, 2002467 (2020).

    Article  CAS  Google Scholar 

  38. Sadhu, S., Buffeteau, T., Sandrez, S., Hirsch, L. & Bassani, D. M. Observing the migration of hydrogen species in hybrid perovskite materials through D/H isotope exchange. J. Am. Chem. Soc. 142, 10431–10437 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J. W., Tan, S., Seok, S. I., Yang, Y. & Park, N. G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022). A comprehensive review of the critical role of A-site cations on structural stability, optoelectronic properties and device performance.

    Article  CAS  PubMed  Google Scholar 

  40. Mosconi, E. & De Angelis, F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS Energy Lett. 1, 182–188 (2016).

    Article  CAS  Google Scholar 

  41. Ghosh, D., Aziz, A., Dawson, J. A., Walker, A. B. & Islam, M. S. Putting the squeeze on lead iodide perovskites: pressure-induced effects to tune their structural and optoelectronic behavior. Chem. Mater. 31, 4063–4071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, B. et al. Large electrostrictive response in lead halide perovskites. Nat. Mater. 17, 1020–1026 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, H. et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 13, 1997–2018 (2020).

    Article  CAS  Google Scholar 

  44. Fabini, D. H. et al. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angew. Chem. Int. Ed. 128, 15618–15622 (2016).

    Article  Google Scholar 

  45. Huang, K. Statistical Mechanics 2nd edn (John Wiley & Sons, 1987).

  46. Woo, S. J., Lee, E. S., Yoon, M. & Kim, Y. H. Finite-temperature hydrogen adsorption and desorption thermodynamics driven by soft vibration modes. Phys. Rev. Lett. 111, 066102 (2013).

    Article  PubMed  Google Scholar 

  47. Lee, J. W. et al. Dynamic structural property of organic–inorganic metal halide perovskite. iScience 24, 101959 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020). A study exploiting voltage loss to reveal the relevance of its mechanism to light-induced halide segregation and defects.

    Article  CAS  Google Scholar 

  49. Caprioglio, P. et al. Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6, 419–428 (2021).

    Article  CAS  Google Scholar 

  50. Knight, A. J., Patel, J. B., Snaith, H. J., Johnston, M. B. & Herz, L. M. Trap states, electric fields, and phase segregation in mixed‐halide perovskite photovoltaic devices. Adv. Energy Mater. 10, 1903488 (2020).

    Article  CAS  Google Scholar 

  51. Brivio, F., Caetano, C. & Walsh, A. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1−xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).

    Article  CAS  Google Scholar 

  53. Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Schelhas, L. T. et al. Insights into operational stability and processing of halide perovskite active layers. Energy Environ. Sci. 12, 1341–1348 (2019).

    Article  CAS  Google Scholar 

  55. Li, N. et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule 4, 1743–1758 (2020).

    Article  CAS  Google Scholar 

  56. Motti, S. G. et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Article  Google Scholar 

  60. Beal, R. E. et al. Structural origins of light-induced phase segregation in organic–inorganic halide perovskite photovoltaic materials. Matter 2, 207–219 (2020).

    Article  Google Scholar 

  61. Motti, S. G. et al. Defect activity in lead halide perovskites. Adv. Mater. 31, 1901183 (2019).

    Article  CAS  Google Scholar 

  62. Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photon. 13, 532–539 (2019).

    Article  CAS  Google Scholar 

  63. Liu, S., Zheng, F., Grinberg, I. & Rappe, A. M. Photoferroelectric and photopiezoelectric properties of organometal halide perovskites. J. Phys. Chem. Lett. 7, 1460–1465 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Vicente, J. R. & Chen, J. Phase segregation and photothermal remixing of mixed-halide lead perovskites. J. Phys. Chem. Lett. 11, 1802–1807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elmelund, T., Seger, B., Kuno, M. & Kamat, P. V. How interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 5, 56–63 (2019).

    Article  Google Scholar 

  66. Jacobsson, T. J., Schwan, L. J., Ottosson, M., Hagfeldt, A. & Edvinsson, T. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorg. Chem. 54, 10678–10685 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Rolston, N. et al. Comment on ‘Light-induced lattice expansion leads to high-efficiency perovskite solar cells’. Science 368, eaay8691 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Muscarella, L. A. et al. Lattice compression increases the activation barrier for phase segregation in mixed-halide perovskites. ACS Energy Lett. 5, 3152–3158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  70. Hu, J. et al. Tracking the evolution of materials and interfaces in perovskite solar cells under an electric field. Commun. Mater. 3, 39 (2022).

    Article  CAS  Google Scholar 

  71. Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).

    Article  CAS  Google Scholar 

  72. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Oranskaia, A., Yin, J., Bakr, O. M., Bredas, J. L. & Mohammed, O. F. Halogen migration in hybrid perovskites: the organic cation matters. J. Phys. Chem. Lett. 9, 5474–5480 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Heo, S. et al. Enhancement of piezoelectricity in dimensionally engineered metal‐halide perovskites induced by deep level defects. Adv. Energy Mater. 12, 00181 (2022).

    Article  Google Scholar 

  75. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    Article  CAS  Google Scholar 

  76. Tang, X. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172–2178 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    Article  CAS  Google Scholar 

  78. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  CAS  Google Scholar 

  79. Li, Z. et al. Beyond the phase segregation: probing the irreversible phase reconstruction of mixed-halide perovskites. Adv. Sci. 9, 2103948 (2021).

    Article  Google Scholar 

  80. Raval, P. et al. Understanding instability in formamidinium lead halide perovskites: kinetics of transformative reactions at grain and subgrain boundaries. ACS Energy Lett. 7, 1534–1543 (2022).

    Article  CAS  Google Scholar 

  81. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  CAS  Google Scholar 

  82. Hong, M. J., Johnson, R. Y. & Labram, J. G. Impact of moisture on mobility in methylammonium lead iodide and formamidinium lead iodide. J. Phys. Chem. Lett. 11, 4976–4983 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Yun, J. S. et al. Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3 planar perovskite solar cells. Adv. Funct. Mater. 28, 1705363 (2018).

    Article  Google Scholar 

  84. Ho, K., Wei, M., Sargent, E. H. & Walker, G. C. Grain transformation and degradation mechanism of formamidinium and cesium lead iodide perovskite under humidity and light. ACS Energy Lett. 6, 934–940 (2021).

    Article  CAS  Google Scholar 

  85. Song, Z. et al. Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv. Energy Mater. 6, 1600846 (2016).

    Article  Google Scholar 

  86. Gratia, P. et al. The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017). One of the first studies to reveal the role of hexagonal polytypes in the crystallization process of alloyed perovskites.

    Article  CAS  Google Scholar 

  87. Leijtens, T. et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015).

    Article  Google Scholar 

  88. Aristidou, N. et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lin, D. et al. Ion migration accelerated reaction between oxygen and metal halide perovskites in light and its suppression by cesium incorporation. Adv. Energy Mater. 11, 2002552 (2021).

    Article  CAS  Google Scholar 

  90. Ma, S. et al. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15, 13–55 (2022).

    Article  CAS  Google Scholar 

  91. Bu, T. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021). A detailed study of the effect of an additive on the formation pathway of the photoactive phase of FAPbI3-rich perovskites.

    Article  CAS  PubMed  Google Scholar 

  92. Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Gutmann, V. Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 18, 225–255 (1976).

    Article  CAS  Google Scholar 

  94. Hamill, J. C., Schwartz, J. & Loo, Y.-L. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett. 3, 92–97 (2017).

    Article  Google Scholar 

  95. Petrov, A. A. et al. Crystal structure of DMF-intermediate phases uncovers the link between CH3NH3PbI3 morphology and precursor stoichiometry. J. Phys. Chem. C 121, 20739–20743 (2017).

    Article  CAS  Google Scholar 

  96. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Kim, M. et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, S. et al. Superior textured film and process tolerance enabled by intermediate-state engineering for high-efficiency perovskite solar cells. Adv. Sci. 7, 1903009 (2020).

    Article  CAS  Google Scholar 

  99. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020). An excellent example of growing α-FAPbI3 by epitaxy and applying compressive strain to stabilize the photoactive phase.

    Article  CAS  PubMed  Google Scholar 

  100. Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Ohring, M. Epitaxy. in Materials Science of Thin Films 417–494 (Elsevier, 2002).

  102. Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article  CAS  Google Scholar 

  103. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Kubicki, D. J. et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1−xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 14173–14180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu, Y., Aygüler, M. F., Petrus, M. L., Bein, T. & Docampo, P. Impact of rubidium and cesium cations on the moisture stability of multiple-cation mixed-halide perovskites. ACS Energy Lett. 2, 2212–2218 (2017).

    Article  CAS  Google Scholar 

  106. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Tang, Z. et al. Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance. Nano Energy 45, 184–192 (2018).

    Article  CAS  Google Scholar 

  109. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  CAS  Google Scholar 

  110. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, R. et al. Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules. J. Am. Chem. Soc. 143, 10624–10632 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Yuan, J. et al. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020).

    Article  CAS  Google Scholar 

  115. Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    Article  CAS  Google Scholar 

  116. Que, M. et al. Quantum-dot-induced cesium-rich surface imparts enhanced stability to formamidinium lead iodide perovskite solar cells. ACS Energy Lett. 4, 1970–1975 (2019).

    Article  CAS  Google Scholar 

  117. Aynehband, S. et al. Solution processing and self-organization of PbS quantum dots passivated with formamidinium lead iodide (FAPbI3). ACS Omega 5, 15746–15754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Charles, B. et al. Phase behavior and substitution limit of mixed cesium–formamidinium lead triiodide perovskites. Chem. Mater. 32, 2282–2291 (2020).

    Article  CAS  Google Scholar 

  119. Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).

    Article  CAS  Google Scholar 

  121. Doherty, T. A. S., Nagane, S., Kubicki, D. J. & Jung, Y.-K. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374, 1598–1605 (2021). A study that revealed the photoactive phase of FAPbI3-rich perovskites is tetragonal.

    Article  CAS  PubMed  Google Scholar 

  122. Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Sánchez, S. et al. Thermally controlled growth of photoactive FAPbI3 films for highly stable perovskite solar cells. Energy Environ. Sci. 15, 3862–3876 (2022).

    Article  Google Scholar 

  124. Zheng, X. et al. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1, 1014–1020 (2016).

    Article  CAS  Google Scholar 

  125. Xue, D. J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tan, H. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Qiao, L., Fang, W. H., Long, R. & Prezhdo, O. V. Extending carrier lifetimes in lead halide perovskites with alkali metals by passivating and eliminating halide interstitial defects. Angew. Chem. Int. Ed. 132, 4714–4720 (2020).

    Article  Google Scholar 

  130. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Alsalloum, A. Y. et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy Environ. Sci. 14, 2263–2268 (2021).

    Article  CAS  Google Scholar 

  132. Wang, Y. et al. Printing strategies for scaling-up perovskite solar cells. Natl Sci. Rev. 8, nwab075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park, N.-G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  CAS  Google Scholar 

  134. Fanton, X. & Cazabat, A. M. Spreading and instabilities induced by a solutal Marangoni effect. Langmuir 14, 2554–2561 (1998).

    Article  CAS  Google Scholar 

  135. Krechetnikov, R. & Homsy, G. M. Surfactant effects in the Landau–Levich problem. J. Fluid Mech. 559, 429–450 (2006).

    Article  Google Scholar 

  136. Rana, P. J. S. et al. Alkali additives enable efficient large area (>55 cm2) slot‐die coated perovskite solar modules. Adv. Funct. Mater. 32, 202113026 (2022).

    Article  Google Scholar 

  137. Yang, Z. et al. Slot-die coating large-area formamidinium–cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 7, eabg3749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641 (2021).

    Article  CAS  Google Scholar 

  139. Patidar, R., Burkitt, D., Hooper, K., Richards, D. & Watson, T. Slot-die coating of perovskite solar cells: an overview. Mater. Today Commun. 22, 100808 (2020).

    Article  CAS  Google Scholar 

  140. Wang, S. et al. Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule 6, 1344–1356 (2022).

    Article  CAS  Google Scholar 

  141. Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8, eabo7422 (2022).

    Article  PubMed  Google Scholar 

  142. Jiang, Y. et al. Negligible‐Pb‐waste and upscalable perovskite deposition technology for high‐operational‐stability perovskite solar modules. Adv. Energy Mater. 9, 1803047 (2019).

    Article  Google Scholar 

  143. Luo, L. et al. Large-area perovskite solar cells with CsxFA1−xPbI3−yBry thin films deposited by a vapor–solid reaction method. J. Mater. Chem. A 6, 21143–21148 (2018).

    Article  CAS  Google Scholar 

  144. Qiu, L. et al. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. J. Mater. Chem. A 7, 6920–6929 (2019).

    Article  CAS  Google Scholar 

  145. Nazarenko, O., Yakunin, S., Morad, V., Cherniukh, I. & Kovalenko, M. V. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017).

    Article  CAS  Google Scholar 

  146. Chen, L. et al. Toward long-term stability: single-crystal alloys of cesium-containing mixed cation and mixed halide perovskite. J. Am. Chem. Soc. 141, 1665–1671 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Yang, W. et al. In situ three‐dimensional observation of perovskite crystallization revealed by two‐photon fluorescence imaging. Adv. Opt. Mater. 10, 2200089 (2022).

    Article  CAS  Google Scholar 

  148. Qin, M. et al. Precise control of perovskite crystallization kinetics via sequential A-site doping. Adv. Mater. 32, 2004630 (2020).

    Article  CAS  Google Scholar 

  149. Ran, J. et al. Electron‐beam‐related studies of halide perovskites: challenges and opportunities. Adv. Energy Mater. 10, 1903191 (2020).

    Article  CAS  Google Scholar 

  150. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Higgins, K. et al. Exploration of electrochemical reactions at organic–inorganic halide perovskite interfaces via machine learning in in situ time‐of‐flight secondary ion mass spectrometry. Adv. Funct. Mater. 30, 2001995 (2020).

    Article  CAS  Google Scholar 

  152. Wang, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Li, J., Pradhan, B., Gaur, S. & Thomas, J. Predictions and strategies learned from machine learning to develop high‐performing perovskite solar cells. Adv. Energy Mater. 9, 1901891 (2019).

    Article  CAS  Google Scholar 

  155. Sun, S., Fang, Y., Kieslich, G., White, T. J. & Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3(X=I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).

    Article  CAS  Google Scholar 

  156. Liu, C., Cheng, Y.-B. & Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49, 1653–1687 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Bu, T. et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 7, 528–536 (2022).

    Article  CAS  Google Scholar 

  158. Pescetelli, S. et al. Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7, 597–607 (2022).

    Article  Google Scholar 

  159. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  160. Vos, A. D. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13, 839–846 (1980).

    Article  Google Scholar 

  161. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Green, M. A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).

    Article  Google Scholar 

  163. Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017).

    Article  CAS  Google Scholar 

  164. Zhumekenov, A. A., Saidaminov, M. I., Mohammed, O. F. & Bakr, O. M. Stimuli-responsive switchable halide perovskites: taking advantage of instability. Joule 5, 2027–2046 (2021). A comprehensive review of harnessing the reversible chemical and structural transformation properties of perovskites to develop innovative applications.

    Article  CAS  Google Scholar 

  165. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. She, X.-J. et al. A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nat. Electron. 3, 694–703 (2020).

    Article  CAS  Google Scholar 

  167. Xiao, Z. & Huang, J. Energy‐efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2, 1600100 (2016).

    Article  Google Scholar 

  168. Kirmani, A. R. et al. Countdown to perovskite space launch: guidelines to performing relevant radiation-hardness experiments. Joule 6, 1015–1031 (2022).

    Article  CAS  Google Scholar 

  169. Deng, Y.-H. Perovskite decomposition and missing crystal planes in HRTEM. Nature 594, E6–E7 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Sutton, R. J. et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3, 1787–1794 (2018).

    Article  CAS  Google Scholar 

  173. Fadla, M. A., Bentria, B., Dahame, T. & Benghia, A. First-principles investigation on the stability and material properties of all-inorganic cesium lead iodide perovskites CsPbI3 polymorphs. Phys. B Condens. Matter 585, 412118 (2020).

    Article  CAS  Google Scholar 

  174. Caprioglio, P. et al. Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy Environ. Sci. 14, 4508–4522 (2021).

    Article  CAS  Google Scholar 

  175. Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  CAS  Google Scholar 

  176. Ren, A. et al. Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses. Joule 4, 1263–1277 (2020).

    Article  CAS  Google Scholar 

  177. Agresti, A. et al. Two-dimensional material interface engineering for efficient perovskite large-area modules. ACS Energy Lett. 4, 1862–1871 (2019).

    Article  CAS  Google Scholar 

  178. Liang, Q. et al. Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition. Adv. Mater. 34, e2200276 (2022).

    Article  PubMed  Google Scholar 

  179. Zheng, X. et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, e1803428 (2018).

    Article  PubMed  Google Scholar 

  180. Chapagain, S. et al. Direct deposition of nonaqueous SnO2 dispersion by blade coating on perovskites for the scalable fabrication of p–i–n perovskite solar cells. ACS Appl. Energy Mater. 4, 10477–10483 (2021).

    Article  CAS  Google Scholar 

  181. Xing, Z. et al. A highly tolerant printing for scalable and flexible perovskite solar cells. Adv. Funct. Mater. 31, 2107726 (2021).

    Article  CAS  Google Scholar 

  182. Chen, R. et al. Crown ether‐assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules. Adv. Funct. Mater. 31, 2008760 (2020).

    Article  Google Scholar 

  183. Zhang, J. et al. Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. J. Mater. Chem. A 8, 8447–8454 (2020).

    Article  CAS  Google Scholar 

  184. Du, M. et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule 6, 1931–1943 (2022).

    Article  CAS  Google Scholar 

  185. Rolston, N. et al. Rapid open-air fabrication of perovskite solar modules. Joule 4, 2675–2692 (2020).

    Article  CAS  Google Scholar 

  186. Feng, J. et al. High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14, 3035–3043 (2021).

    Article  CAS  Google Scholar 

  187. Leyden, M. R., Lee, M. V., Raga, S. R. & Qi, Y. Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J. Mater. Chem. A 3, 16097–16103 (2015).

    Article  CAS  Google Scholar 

  188. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Krishna, A. et al. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy Environ. Sci. 14, 5552–5562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Su, H. et al. Stable perovskite solar cells with 23.12% efficiency and area over 1 cm2 by an all-in-one strategy. Sci. China Chem. 65, 1321–1329 (2022).

    Article  CAS  Google Scholar 

  191. Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    Article  CAS  Google Scholar 

  192. Tong, G. et al. Scalable fabrication of >90 cm2 perovskite solar modules with >1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11, 2003712 (2021).

    Article  CAS  Google Scholar 

  193. Zhou, T. et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, 2200705 (2022).

    Article  CAS  Google Scholar 

  194. Bi, E. et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 3, 2748–2760 (2019).

    Article  CAS  Google Scholar 

  195. Roß, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1,000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).

    Article  Google Scholar 

  196. Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    Article  CAS  Google Scholar 

  198. Van de Walle, C. G. & Neugebauer, J. First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004).

    Article  Google Scholar 

  199. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.Z. thanks EPSRC standard research (EP/V027131/1) and Newton Advanced Fellowship (192097) for financial support. S.I.S. acknowledges financial support from the Basic Science Research Program (NRF-2018R1A3B1052820) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP). The authors acknowledge D. Liu for advice on figures and writing and T. Webb for revising the final manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.L. wrote the first manuscript, and D.L., M.S., S.I.S. and W.Z. revised the manuscript and supervised the project. D.L., Z.-H.L., J.S.Y., M.S., S.I.S. and W.Z. contributed to manuscript editing and comments.

Corresponding authors

Correspondence to Deying Luo, Michael Saliba, Sang Il Seok or Wei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Luo, D., Lu, ZH. et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem 7, 462–479 (2023). https://doi.org/10.1038/s41570-023-00492-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00492-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing