Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects and challenges for nitrogen-atom transfer catalysis

Abstract

Conversion of C–H bonds to C–N bonds via C–H amination promises to streamline the synthesis of nitrogen-containing compounds. Nitrogen-group transfer (NGT) from metal nitrenes ([M]–NR complexes) has been the focus of intense research and development. By contrast, potentially complementary nitrogen-atom transfer (NAT) chemistry, in which a terminal metal nitride (an [M]–N complex) engages with a C–H bond, is underdeveloped. Although the earliest examples of stoichiometric NAT chemistry were reported 25 years ago, catalytic protocols are only now beginning to emerge. Here, we summarize the current state of the art in NAT chemistry and discuss opportunities and challenges for its development. We highlight the synthetic complementarity of NGT and NAT and discuss critical aspects of nitride electronic structure that dictate the philicity of the metal-supported nitrogen atom. We also examine the characteristic reactivity of metal nitrides and present emerging strategies and remaining obstacles to harnessing NAT for selective, catalytic nitrogenation of unfunctionalized organic small molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NGT versus NAT.
Fig. 2: Electronic structure and reactivity of metal nitrides.
Fig. 3: Nucleophilic nitrides.
Fig. 4: Aziridination reactions.
Fig. 5: Electrophilic nitrides.
Fig. 6: Ambiphilic and radical nitrides.
Fig. 7: Cycloaddition reactions from metal nitrides.
Fig. 8: Oxidative cleavage by metal nitrides.

Similar content being viewed by others

References

  1. Padwa, A. in Comprehensive Heterocyclic Chemistry III (eds Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V. & Taylor, R. J. K.) 1–104 (Elsevier, 2008).

  2. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Botuha, C., Chemla, F., Ferreira, F. & Pérez-Luna, A. in Heterocycles in Natural Product Synthesis (eds Majumdar, K. C. & Chattopadhyay, S. K.) 1–39 (Wiley, 2011).

  4. Podyacheva, E., Afanasyev, O. I., Tsygankov, A. A., Makarova, M. & Chusov, D. Hitchhiker’s guide to reductive amination. Synthesis 51, 2667–2677 (2019).

    Article  CAS  Google Scholar 

  5. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, J.-Q., Li, J.-H. & Dong, Z.-B. A review on the latest progress of Chan–Lam coupling reaction. Adv. Synth. Catal. 362, 3311–3331 (2020).

    Article  CAS  Google Scholar 

  7. Boche, G., Bernheim, M. & Schrott, W. Primary amines via electrophilic amination of organometallic compounds with o-(diphenylphosphinyl)hydroxylamine. Tetrahedron Lett. 23, 5399–5402 (1982).

    Article  CAS  Google Scholar 

  8. Degennaro, L., Trinchera, P. & Luisi, R. Recent advances in the stereoselective synthesis of aziridines. Chem. Rev. 114, 7881–7929 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Xiong, T. & Zhang, Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 45, 3069–3087 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. O’Neil, L. G. & Bower, J. F. Electrophilic aminating agents in total synthesis. Angew. Chem. Int. Ed. 60, 25640–25666 (2021).

    Article  Google Scholar 

  11. Campbell, W. C., Tsikata, E., Lu, H.-I., van Buuren, L. D. & Doyle, J. M. Magnetic trapping and zeeman relaxation of NH (𝑋3𝛴-). Phys. Rev. Lett. 98, 213001 (2007).

    Article  PubMed  Google Scholar 

  12. Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).

    Article  CAS  Google Scholar 

  13. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin, K., Kim, H. & Chang, S. Transition-metal-catalyzed C–N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C–H amination. Acc. Chem. Res. 48, 1040–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed benzylic C(sp3)–H amination for late-stage functionalization. Nat. Chem. 10, 583–591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, H. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Singh, R. & Mukherjee, A. Metalloporphyrin catalyzed C–H amination. ACS Catal. 9, 3604–3617 (2019).

    Article  CAS  Google Scholar 

  18. Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia, Z.-J., Gao, S. & Arnold, F. H. Enzymatic primary amination of benzylic and allylic C(sp3)–H bonds. J. Am. Chem. Soc. 142, 10279–10283 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Foerch, R., Mcintyre, N. S., Sodhi, R. N. S. & Hunter, D. H. Nitrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor. J. Appl. Polym. Sci. 40, 1903–1915 (1990).

    Article  CAS  Google Scholar 

  21. Zhou, S., Li, J., Schlangen, M. & Schwarz, H. Thermal dehydrogenation of methane by [ReN]+. Angew. Chem. Int. Ed. 55, 14863–14866 (2016).

    Article  CAS  Google Scholar 

  22. Zhou, S. D., Li, J. L., Schlangen, M. & Schwarz, H. Efficient room-temperature activation of methane by TaN+ under C–N coupling. Angew. Chem. Int. Ed. 55, 11678–11681 (2016).

    Article  CAS  Google Scholar 

  23. Zhou, S. D. et al. Selective nitrogen-atom transfer driven by a highly efficient intersystem crossing in the CeON (+)/CH4 system. Angew. Chem. Int. Ed. 57, 15902–15906 (2018).

    Article  CAS  Google Scholar 

  24. Smith, J. M. in Progress in Inorganic Chemisry Vol. 58 (ed. Karlin, K. D.) 417–470 (Wiley, 2014).

  25. Du Bois, J., Tomooka, C. S., Hong, J. & Carreira, E. M. Nitridomanganese(V) complexes:  design, preparation, and use as nitrogen atom-transfer reagents. Acc. Chem. Res. 30, 364–372 (1997).

    Article  Google Scholar 

  26. Muñoz, S. B. III et al. Styrene aziridination by iron(IV) nitrides. Angew. Chem. Int. Ed. 54, 10600–10603 (2015).

    Article  Google Scholar 

  27. Xiang, J. et al. Photochemical nitrogenation of alkanes and arenes by a strongly luminescent osmium(VI) nitrido complex. Commun. Chem. 2, 40 (2019). An example of a stable metal nitride that performs NAT when photoexcited.

    Article  Google Scholar 

  28. Forrest, S. J. K., Schluschaß, B., Yuzik-Klimova, E. Y. & Schneider, S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 121, 6522–6587 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Suarez, A. I. O., Lyaskovskyy, V., Reek, J. N. H., van der Vlugt, J. I. & de Bruin, B. Complexes with nitrogen-centered radical ligands: classification, spectroscopic features, reactivity, and catalytic applications. Angew. Chem. Int. Ed. 52, 12510–12529 (2013). A good reference on the nomencalature of N-atom ligands.

    Article  CAS  Google Scholar 

  30. Berry, J. F. Terminal nitrido and imido complexes of the late transition metals. Comments Inorg. Chem. 30, 28–66 (2009).

    Article  CAS  Google Scholar 

  31. Dehnicke, K. & Strähle, J. Nitrido complexes of transition metals. Angew. Chem. Int. Ed. 31, 955–978 (1992).

    Article  Google Scholar 

  32. Eikey, R. A. & Abu-Omar, M. M. Nitrido and imido transition metal complexes of groups 6–8. Coord. Chem. Rev. 243, 83–124 (2003).

    Article  CAS  Google Scholar 

  33. Martelino, D. et al. Chromium nitride umpolung tuned by the locus of oxidation. J. Am. Chem. Soc. 144, 11594–11607 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Clarke, R. M. & Storr, T. Tuning electronic structure to control manganese nitride activation. J. Am. Chem. Soc. 138, 15299–15302 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019). Provides a good explanation of the ligand field inversion in metal nitrenoids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Das, A., Van Trieste, G. P. & Powers, D. C. Crystallography of reactive intermediates. Comments Inorg. Chem. 40, 116–158 (2020).

    Article  CAS  Google Scholar 

  37. Schmidt-Räntsch, T. et al. Nitrogen atom transfer catalysis by metallonitrene C−H insertion: photocatalytic amidation of aldehydes. Angew. Chem. Int. Ed. 61, e202115626 (2022). A nice example of catalytic NAT from a bona fide M–N species.

    Article  Google Scholar 

  38. Long, A. K. M. et al. Aryl C–H amination by diruthenium nitrides in the solid state and in solution at room temperature: experimental and computational study of the reaction mechanism. J. Am. Chem. Soc. 133, 13138–13150 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Meyer, T. J. & Huynh, M. H. V. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes. Inorg. Chem. 42, 8140–8160 (2003). Offers a good discussion on the orbital considerations that lead to ambiphilicity in metal nitrides.

    Article  CAS  PubMed  Google Scholar 

  40. Grant, L. N. et al. Pursuit of an electron deficient titanium nitride. Inorg. Chem. 60, 5635–5646 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Scheibel, M. G. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. Nat. Chem. 4, 552–558 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Park, S. V., Corcos, A. R., Jambor, A. N., Yang, T. & Berry, J. F. Formation of the N≡N triple bond from reductive coupling of a paramagnetic diruthenium nitrido compound. J. Am. Chem. Soc. 144, 3259–3268 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Man, W.-L. et al. Highly electrophilic (salen)ruthenium(VI) nitrido complexes. J. Am. Chem. Soc. 126, 478–479 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Seymore, S. B. & Brown, S. N. Polar effects in nitride coupling reactions. Inorg. Chem. 41, 462–469 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Demadis, K. D., Meyer, T. J. & White, P. S. Localization in trans,trans-[(tpy)(Cl)2OsIII(N2)OsII(Cl)2(tpy)]+ (tpy = 2,2′:6′, 2″-terpyridine). Inorg. Chem. 36, 5678–5679 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Demadis, K. D., El-Samanody, E.-S., Coia, G. M. & Meyer, T. J. OsIII(N2)OsII Complexes at the localized-to-delocalized, mixed-valence transition. J. Am. Chem. Soc. 121, 535–544 (1999).

    Article  CAS  Google Scholar 

  47. Lam, H.-W., Che, C.-M. & Wong, K.-Y. Photoredox properties of [OsN(NH3)4]3+ and mechanism of formation of [{Os(NH3)4(CH3CN)}2N2]5+ through a nitrido-coupling reaction. J. Chem. Soc. Dalton Trans. 8, 1411–1416 (1992).

    Article  Google Scholar 

  48. Ware, D. C. & Taube, H. Substitution-induced nitrogen-nitrogen coupling for nitride coordinated to osmium(VI). Inorg. Chem. 30, 4605–4610 (1991).

    Article  CAS  Google Scholar 

  49. Man, W.-L. et al. General synthesis of (salen)ruthenium(III) complexes via N···N coupling of (salen)ruthenium(VI) nitrides. Inorg. Chem. 47, 5936–5944 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Krahe, O., Bill, E. & Neese, F. Decay of iron(V) nitride complexes by a N–N bond-coupling reaction in solution: a combined spectroscopic and theoretical analysis. Angew. Chem. Int. Ed. 53, 8727–8731 (2014).

    Article  CAS  Google Scholar 

  51. Hughes, D. L., Mohammed, M. Y. & Pickett, C. J. Synthesis, reactivity, and electrochemistry of some new nitrides of molybdenum and tungsten: crystal structure of trinuclear [{µ-MoN(N3)2}{NMo(N3)(Et2PCH2CH2PEt2)2}2]. J. Chem. Soc. Dalton Trans. 7, 2013–2019 (1990).

    Article  Google Scholar 

  52. Bevan, P. C., Chatt, J., Dilworth, J. R., Henderson, R. A. & Leigh, G. J. The preparation and reactions of azidobis[1,2-bis(diphenylphosphino)-ethane]nitridotungsten(IV). J. Chem. Soc. Dalton Trans. 4, 821–824 (1982).

    Article  Google Scholar 

  53. Sarkar, S., Abboud, K. A. & Veige, A. S. Addition of mild electrophiles to a Mo≡N triple bond and nitrile synthesis via metal-mediated N-atom transfer to acid chlorides. J. Am. Chem. Soc. 130, 16128–16129 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Curley, J. J., Sceats, E. L. & Cummins, C. C. A cycle for organic nitrile synthesis via dinitrogen cleavage. J. Am. Chem. Soc. 128, 14036–14037 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Grant, L. N. et al. Molecular titanium nitrides: nucleophiles unleashed. Chem. Sci. 8, 1209–1224 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Figueroa, J. S., Piro, N. A., Clough, C. R. & Cummins, C. C. A nitridoniobium(V) reagent that effects acid chloride to organic nitrile conversion:  synthesis via heterodinuclear (Nb/Mo) dinitrogen cleavage, mechanistic insights, and recycling. J. Am. Chem. Soc. 128, 940–950 (2006). An example in which a metal nitride is generated from N2 and then used to functionalize a substrate.

    Article  CAS  PubMed  Google Scholar 

  57. Figueroa, J. S. & Cummins, C. C. A niobaziridine hydride system for white phosphorus or dinitrogen activation and N- or P-atom transfer. Dalton Trans. 18, 2161–2168 (2006).

    Article  Google Scholar 

  58. Clough, C. R. et al. Organic nitriles from acid chlorides:  an isovalent N for (O)Cl exchange reaction mediated by a tungsten nitride complex. J. Am. Chem. Soc. 126, 7742–7743 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Klopsch, I., Kinauer, M., Finger, M., Würtele, C. & Schneider, S. Conversion of dinitrogen into acetonitrile under ambient conditions. Angew. Chem. Int. Ed. 55, 4786–4789 (2016).

    Article  CAS  Google Scholar 

  60. Fritz, M. et al. Photoelectrochemical conversion of dinitrogen to benzonitrile: selectivity control by electrophile- versus proton-coupled electron transfer. Angew. Chem. Int. Ed. 61, e202205922 (2022).

    Article  CAS  Google Scholar 

  61. Hughes, D. L., Ibrahim, S. K., Macdonald, C. J., Ali, H. M. & Pickett, C. J. Electrosynthesis of amino acids from a molybdenum nitride via nitrogen–carbon and carbon–carbon bond formation reactions involving imides and nitrogen ylides: X-ray structure of trans-[MoCl(NCHCO2Me)(Ph2PCH2CH2PPh2)2]·CH2Cl2. J. Chem. Soc. Chem. Comm. 24, 1762–1763 (1992).

    Article  Google Scholar 

  62. Silvia, J. S. & Cummins, C. C. Two-electron reduction of a vanadium(V) nitride by CO to release cyanate and open a coordination site. J. Am. Chem. Soc. 131, 446–447 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Thompson, R. et al. Addition of Si–H and B–H bonds and redox reactivity involving low-coordinate nitrido–vanadium complexes. Inorg. Chem. 54, 3068–3077 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Crevier, T. J. & Mayer, J. M. Insertion of an osmium nitride into boron−carbon bonds. Angew. Chem. Int. Ed. 37, 1891–1893 (1998).

    Article  CAS  Google Scholar 

  65. Crevier, T. J. & Mayer, J. M. Direct attack of phenyl anion at an electrophilic osmium−nitrido ligand. J. Am. Chem. Soc. 120, 5595–5596 (1998).

    Article  CAS  Google Scholar 

  66. Sun, J. et al. A platinum(ii) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Cui, P. et al. Ring-size-modulated reactivity of putative dicobalt-bridging nitrides: C−H activation versus phosphinimide formation. Angew. Chem. Int. Ed. 56, 15979–15983 (2017).

    Article  CAS  Google Scholar 

  68. Cleaves, P. A. et al. Two-electron reductive carbonylation of terminal uranium(V) and uranium(VI) nitrides to cyanate by carbon monoxide. Angew. Chem. Int. Ed. 53, 10412–10415 (2014).

    Article  CAS  Google Scholar 

  69. Yadav, M., Metta-Magaña, A. & Fortier, S. Intra- and intermolecular interception of a photochemically generated terminal uranium nitride. Chem. Sci. 11, 2381–2387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ishida, Y. & Kawaguchi, H. Nitrogen atom transfer from a dinitrogen-derived vanadium nitride complex to carbon monoxide and isocyanide. J. Am. Chem. Soc. 136, 16990–16993 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Scepaniak, J. J., Bontchev, R. P., Johnson, D. L. & Smith, J. M. Snapshots of complete nitrogen atom transfer from an iron(IV) nitrido complex. Angew. Chem. Int. Ed. 50, 6630–6633 (2011).

    Article  CAS  Google Scholar 

  72. Tran, B. L., Pink, M., Gao, X., Park, H. & Mindiola, D. J. Low-coordinate and neutral nitrido complexes of vanadium. J. Am. Chem. Soc. 132, 1458–1459 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Groves, J. T. & Takahashi, T. Activation and transfer of nitrogen from a nitridomanganese(V) porphyrin complex. Aza analog of epoxidation. J. Am. Chem. Soc. 105, 2073–2074 (1983).

    Article  CAS  Google Scholar 

  74. Henning, H., Hofbauer, K., Handke, K. & Stich, R. Unusual reaction pathways in the photolysis of diazido(phosphane)nickel(II) complexes: nitrenes as intermediates in the formation of nickel(0) complexes. Angew. Chem. Int. Ed. 36, 408–410 (1997).

    Article  CAS  Google Scholar 

  75. Wong, T.-W., Lau, T.-C. & Wong, W.-T. Osmium(VI) nitrido and osmium(IV) phosphoraniminato complexes containing Schiff base ligands. Inorg. Chem. 38, 6181–6186 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Ho, C.-M., Lau, T.-C., Kwong, H.-L. & Wong, W.-T. Activation of manganese nitrido complexes by Brønsted and Lewis acids. Crystal structure and asymmetric alkene aziridination of a chiral salen manganese nitrido complex. J. Chem. Soc. Dalton Trans. 15, 2411–2414 (1999).

    Article  Google Scholar 

  77. Lau, T.-C. & Mak, C.-K. Oxidation of alkanes by barium ruthenate in acetic acid: catalysis by Lewis acids. J. Chem. Soc. Chem. Comm. 9, 766–767 (1993).

    Article  Google Scholar 

  78. Lau, T.-C. & Mak, C.-K. Oxidation of C2, C3 and higher alkanes by a ruthenium–oxo system. J. Chem. Soc. Chem. Comm. 9, 943–944 (1995).

    Article  Google Scholar 

  79. Lau, T.-C., Wu, Z.-B., Bai, Z.-L. & Mak, C.-K. Dalton communications. Lewis-acid catalysed oxidation of alkanes by chromate and permanganate. J. Chem. Soc. Dalton Trans. 4,  695–696 (1995).

    Article  Google Scholar 

  80. Man, W.-L., Lam, W. W. Y., Yiu, S.-M., Lau, T.-C. & Peng, S.-M. Direct aziridination of alkenes by a cationic (salen)ruthenium(VI) nitrido complex. J. Am. Chem. Soc. 126, 15336–15337 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Man, W.-L., Lam, W. W. Y., Kwong, H.-K., Yiu, S.-M. & Lau, T.-C. Ligand-accelerated activation of strong C–H bonds of alkanes by a (salen)ruthenium(VI)–nitrido complex. Angew. Chem. Int. Ed. 51, 9101–9104 (2012).

    Article  CAS  Google Scholar 

  82. Samsel, E. G., Srinivasan, K. & Kochi, J. K. Mechanism of the chromium-catalyzed epoxidation of olefins. Role of oxochromium(V) cations. J. Am. Chem. Soc. 107, 7606–7617 (1985).

    Article  CAS  Google Scholar 

  83. Prokop, K. A., de Visser, S. P. & Goldberg, D. P. Unprecedented rate enhancements of hydrogen-atom transfer to a manganese(V)–oxo corrolazine complex. Angew. Chem. Int. Ed. 49, 5091–5095 (2010).

    Article  CAS  Google Scholar 

  84. Man, W.-L. et al. Functionalization of alkynes by a (salen)ruthenium(VI) nitrido complex. Angew. Chem. Int. Ed. 53, 8463–8466 (2014).

    Article  CAS  Google Scholar 

  85. Shi, H. et al. Structure and reactivity of one- and two-electron oxidized manganese(V) nitrido complexes bearing a bulky corrole ligand. J. Am. Chem. Soc. 144, 7588–7593 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Yu, D., Shing, K.-P., Liu, Y., Liu, H. & Che, C.-M. Ruthenium porphyrin catalysed intermolecular amino-oxyarylation of alkenes to give primary amines via a ruthenium nitrido intermediate. Chem. Comm. 56, 137–140 (2020).

    Article  CAS  Google Scholar 

  87. Schlangen, M. et al. Gas-phase C−H and N−H bond activation by a high valent nitrido-iron dication and NH-transfer to activated olefins. J. Am. Chem. Soc. 130, 4285–4294 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Musch Long, A. K., Yu, R. P., Timmer, G. H. & Berry, J. F. Aryl C−H bond amination by an electrophilic diruthenium nitride. J. Am. Chem. Soc. 132, 12228–12230 (2010).

    Article  CAS  Google Scholar 

  89. Pap, J. S., De Beer George, S. & Berry, J. F. Delocalized metal–metal and metal–ligand multiple bonding in a linear Ru–Ru≡N unit: elongation of a traditionally short Ru≡N bond. Angew. Chem. Int. Ed. 47, 10102–10105 (2008).

    Article  CAS  Google Scholar 

  90. Das, A., Reibenspies, J. H., Chen, Y.-S. & Powers, D. C. Direct characterization of a reactive lattice-confined Ru2 nitride by photocrystallography. J. Am. Chem. Soc. 139, 2912–2915 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Xie, J. et al. Four-electron oxidation of phenols to p-benzoquinone imines by a (salen)ruthenium(VI) nitrido complex. J. Am. Chem. Soc. 138, 5817–5820 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. King, D. M. et al. Isolation and characterization of a uranium(VI)–nitride triple bond. Nat. Chem. 5, 482–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Schöffel, J., Šušnjar, N., Nückel, S., Sieh, D. & Burger, P. 4d vs. 5d — Reactivity and fate of terminal nitrido complexes of rhodium and iridium. Eur. J. Inorg. Chem. 2010, 4911–4915 (2010).

    Article  Google Scholar 

  94. Hojilla Atienza, C. C., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C−H activation from putative cobalt nitrido complexes. J. Am. Chem. Soc. 132, 16343–16345 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Tian, Z., Fattahi, A., Lis, L. & Kass, S. R. Cycloalkane and cycloalkene C−H bond dissociation energies. J. Am. Chem. Soc. 128, 17087–17092 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, C.-H., Das, A., Gao, W.-Y. & Powers, D. C. Probing substrate diffusion in interstitial MOF chemistry with kinetic isotope effects. Angew. Chem. Int. Ed. 57, 3676–3681 (2018).

    Article  CAS  Google Scholar 

  97. Wang, C.-H., Gao, W.-Y. & Powers, D. C. Measuring and modulating substrate confinement during nitrogen-atom transfer in a Ru2-based metal–organic framework. J. Am. Chem. Soc. 141, 19203–19207 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Bakir, M., White, P. S., Dovletoglou, A. & Meyer, T. J. Preparation of phosphoraniminato complexes containing polypyridyl ligands. Nitrogen atom transfer from dichloronitrido(terpyridine)osmium(1+). Inorg. Chem. 30, 2835–2836 (1991).

    Article  CAS  Google Scholar 

  99. Williams, D. S., Meyer, T. J. & White, P. S. Preparation of osmium(II) nitrosyls by direct oxidation of osmium(VI) nitrides. J. Am. Chem. Soc. 117, 823–824 (1995).

    Article  CAS  Google Scholar 

  100. Shi, H. et al. Structure and reactivity of a manganese(VI) nitrido complex bearing a tetraamido macrocyclic ligand. J. Am. Chem. Soc. 143, 15863–15872 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Crandell, D. W., Muñoz, S. B., Smith, J. M. & Baik, M.-H. Mechanistic study of styrene aziridination by iron(iv) nitrides. Chem. Sci. 9, 8542–8552 (2018). An example of a reversible NAT in the aziridination of styrenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maestri, A. G., Cherry, K. S., Toboni, J. J. & Brown, S. N. [4 + 1] Cycloadditions of cyclohexadienes with osmium nitrides. J. Am. Chem. Soc. 123, 7459–7460 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, W.-T. et al. Reaction of an iron(IV) nitrido complex with cyclohexadienes: cycloaddition and hydrogen-atom abstraction. Inorg. Chem. 53, 8425–8430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Song, J., Liao, Q., Hong, X., Jin, L. & Mézailles, N. Conversion of dinitrogen into nitrile: cross-metathesis of N2-derived molybdenum nitride with alkynes. Angew. Chem. Int. Ed. 60, 12242–12247 (2021).

    Article  CAS  Google Scholar 

  105. Gdula, R. L. & Johnson, M. J. A. Highly active molybdenum−alkylidyne catalysts for alkyne metathesis:  synthesis from the nitrides by metathesis with alkynes. J. Am. Chem. Soc. 128, 9614–9615 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Geyer, A. M., Gdula, R. L., Wiedner, E. S. & Johnson, M. J. A. Catalytic nitrile-alkyne cross-metathesis. J. Am. Chem. Soc. 129, 3800–3801 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Geyer, A. M. et al. Synthetic, mechanistic, and computational investigations of nitrile–alkyne cross-metathesis. J. Am. Chem. Soc. 130, 8984–8999 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Wiedner, E. S., Gallagher, K. J., Johnson, M. J. A. & Kampf, J. W. Synthesis of molybdenum nitrido complexes for triple-bond metathesis of alkynes and nitriles. Inorg. Chem. 50, 5936–5945 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Chisholm, M. H., Delbridge, E. E., Kidwell, A. R. & Quinlan, K. B. Nitrogen atom exchange between molybdenum, tungsten and carbon. A convenient method for N-15 labeling. Chem. Comm. 1, 126–127 (2003).

    Article  Google Scholar 

  110. Gdula, R. L., Johnson, M. J. A. & Ockwig, N. W. Nitrogen-atom exchange mediated by nitrido complexes of molybdenum. Inorg. Chem. 44, 9140–9142 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Burroughs, B. A., Bursten, B. E., Chen, S., Chisholm, M. H. & Kidwell, A. R. Metathesis of nitrogen atoms within triple bonds involving carbon, tungsten, and molybdenum. Inorg. Chem. 47, 5377–5385 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Spannring, P., Bruijnincx, P. C. A., Weckhuysen, B. M. & Klein Gebbink, R. J. M. Transition metal-catalyzed oxidative double bond cleavage of simple and bio-derived alkenes and unsaturated fatty acids. Catal. Sci. Technol. 4, 2182–2209 (2014).

    Article  CAS  Google Scholar 

  113. Brown, S. N. Insertion of a metal nitride into carbon−carbon double bonds. J. Am. Chem. Soc. 121, 9752–9753 (1999). One of the first examples of metal nitride insertion into C–C double bonds.

    Article  CAS  Google Scholar 

  114. Maestri, A. G., Taylor, S. D., Schuck, S. M. & Brown, S. N. Cleavage of conjugated alkenes by cationic osmium nitrides:  scope of the reaction and dynamics of the azaallenium products. Organometallics 23, 1932–1946 (2004).

    Article  CAS  Google Scholar 

  115. Kelly, P. Q., Filatov, A. S. & Levin, M. D. A synthetic cycle for heteroarene synthesis by nitride insertion. Angew. Chem. Int. Ed. 61, e202213041 (2022).

    Article  CAS  Google Scholar 

  116. Wang, S. et al. Insertion of a transient tin nitride into carbon–carbon and boron–carbon bonds. Inorg. Chem. 56, 14596–14604 (2017). The only example we are aware of showing nitride insertion into an aromatic ring.

    Article  CAS  PubMed  Google Scholar 

  117. Demadis, K. D., Meyer, T. J. & White, P. S. Reactivity of osmium(VI) nitrides with the azide ion. A new synthetic route to osmium(II) polypyridyl complexes. Inorg. Chem. 37, 3610–3619 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Kim, S., Park, Y., Kim, J., Pabst, T. P. & Chirik, P. J. Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. Nat. Synth. 1, 297–303 (2022).

    Article  Google Scholar 

  119. Vining, W. J., Neyhart, G. A., Nielsen, S. & Sullivan, B. P. Photoprotonation of a metal nitride complex. Inorg. Chem. 32, 4214–4217 (1993).

    Article  CAS  Google Scholar 

  120. Lutz, M. D. R. & Morandi, B. Metal-catalyzed carbon–carbon bond cleavage of unstrained alcohols. Chem. Rev. 121, 300–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Murakami, M. & Ishida, N. Cleavage of carbon–carbon σ-bonds of four-membered rings. Chem. Rev. 121, 264–299 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Catalysis Program (DE-SC0018977), the Welch Foundation (A-1907) and the National Science Foundation (CAREER 1848135) Alliances for Graduate Education and the Professoriate Fellowship to M.N.C.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to David C. Powers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks D. Mindiola and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Metallonitrene

A recently introduced term, also called a metal nitrenido. A possible electronic formulation of the [M]–N fragment in which two electron holes are localized on the nitrogen atom.

Metal nitrene

An [M]–NR fragment.

Metal nitrides

An [M]–N fragment.

Nitrogen-atom transfer

(NAT). A reaction in which the substrate is engaged by a metal nitride.

Nitrogen-group transfer

(NGT). A reaction in which the substrate is engaged by a metal nitrenoid.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosio, M.N., Powers, D.C. Prospects and challenges for nitrogen-atom transfer catalysis. Nat Rev Chem 7, 424–438 (2023). https://doi.org/10.1038/s41570-023-00482-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00482-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing