Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detection and analysis of chiral molecules as disease biomarkers

Abstract

The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influential factors for ‘abnormal’ chirality, common chiral biomarkers and associated diseases.
Fig. 2: Sample preparation before chiral detection.
Fig. 3: Chiral detection of small molecules via chromatography and capillary electrophoresis coupled to mass spectrometry.
Fig. 4: Chiral detection of small molecules with NMR spectroscopy and an enzymatic assay.
Fig. 5: Chiral detection using chiroptical spectroscopy.

Similar content being viewed by others

References

  1. Etzioni, R. et al. The case for early detection. Nat. Rev. Cancer 3, 243–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hanash, S. M., Pitteri, S. J. & Faca, V. M. Mining the plasma proteome for cancer biomarkers. Nature 452, 571–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Rinschen, M. M., Ivanisevic, J., Giera, M. & Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 20, 353–367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rochfort, S. Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J. Nat. Prod. 68, 1813–1820 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Casati, D. F., Zanor, M. I. & Busi, M. V. Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases. Biomed. Res. Int. 2013, 792527 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Quack, M. Structure and dynamics of chiral molecules. Angew. Chem. Int. Ed. 28, 571–586 (1989).

    Article  Google Scholar 

  8. Evans, P. R. An introduction to stereochemical restraints. Acta Crystallogr. D 63, 58–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Blackmond, D. G. Autocatalytic models for the origin of biological homochirality. Chem. Rev. 120, 4831–4847 (2019).

    Article  PubMed  Google Scholar 

  10. Plasson, R., Kondepudi, D. K., Bersini, H., Commeyras, A. & Asakura, K. Emergence of homochirality in far‐from‐equilibrium systems: mechanisms and role in prebiotic chemistry. Chirality 19, 589–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Shen, Q., Wang, L., Zhou, H., Yu, L.-S. & Zeng, S. Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacol. Sin. 34, 998–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Müller, T. & Kohler, H.-P. Chirality of pollutants — effects on metabolism and fate. Appl. Microbiol. Biotechnol. 64, 300–316 (2004).

    Article  PubMed  Google Scholar 

  13. Armstrong, D. W., Zukowski, J., Ercal, N. & Gasper, M. Stereochemistry of pipecolic acid found in the urine and plasma of subjects with peroxisomal deficiencies. J. Pharm. Biomed. Anal. 11, 881–886 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Armstrong, D. W., Gasper, M., Lee, S. H., Zukowski, J. & Ercal, N. d-Amino acid levels in human physiological fluids. Chirality 5, 375–378 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Utembe, W. Chirality, a neglected physico-chemical property of nanomaterials? A mini-review on the occurrence and importance of chirality on their toxicity. Toxicol. Lett. 311, 58–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Abdulbagi, M., Wang, L., Siddig, O., Di, B. & Li, B. d-Amino acids and d-amino acid-containing peptides: potential disease biomarkers and therapeutic targets? Biomolecules 11, 1716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kranendijk, M., Struys, E. A., Salomons, G. S., Van der Knaap, M. S. & Jakobs, C. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 35, 571–587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Talasniemi, J. P., Pennanen, S., Savolainen, H., Niskanen, L. & Liesivuori, J. Analytical investigation: assay of d-lactate in diabetic plasma and urine. Clin. Biochem. 41, 1099–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hashimoto, A., Oka, T. & Nishikawa, T. Extracellular concentration of endogenous free d-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66, 635–643 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto, A. et al. The presence of free d-serine in rat brain. FEBS Lett. 296, 33–36 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Mothet, J.-P. et al. d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc. Natl Acad. Sci. USA 97, 4926–4931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Le Bail, M. et al. Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proc. Natl Acad. Sci. USA 112, E204–E213 (2015).

    PubMed  Google Scholar 

  23. Mothet, J. P., Le Bail, M. & Billard, J. M. Time and space profiling of NMDA receptor co‐agonist functions. J. Neurochem. 135, 210–225 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Dallérac, G. et al. Dopaminergic neuromodulation of prefrontal cortex activity requires the NMDA receptor coagonist d-serine. Proc. Natl Acad. Sci. USA 118, e2023750118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wolosker, H., Blackshaw, S. & Snyder, S. H. Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc. Natl Acad. Sci. USA 96, 13409–13414 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sason, H. et al. Asc-1 transporter regulation of synaptic activity via the tonic release of d-serine in the forebrain. Cereb. Cortex 27, 1573–1587 (2017).

    PubMed  Google Scholar 

  27. Ivanov, A. D. & Mothet, J.-P. The plastic d-serine signaling pathway: sliding from neurons to glia and vice-versa. Neurosci. Lett. 689, 21–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Foltyn, V. N. et al. Serine racemase modulates intracellular d-serine levels through an α,β-elimination activity. J. Biol. Chem. 280, 1754–1763 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Schell, M. J., Molliver, M. E. & Snyder, S. H. d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc. Natl Acad. Sci. USA 92, 3948–3952 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perez, E. J. et al. Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. J. Clin. Invest. 127, 3114–3125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tapanes, S. A. et al. Inhibition of glial d‐serine release rescues synaptic damage after brain injury. Glia 70, 1133–1152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mustafa, A. K. et al. Serine racemase deletion protects against cerebral ischemia and excitotoxicity. J. Neurosci. Res. 30, 1413–1416 (2010).

    CAS  Google Scholar 

  33. Bendikov, I. et al. A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr. Res. 90, 41–51 (2007).

    Article  PubMed  Google Scholar 

  34. Wolosker, H. & Balu, D. T. d-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl. Psychiatry 10, 1–10 (2020).

    Article  Google Scholar 

  35. Klatte, K. et al. Impaired d-serine-mediated cotransmission mediates cognitive dysfunction in epilepsy. J. Neurosci. Res. 33, 13066–13080 (2013).

    CAS  Google Scholar 

  36. Beesley, S. et al. d-Serine mitigates cell loss associated with temporal lobe epilepsy. Nat. Commun. 11, 4966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitchell, J. et al. Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc. Natl Acad. Sci USA 107, 7556–7561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sasabe, J. et al. d-Amino acid oxidase controls motoneuron degeneration through d-serine. Proc. Natl Acad. Sci. USA 109, 627–632 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Spasova, K. & Fähling, M. d-Serine — A Useful Biomarker for Renal Injury? (Wiley, 2020).

  40. Hamase, K., Morikawa, A. & Zaitsu, K. d-Amino acids in mammals and their diagnostic value. J. Chromatogr. B 781, 73–91 (2002).

    Article  CAS  Google Scholar 

  41. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D. & McLean, J. A. Untargeted metabolomics strategies — challenges and emerging directions. J. Am. Soc. Mass Spectrom. 27, 1897–1905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Armstrong, D. Analysis of d-amino acids: relevance in human disease. LC GC N. Am. 40, 356–360 (2022).

    Article  Google Scholar 

  44. Murtas, G. & Pollegioni, L. d-Amino acids as novel blood-based biomarkers. Curr. Med. Chem. 29, 4202–4215 (2022).

    Article  PubMed  Google Scholar 

  45. Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Hansen, K. B. et al. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150, 1081–1105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuchs, S. A., Berger, R., Klomp, L. W. & De Koning, T. J. d-Amino acids in the central nervous system in health and disease. Mol. Genet. Metab. 85, 168–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Wong, J. M. et al. Postsynaptic serine racemase regulates NMDA receptor function. J. Neurosci. 40, 9564–9575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balu, D. T. et al. Serine racemase and d-serine in the amygdala are dynamically involved in fear learning. Biol. Psychiatry 83, 273–283 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Balu, D. T. et al. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc. Natl Acad. Sci. USA 110, E2400–E2409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Basu, A. C. et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol. Psychiatry 14, 719–727 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Shleper, M., Kartvelishvily, E. & Wolosker, H. d-Serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J. Neurosci. 25, 9413–9417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Katsuki, H., Nonaka, M., Shirakawa, H., Kume, T. & Akaike, A. Endogenous d-serine is involved in induction of neuronal death by N-methyl-d-aspartate and simulated ischemia in rat cerebrocortical slices. J. Pharmacol. Exp. Ther. 311, 836–844 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Piubelli, L., Murtas, G., Rabattoni, V. & Pollegioni, L. The role of d-amino acids in Alzheimer’s disease. J. Alzheimers Dis. 80, 475–492 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Ghatak, S., Talantova, M., McKercher, S. R. & Lipton, S. A. Novel therapeutic approach for excitatory/inhibitory imbalance in neurodevelopmental and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 61, 701–721 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Hashimoto, K. et al. Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch. Gen. Psychiatry 60, 572–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Mothet, J. et al. A critical role for the glial-derived neuromodulator d-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5, 267–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Turpin, F. et al. Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol. Aging 32, 1495–1504 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Orzylowski, M., Fujiwara, E., Mousseau, D. D. & Baker, G. B. An overview of the involvement of d-serine in cognitive impairment in normal aging and dementia. Front. Psychiatry 12, 754032 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Van der Crabben, S. et al. An update on serine deficiency disorders. J. Inherit. Metab. Dis. 36, 613–619 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Kantrowitz, J. T. et al. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist d-serine. Brain 139, 3281–3295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kantrowitz, J. T. et al. d-Serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry 2, 403–412 (2015).

    Article  PubMed  Google Scholar 

  63. Kantrowitz, J. T. et al. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: correlation with symptoms. Schizophr. Res. 191, 70–79 (2018).

    Article  PubMed  Google Scholar 

  64. Bado, P. et al. Effects of low-dose d-serine on recognition and working memory in mice. Psychopharmacology 218, 461–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Panizzutti, R. et al. Association between increased serum d-serine and cognitive gains induced by intensive cognitive training in schizophrenia. Schizophr. Res. 207, 63–69 (2019).

    Article  PubMed  Google Scholar 

  66. Tsai, G., Yang, P., Chung, L.-C., Lange, N. & Coyle, J. T. d-Serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 44, 1081–1089 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Heresco-Levy, U. et al. Pilot controlled trial of d-serine for the treatment of post-traumatic stress disorder. Int. J. Neuropsychopharmacol. 12, 1275–1282 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Moaddel, R. et al. d-Serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology 232, 399–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Nava-Gómez, L. et al. Aging-associated cognitive decline is reversed by d-serine supplementation. eNeuro https://doi.org/10.1523/ENEURO.0176-22.2022 (2022).

  70. Madeira, C. et al. d-Serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl. Psychiatry 5, e561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Biemans, E. A. et al. CSF d-serine concentrations are similar in Alzheimer’s disease, other dementias, and elderly controls. Neurobiol. Aging 42, 213–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Piubelli, L. et al. Serum d-serine levels are altered in early phases of Alzheimer’s disease: towards a precocious biomarker. Transl. Psychiatry 11, 77 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ito, T. et al. Serine racemase is involved in d-aspartate biosynthesis. J. Biochem. 160, 345–353 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Wolosker, H., D’Aniello, A. & Snyder, S. d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100, 183–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Schell, M. J., Cooper, O. B. & Snyder, S. H. d-Aspartate localizations imply neuronal and neuroendocrine roles. Proc. Natl Acad. Sci. USA 94, 2013–2018 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ota, N., Shi, T. & Sweedler, J. V. d-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 43, 1873–1886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Rosa, A. et al. Prenatal expression of d-aspartate oxidase causes early cerebral d-aspartate depletion and influences brain morphology and cognitive functions at adulthood. Amino Acids 52, 597–617 (2020).

    Article  PubMed  Google Scholar 

  78. Nuzzo, T. et al. Decreased free d-aspartate levels are linked to enhanced d-aspartate oxidase activity in the dorsolateral prefrontal cortex of schizophrenia patients. NPJ Schizophr. 3, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Errico, F. et al. Decreased levels of d-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia. J. Psychiatr. Res. 47, 1432–1437 (2013).

    Article  PubMed  Google Scholar 

  80. Coyle, J. T. Schizophrenia: basic and clinical. Neurodegener. Dis. 15, 255–280 (2017).

    Article  Google Scholar 

  81. Nuzzo, T. et al. The levels of the NMDA receptor co-agonist d-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients. Sci. Rep. 9, 8898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morikawa, A. et al. Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino-acid oxidase activity. J. Chromatogr. B 757, 119–125 (2001).

    Article  CAS  Google Scholar 

  83. Tsai, G. E., Yang, P., Chang, Y. C. & Chong, M. Y. d-Alanine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 59, 230–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Fisher, G. H. et al. Free d-aspartate and d-alanine in normal and Alzheimer brain. Brain Res. Bull. 26, 983–985 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Xing, Y., Li, X., Guo, X. & Cui, Y. Simultaneous determination of 18 d-amino acids in rat plasma by an ultrahigh-performance liquid chromatography–tandem mass spectrometry method: application to explore the potential relationship between Alzheimer’s disease and d-amino acid level alterations. Anal. Bioanal. Chem. 408, 141–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Semenza, E. R. et al. d-Cysteine is an endogenous regulator of neural progenitor cell dynamics in the mammalian brain. Proc. Natl Acad. Sci. USA 118, e2110610118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoffmann, G. F. et al. Neurological manifestations of organic acid disorders. Eur. J. Pediatr. 153, S94–S100 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Achouri, Y. et al. Identification of a dehydrogenase acting on d-2-hydroxyglutarate. Biochem. J. 381, 35–42 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Junqueira, D. et al. In vitro effects of d-2-hydroxyglutaric acid on glutamate binding, uptake and release in cerebral cortex of rats. J. Neurol. Sci. 217, 189–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kolker, S. et al. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in d-2-hydroxyglutaric aciduria. Eur. J. Neurosci. 16, 21–28 (2002).

    Article  PubMed  Google Scholar 

  91. Muntau, A. C. et al. Combined d-2-and l-2-hydroxyglutaric aciduria with neonatal onset encephalopathy: a third biochemical variant of 2-hydroxyglutaric aciduria? Neuropediatrics 31, 137–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Stevens, L. A., Coresh, J., Greene, T. & Levey, A. S. Assessing kidney function — measured and estimated glomerular filtration rate. N. Engl. J. Med. 354, 2473–2483 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Kimura, T., Hesaka, A. & Isaka, Y. d-Amino acids and kidney diseases. Clin. Exp. Nephrol. 24, 404–410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Silbernagl, S., Völker, K. & Dantzler, W. H. d-Serine is reabsorbed in rat renal pars recta. Am. J. Physiol. 276, F857–F863 (1999).

    CAS  PubMed  Google Scholar 

  95. Okushima, H. et al. Intra-body dynamics of d-serine reflects the origin of kidney diseases. Clin. Exp. Nephrol. 25, 893–901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Iwakawa, H., Makabe, S., Ito, T., Yoshimura, T. & Watanabe, H. Urinary d-serine level as a predictive biomarker for deterioration of renal function in patients with atherosclerotic risk factors. Biomarkers 24, 159–165 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Kawamura, M. et al. Measurement of glomerular filtration rate using endogenous d-serine clearance in living kidney transplant donors and recipients. EClinicalMedicine 43, 101223 (2022).

    Article  PubMed  Google Scholar 

  98. Hesaka, A. et al. d-Serine reflects kidney function and diseases. Sci. Rep. 9, 5104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sasabe, J. et al. Ischemic acute kidney injury perturbs homeostasis of serine enantiomers in the body fluid in mice: early detection of renal dysfunction using the ratio of serine enantiomers. PLoS ONE 9, e86504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Young, G., Kendall, S. & Brownjohn, A. d-Amino acids in chronic renal failure and the effects of dialysis and urinary losses. Amino Acids 6, 283–293 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Min, J. Z. et al. Determination of dl-amino acids, derivatized with R(−)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, in nail of diabetic patients by UPLC–ESI–TOF-MS. J. Chromatogr. B 879, 3220–3228 (2011).

    Article  CAS  Google Scholar 

  102. Lorenzo, M. P. et al. Optimization and validation of a chiral GC-MS method for the determination of free d-amino acids ratio in human urine: application to a gestational diabetes mellitus study. J. Pharm. Biomed. Anal. 107, 480–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Cheng, Q.-Y. et al. Sensitive determination of onco-metabolites of d-and l-2-hydroxyglutarate enantiomers by chiral derivatization combined with liquid chromatography/mass spectrometry analysis. Sci. Rep. 5, 1–11 (2015).

    Article  Google Scholar 

  105. Lu, J. et al. Closing the anion gap: contribution of d-lactate to diabetic ketoacidosis. Clin. Chim. Acta 412, 286–291 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Ma, S. et al. d-2-Hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget 6, 8606–8620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Struys, E. A., Gibson, K. M. & Jakobs, C. Novel insights into l-2-hydroxyglutaric aciduria: mass isotopomer studies reveal 2-oxoglutaric acid as the metabolic precursor of l-2-hydroxyglutaric acid. J. Inherit. Metab. Dis. 30, 690–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Ye, D., Guan, K. L. & Xiong, Y. Metabolism, activity, and targeting of d- and l-2-hydroxyglutarates. Trends Cancer 4, 151–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Baek, J. & Pennathur, S. Urinary 2-hydroxyglutarate enantiomers are markedly elevated in a murine model of type 2 diabetic kidney disease. Metabolites 11, 469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bastings, J., van Eijk, H. M., Olde Damink, S. W. & Rensen, S. S. d-Amino acids in health and disease: a focus on cancer. Nutrients 11, 2205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nagata, Y. et al. High concentrations of d-amino acids in human gastric juice. Amino Acids 32, 137–140 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Han, M. et al. Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal. Bioanal. Chem. 410, 2517–2531 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Du, S. et al. Altered profiles and metabolism of l- and d-amino acids in cultured human breast cancer cells vs. non-tumorigenic human breast epithelial cells. J. Pharm. Biomed. Anal. 164, 421–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Ohshima, K. et al. Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine. Nat. Metab. 2, 81–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Cui, Z. et al. Integrated bioinformatics analysis of serine racemase as an independent prognostic biomarker in endometrial cancer. Front. Genet. 13, 906291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Broer, A., Rahimi, F. & Broer, S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J. Biol. Chem. 291, 13194–13205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bodner, O. et al. d-Serine signaling and NMDAR-mediated synaptic plasticity are regulated by system A-type of glutamine/d-serine dual transporters. J. Neurosci. 40, 6489–6502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kaplan, E. et al. ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. Proc. Natl Acad. Sci. USA 115, 9628–9633 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shibuya, N. et al. A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat. Commun. 4, 1366 (2013).

    Article  PubMed  Google Scholar 

  120. Hellmich, M. R. & Szabo, C. Hydrogen Sulfide and Cancer (Springer, 2015).

  121. El Sayed, S. M. et al. d-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. J. Bioenerg. Biomembr. 44, 513–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Pollegioni, L., Sacchi, S. & Murtas, G. Human d-amino acid oxidase: structure, function, and regulation. Front. Mol. Biosci. 5, 107 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. North, W. G., Gao, G., Memoli, V. A., Pang, R. H. & Lynch, L. Breast cancer expresses functional NMDA receptors. Breast Cancer Res. Treat. 122, 307–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Deutsch, S. I., Tang, A. H., Burket, J. A. & Benson, A. D. NMDA receptors on the surface of cancer cells: target for chemotherapy? Biomed. Pharmacother. 68, 493–496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hogan-Cann, A. D. & Anderson, C. M. Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol. Sci. 37, 750–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Du, S. et al. Roles of N-methyl-d-aspartate receptors and d-amino acids in cancer cell viability. Mol. Biol. Rep. 47, 6749–6758 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Szabo, C. & Hellmich, M. R. Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. Cell Cycle 12, 2915–2916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Szabo, C. et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl Acad. Sci. USA 110, 12474–12479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Intlekofer, A. M. et al. Hypoxia induces production of l-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, H., Ye, D., Guan, K. L. & Xiong, Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin. Cancer Res 18, 5562–5571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, P. et al. Oncometabolite d-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and sensitizes IDH mutant cells to alkylating agents. Cell Rep. 13, 2353–2361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Brückner, H. & Schieber, A. Determination of amino acid enantiomers in human urine and blood serum by gas chromatography–mass spectrometry. Biomed. Chromatogr. 15, 166–172 (2001).

    Article  PubMed  Google Scholar 

  135. Wolfender, J.-L., Marti, G., Thomas, A. & Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Mochizuki, T. et al. Towards the chiral metabolomics: liquid chromatography–mass spectrometry based dl-amino acid analysis after labeling with a new chiral reagent, (S)-2, 5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1, 3, 5-triazin-2-yl) pyrrolidine-2-carboxylate, and the application to saliva of healthy volunteers. Anal. Chim. Acta 875, 73–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Szökő, É., Vincze, I. & Tábi, T. Chiral separations for d-amino acid analysis in biological samples. J. Pharm. Biomed. Anal. 130, 100–109 (2016).

    Article  PubMed  Google Scholar 

  138. Cavazzini, A., Pasti, L., Massi, A., Marchetti, N. & Dondi, F. Recent applications in chiral high performance liquid chromatography: a review. Anal. Chim. Acta 706, 205–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Grossman, P. D. & Colburn, J. C. Capillary Electrophoresis: Theory and Practice (Academic, 2012).

  140. Ramautar, R., Berger, R., van der Greef, J. & Hankemeier, T. Human metabolomics: strategies to understand biology. Curr. Opin. Chem. Biol. 17, 841–846 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Scalbert, A. et al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5, 435–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lloyd, D. K. & Goodall, D. M. Polarimetric detection in high-performance liquid chromatography. Chirality 1, 251–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  143. Purvinis, G., Cameron, B. D. & Altrogge, D. M. Noninvasive polarimetric-based glucose monitoring: an in vivo study. J. Diabetes Sci. Technol. 5, 380–387 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Borovkova, M. et al. Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 11, 4509–4519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Keller, B. O., Sui, J., Young, A. B. & Whittal, R. M. Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta 627, 71–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Wu, L. & Han, D. K. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev. Proteom. 3, 611–619 (2006).

    Article  CAS  Google Scholar 

  148. Dettmer, K., Aronov, P. A. & Hammock, B. D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26, 51–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 403, 1523–1548 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Doherty, C. M. & Forbes, R. B. Diagnostic lumbar puncture. Ulst. Med. J. 83, 93 (2014).

    Google Scholar 

  151. Lewis, S. M. & Tatsumi, N. in Dacie Lewis Pr. Hematol. 10th edn Ch. 1 (Elsevier, 2006).

  152. Gübitz, G. & Schmid, M. G. Chiral separation by chromatographic and electromigration techniques: a review. Biopharm. Drug Dispos. 22, 291–336 (2001).

    Article  PubMed  Google Scholar 

  153. Ang, J. E. et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography–mass spectrometry metabolomic approach. Chronobiol. Int. 29, 868–881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim, K. et al. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS ONE 9, e86223 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lin, C.-H., Yang, H.-T. & Lane, H.-Y. d-Glutamate, d-serine, and d-alanine differ in their roles in cognitive decline in patients with Alzheimer’s disease or mild cognitive impairment. Pharmacol. Biochem. Behav. 185, 172760 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Armstrong, D. W., Kullman, J. P., Chen, X. & Rowe, M. Composition and chirality of amino acids in aerosol/dust from laboratory and residential enclosures. Chirality 13, 153–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Yin, P., Lehmann, R. & Xu, G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal. Chem. 407, 4879–4892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Khadka, M. et al. The effect of anticoagulants, temperature, and time on the human plasma metabolome and lipidome from healthy donors as determined by liquid chromatography–mass spectrometry. Biomolecules 9, 200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pedersen-Bjergaard, S. & Rasmussen, K. E. Liquid–liquid–liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem. 71, 2650–2656 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Nagata, Y., Akino, T. & Ohno, K. Microdetermination of serum d-amino acids. Anal. Chem. 150, 238–242 (1985).

    CAS  Google Scholar 

  161. Brückner, H. & Hausch, M. Gas chromatographic characterization of free d-amino acids in the blood serum of patients with renal disorders and of healthy volunteers. J. Chromatogr. B 614, 7–17 (1993).

    Article  Google Scholar 

  162. Lesche, D. et al. Does centrifugation matter? Centrifugal force and spinning time alter the plasma metabolome. Metabolomics 12, 159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jobard, E. et al. A systematic evaluation of blood serum and plasma pre-analytics for metabolomics cohort studies. Int. J. Mol. Sci. 17, 2035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Heireman, L. et al. Causes, consequences and management of sample hemolysis in the clinical laboratory. Clin. Biochem. 50, 1317–1322 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Jiang, L., He, L. & Fountoulakis, M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J. Chromatogr. A 1023, 317–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Pätzold, R., Schieber, A. & Brückner, H. Gas chromatographic quantification of free d‐amino acids in higher vertebrates. Biomed. Chromatogr. 19, 466–473 (2005).

    Article  PubMed  Google Scholar 

  167. Patti, G. J. Separation strategies for untargeted metabolomics. J. Sep. Sci. 34, 3460–3469 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Yu, Z. et al. Differences between human plasma and serum metabolite profiles. PLoS ONE 6, e21230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Teahan, O. et al. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal. Chem. 78, 4307–4318 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Asakura, S. & Konno, R. Origin of d-serine present in urine of mutant mice lacking d-amino-acid oxidase activity. Amino Acids 12, 213–223 (1997).

    Article  CAS  Google Scholar 

  171. Kato, S., Kito, Y., Hemmi, H. & Yoshimura, T. Simultaneous determination of d-amino acids by the coupling method of d-amino acid oxidase with high-performance liquid chromatography. J. Chromatogr. B 879, 3190–3195 (2011).

    Article  CAS  Google Scholar 

  172. Nagata, Y. et al. The presence of high concentrations of free d-amino acids in human saliva. Life Sci. 78, 1677–1681 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Römisch-Margl, W. et al. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 8, 133–142 (2012).

    Article  Google Scholar 

  174. González-Domínguez, R., González-Domínguez, Á., Sayago, A. & Fernández-Recamales, Á. Recommendations and best practices for standardizing the pre-analytical processing of blood and urine samples in metabolomics. Metabolites 10, 229 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Stevens, V. L., Hoover, E., Wang, Y. & Zanetti, K. A. Pre-analytical factors that affect metabolite stability in human urine, plasma, and serum: a review. Metabolites 9, 156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cajka, T. & Fiehn, O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 88, 524–545 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Berthod, A. Chiral Recognition in Separation Methods (Springer, 2010).

  178. Subramanian, G. Chiral Separation Techniques: A Practical Approach (Wiley, 2008).

  179. Aswad, D. W. Determination of d- and l-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. Anal. Biochem. 137, 405–409 (1984).

    Article  CAS  PubMed  Google Scholar 

  180. Fisher, G. et al. Free d- and l-amino acids in ventricular cerebrospinal fluid from Alzheimer and normal subjects. Amino Acids 15, 263–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Gibson, K. et al. Stable-isotope dilution analysis of d- and l-2-hydroxyglutaric acid: application to the detection and prenatal diagnosis of d- and l-2-hydroxyglutaric acidemias. Pediatr. Res. 34, 277–280 (1993).

    Article  CAS  PubMed  Google Scholar 

  182. El Zahar, N. M., Magdy, N., El-Kosasy, A. M. & Bartlett, M. G. Chromatographic approaches for the characterization and quality control of therapeutic oligonucleotide impurities. Biomed. Chromatogr. 32, e4088 (2018).

    Article  Google Scholar 

  183. Kagan, H. & Fiaud, J. Kinetic resolution. Top. Stereochem 18, 249–330 (1988).

    CAS  Google Scholar 

  184. Rashed, M. S., AlAmoudi, M. & Aboul‐Enein, H. Y. Chiral liquid chromatography tandem mass spectrometry in the determination of the configuration of 2-hydroxyglutaric acid in urine. Biomed. Chromatogr. 14, 317–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Kimura, T. et al. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci. Rep. 6, 26137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Furusho, A. et al. Three-dimensional high-performance liquid chromatographic determination of Asn, Ser, Ala, and Pro enantiomers in the plasma of patients with chronic kidney disease. Anal. Chem. 91, 11569–11575 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Du, S., Wang, Y., Weatherly, C. A., Holden, K. & Armstrong, D. W. Variations of l- and d-amino acid levels in the brain of wild-type and mutant mice lacking d-amino acid oxidase activity. Anal. Bioanal. Chem. 410, 2971–2979 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Armstrong, D., Duncan, J. & Lee, S. Evaluation of d-amino acid levels in human urine and in commercial l-amino acid samples. Amino Acids 1, 97–106 (1991).

    Article  CAS  PubMed  Google Scholar 

  189. McNair, H. M., Miller, J. M. & Snow, N. H. Basic Gas Chromatography (Wiley, 2019).

  190. Farajzadeh, M. A., Nouri, N. & Khorram, P. Derivatization and microextraction methods for determination of organic compounds by gas chromatography. Trends Analyt. Chem. 55, 14–23 (2014).

    Article  CAS  Google Scholar 

  191. Charissou, A., Ait-Ameur, L. & Birlouez-Aragon, I. Evaluation of a gas chromatography/mass spectrometry method for the quantification of carboxymethyllysine in food samples. J. Chromatogr. A 1140, 189–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Creamer, J. S., Mora, M. F. & Willis, P. A. Stability of reagents used for chiral amino acid analysis during spaceflight missions in high‐radiation environments. Electrophoresis 39, 2864–2871 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Bernardo-Bermejo, S., Sánchez-López, E., Castro-Puyana, M. & Marina, M. L. Chiral capillary electrophoresis. Trends Analyt. Chem. 124, 115807 (2020).

    Article  CAS  Google Scholar 

  194. Li, S., Yu, Q., Lu, X. & Zhao, S. Determination of d,l-serine in midbrain of Parkinson’s disease mouse by capillary electrophoresis with in-column light-emitting diode induced fluorescence detection. J. Sep. Sci. 32, 282–287 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Martineau, M. et al. Storage and uptake of d-serine into astrocytic synaptic-like vesicles specify gliotransmission. J. Neurosci. 33, 3413–3423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Patel, A. V., Kawai, T., Wang, L., Rubakhin, S. S. & Sweedler, J. V. Chiral measurement of aspartate and glutamate in single neurons by large-volume sample stacking capillary electrophoresis. Anal. Chem. 89, 12375–12382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Fanali, C. & Fanali, S. Chiral separations using miniaturized techniques: state of the art and perspectives. Isr. J. Chem. 56, 958–967 (2016).

    Article  CAS  Google Scholar 

  198. Merola, G., Fu, H., Tagliaro, F., Macchia, T. & McCord, B. R. Chiral separation of 12 cathinone analogs by cyclodextrin‐assisted capillary electrophoresis with UV and mass spectrometry detection. Electrophoresis 35, 3231–3241 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Krait, S., Konjaria, M. L. & Scriba, G. K. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017–2020). Electrophoresis 42, 1709–1725 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Suh, E. H. et al. Detection of glucose-derived d- and l-lactate in cancer cells by the use of a chiral NMR shift reagent. Cancer Metab. 9, 38 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Bal, D., Gradowska, W. & Gryff-Keller, A. Determination of the absolute configuration of 2-hydroxyglutaric acid and 5-oxoproline in urine samples by high-resolution NMR spectroscopy in the presence of chiral lanthanide complexes. J. Pharm. Biomed. Anal. 28, 1061–1071 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Wenzel, T. J. & Wilcox, J. D. Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. Chirality 15, 256–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Emwas, A.-H. et al. NMR spectroscopy for metabolomics research. Metabolites 9, 123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rosini, E., D’Antona, P. & Pollegioni, L. Biosensors for d-amino acids: detection methods and applications. Int. J. Mol. Sci. 21, 4574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6, 24–27 (1969).

    Article  CAS  Google Scholar 

  207. Zhang, Z. et al. Non-invasive detection of gastric cancer relevant d-amino acids with luminescent DNA/silver nanoclusters. Nanoscale 9, 19367–19373 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Mothet, J. P. et al. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc. Natl Acad. Sci. USA 102, 5606–5611 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Fisher, G. H. et al. Free d-amino acids in human cerebrospinal fluid of Alzheimer disease, multiple sclerosis, and healthy control subjects. Mol. Chem. Neuropathol. 23, 115–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  210. Shi, R et al. The interaction of K and O2 on Au(111): multiple growth modes of potassium oxide and their catalytic activity for CO oxidation. Angew. Chem. Int. Ed. 61, e202208666 (2022).

    Article  CAS  Google Scholar 

  211. Ma, J., Zhang, X., Huang, X., Luo, S. & Meggers, E. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Nat. Protoc. 13, 605–632 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Shoja, Y., Rafati, A. A. & Ghodsi, J. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol–gel network: analytical applications for d-alanine in human serum. Enzyme Microb. Technol. 100, 20–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Nieh, C.-H., Kitazumi, Y., Shirai, O. & Kano, K. Sensitive d-amino acid biosensor based on oxidase/peroxidase system mediated by pentacyanoferrate-bound polymer. Biosens. Bioelectron. 47, 350–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Rabinovitch, B., March, W. & Adams, R. L. Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations. Diabetes Care 5, 254–258 (1982).

    Article  CAS  PubMed  Google Scholar 

  215. Berova, N., Nakanishi, K. & Woody, R. W. Circular Dichroism: Principles and Applications (Wiley, 2000).

  216. Lecoeur-Lorin, M., Delepee, R., Ribet, J. P. & Morin, P. Chiral analysis of milnacipran by a nonchiral HPLC–circular dichroism: improvement of the linearity of dichroic response by temperature control. J. Sep. Sci. 31, 3009–3014 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Luo, Y. et al. A novel potential primary method for quantification of enantiomers by high performance liquid chromatography–circular dichroism. Sci. Rep. 8, 1–11 (2018).

    Google Scholar 

  218. Pelton, J. T. & McLean, L. R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 277, 167–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  219. Kypr, J., Kejnovska, I., Renciuk, D. & Vorlickova, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37, 1713–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Morvan, M. & Mikšík, I. Recent advances in chiral analysis of proteins and peptides. Separations 8, 112 (2021).

    Article  CAS  Google Scholar 

  221. Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci.USA 112, E3095–E3103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kong, K., Kendall, C., Stone, N. & Notingher, I. Raman spectroscopy for medical diagnostics — from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 89, 121–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Nafie, L. A. Infrared and Raman vibrational optical activity: theoretical and experimental aspects. Annu. Rev. Phys. Chem. 48, 357–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  224. Barron, L. D. The development of biomolecular Raman optical activity spectroscopy. Biomed. Spectrosc. Imaging 4, 223–253 (2015).

    Article  CAS  Google Scholar 

  225. Zhu, F., Isaacs, N. W., Hecht, L. & Barron, L. D. Raman optical activity: a tool for protein structure analysis. Structure 13, 1409–1419 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Yamamoto, S. & Bouř, P. Detection of molecular chirality by induced resonance Raman optical activity in europium complexes. Angew. Chem. Int. Ed. 51, 11058–11061 (2012).

    Article  CAS  Google Scholar 

  227. Stephens, P. J., Devlin, F. J. & Pan, J. J. The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality 20, 643–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Guo, C. et al. Determination of enantiomeric excess in samples of chiral molecules using Fourier transform vibrational circular dichroism spectroscopy: simulation of real-time reaction monitoring. Anal. Chem. 76, 6956–6966 (2004).

    Article  CAS  PubMed  Google Scholar 

  229. Armstrong, D. W., Yu, J., Cole, H. D., McFarland, S. A. & Nafie, J. Chiral resolution and absolute configuration determination of new metal-based photodynamic therapy antitumor agents. J. Pharm. Biomed. Anal. 204, 114233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhang, P. & Polavarapu, P. L. Vibrational circular dichroism of matrix-assisted amino acid films in the mid-infrared region. Appl. Spectrosc. 60, 378–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  231. Hentschel, M., Schaferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Solomon, M. L. et al. Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res. 53, 588–598 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8, 14180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wu, Z. & Zheng, Y. Moiré chiral metamaterials. Adv. Opt. Mater. 5, 1700034 (2017).

    Article  Google Scholar 

  235. Wu, Z. & Zheng, Y. Moiré metamaterials and metasurfaces. Adv. Opt. Mater. 6, 1701057 (2018).

    Article  Google Scholar 

  236. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783 (2010).

    Article  CAS  PubMed  Google Scholar 

  237. Liu, Y. et al. Label-free ultrasensitive detection of abnormal chiral metabolites in diabetes. ACS Nano 15, 6448–6456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang, X. & Tang, Z. Circular dichroism studies on plasmonic nanostructures. Small 13, 1601115 (2017).

    Article  Google Scholar 

  239. Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle–protein complexes. Science 365, 1475–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Xu, L. et al. Highly selective recognition and ultrasensitive quantification of enantiomers. J. Mater. Chem. B 1, 4478–4483 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. Hu, J., Lawrence, M. & Dionne, J. A. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy. ACS Photonics 7, 36–42 (2019).

    Article  Google Scholar 

  242. Lee, Y. Y., Kim, R. M., Im, S. W., Balamurugan, M. & Nam, K. T. Plasmonic metamaterials for chiral sensing applications. Nanoscale 12, 58–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  243. Yoo, S. & Park, Q.-H. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics 8, 249–261 (2019).

    Article  Google Scholar 

  244. Paiva-Marques, W. A., Reyes Gómez, F., Oliveira, O. N. & Mejía-Salazar, J. R. Chiral plasmonics and their potential for point-of-care biosensing applications. Sensors 20, 944 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Abdali, S. & Blanch, E. W. Surface enhanced Raman optical activity (SEROA). Chem. Soc. Rev. 37, 980–992 (2008).

    Article  CAS  PubMed  Google Scholar 

  246. Rocks, L. et al. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 7, 591 (2015).

    Article  PubMed  Google Scholar 

  247. Mitra, S. Sample Preparation Techniques in Analytical Chemistry Vol. 237 (Wiley, 2004).

  248. Kumar, R. & Ismail, A. Fouling control on microfiltration/ultrafiltration membranes: effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 132, 42042 (2015).

    Article  Google Scholar 

  249. Gilar, M., Bouvier, E. S. & Compton, B. J. Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods. J. Chromatogr. A 909, 111–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  250. Goodwin, R. J. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J. Proteom. 75, 4893–4911 (2012).

    Article  CAS  Google Scholar 

  251. Pusztai, L., Hatzis, C. & Andre, F. Reproducibility of research and preclinical validation: problems and solutions. Nat. Rev. Clin. Oncol. 10, 720–724 (2013).

    Article  PubMed  Google Scholar 

  252. Addona, T. A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yager, P., Domingo, G. J. & Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  254. Luppa, P. B., Müller, C., Schlichtiger, A. & Schlebusch, H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Analyt. Chem. 30, 887–898 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. National Institute of Biomedical Imaging and Bioengineering/National Heart, Lung, and Blood Institute/National Science Foundation Workshop Faculty, Price, C. P. & Kricka, L. J. Improving healthcare accessibility through point-of-care technologies. Clin. Chem. 53, 1665–1675 (2007).

    Article  Google Scholar 

  256. Gałuszka, A., Migaszewski, Z. M. & Namieśnik, J. Moving your laboratories to the field — advantages and limitations of the use of field portable instruments in environmental sample analysis. Environ. Res. 140, 593–603 (2015).

    Article  PubMed  Google Scholar 

  257. Kuehnbaum, N. L. & Britz-McKibbin, P. New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem. Rev. 113, 2437–2468 (2013).

    Article  CAS  PubMed  Google Scholar 

  258. Gowda, G. N. et al. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 8, 617–633 (2008).

    Article  CAS  PubMed  Google Scholar 

  259. Polavarapu, P. L. Chiral Analysis: Advances in Spectroscopy, Chromatography and Emerging Methods (Elsevier, 2018).

  260. Newgard, C. B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 25, 43–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  261. Li, S. et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. & van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 7, 142 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Lalkhen, A. G. & McCluskey, A. Clinical tests: sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain 8, 221–223 (2008).

    Article  Google Scholar 

  264. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  PubMed  Google Scholar 

  265. Friedman, M. & Levin, C. E. Nutritional and medicinal aspects of d-amino acids. Amino Acids 42, 1553–1582 (2012).

    Article  CAS  PubMed  Google Scholar 

  266. Wang, Z. et al. Quantification of aminobutyric acids and their clinical applications as biomarkers for osteoporosis. Commun. Biol. 3, 39 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Nota, B. et al. Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined d-2-and l-2-hydroxyglutaric aciduria. Am. J. Hum. Genet. 92, 627–631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Strain, S. K., Groves, M. D., Olino, K. L. & Emmett, M. R. Measurement of 2-hydroxyglutarate enantiomers in serum by chiral gas chromatography–tandem mass spectrometry and its application as a biomarker for IDH mutant gliomas. Clin. Mass Spectrom. 15, 16–24 (2020).

    Article  Google Scholar 

  269. Willekens, C. et al. Serum 2-hydroxyglutarate level can predict IDH2 mutation in myeloid sarcoma. Blood 126, 3835 (2015).

    Article  Google Scholar 

  270. Struys, E. A. et al. Mutations in the d-2-hydroxyglutarate dehydrogenase gene cause d-2-hydroxyglutaric aciduria. Am. J. Hum. Genet. 76, 358–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  271. Gibson, K. M., Craigen, W., Herman, G. E. & Jakobs, C. d-2-Hydroxyglutaric aciduria in a newborn with neurological abnormalities: a new neurometabolic disorder? J. Inherit. Metab. Dis. 16, 497–500 (1993).

    Article  CAS  PubMed  Google Scholar 

  272. Rodrigues, D. G. B. et al. Experimental evidence of oxidative stress in patients with l-2-hydroxyglutaric aciduria and that l-carnitine attenuates in vitro DNA damage caused by d-2-hydroxyglutaric and l-2-hydroxyglutaric acids. Toxicol. Vitr. 42, 47–53 (2017).

    Article  CAS  Google Scholar 

  273. Huang, Y., Shi, M. & Zhao, S. Quantification of d-Asp and d-Glu in rat brain and human cerebrospinal fluid by microchip electrophoresis. J. Sep. Sci. 32, 3001–3006 (2009).

    Article  CAS  PubMed  Google Scholar 

  274. Hashimoto, K. et al. Possible role of d-serine in the pathophysiology of Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 385–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  275. Ohnuma, T. et al. Changes in plasma glycine, l-serine, and d-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo University Schizophrenia Projects (JUSP). Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1905–1912 (2008).

    Article  CAS  PubMed  Google Scholar 

  276. Grant, S. L., Shulman, Y., Tibbo, P., Hampson, D. R. & Baker, G. B. Determination of d-serine and related neuroactive amino acids in human plasma by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B 844, 278–282 (2006).

    Article  CAS  Google Scholar 

  277. Visser, W. F. et al. A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J. Chromatogr. A 1218, 7130–7136 (2011).

    Article  CAS  PubMed  Google Scholar 

  278. Fuchs, S. A. et al. Two mass-spectrometric techniques for quantifying serine enantiomers and glycine in cerebrospinal fluid: potential confounders and age-dependent ranges. Clin. Chem. 54, 1443–1450 (2008).

    Article  CAS  PubMed  Google Scholar 

  279. Barbot, C. et al. l-2-Hydroxyglutaric aciduria: clinical, biochemical and magnetic resonance imaging in six Portuguese pediatric patients. Brain Dev. 19, 268–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  280. Topcu, M. et al. l-2-hydroxyglutaric aciduria: a report of 29 patients. Turk. J. Pediatr. 47, 1–7 (2005).

    PubMed  Google Scholar 

  281. Kranendijk, M. et al. Development and implementation of a novel assay for l-2-hydroxyglutarate dehydrogenase (l-2-HGDH) in cell lysates: l-2-HGDH deficiency in 15 patients with l-2-hydroxyglutaric aciduria. J. Inherit. Metab. Dis. 32, 713 (2009).

    Article  CAS  PubMed  Google Scholar 

  282. Zhao, S., Wang, B., He, M., Bai, W. & Chen, L. Determination of free d-alanine in the human plasma by capillary electrophoresis with optical fiber light-emitting diode-induced fluorescence detection. Anal. Chim. Acta 569, 182–187 (2006).

    Article  CAS  Google Scholar 

  283. Scheijen, J. L. et al. l(+) and d(−) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of l(+) and d(−) lactate by reversed-phase liquid chromatography tandem mass spectrometry. Exp. Diabetes Res. 2012, 234812 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Brandt, R. B., Siegel, S. A., Waters, M. G. & Bloch, M. H. Spectrophotometric assay for d-(–)-lactate in plasma. Anal. Biochem. 102, 39–46 (1980).

    Article  CAS  PubMed  Google Scholar 

  285. Tsutsui, H. et al. Simultaneous determination of dl-lactic acid and dl-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC–ESI-MS/MS. Anal. Bioanal. Chem. 404, 1925–1934 (2012).

    Article  CAS  PubMed  Google Scholar 

  286. Pandey, R. et al. Novel strategy for untargeted chiral metabolomics using liquid chromatography–high resolution tandem mass spectrometry. Anal. Chem. 93, 5805–5814 (2021).

    Article  CAS  PubMed  Google Scholar 

  287. Takahashi, M., Morita, M., Niwa, O. & Tabei, H. Highly sensitive high-performance liquid chromatography detection of catecholamine with interdigitated array microelectrodes. J. Electroanal. Chem. 335, 253–263 (1992).

    Article  CAS  Google Scholar 

  288. Creamer, J. S., Mora, M. F. & Willis, P. A. Enhanced resolution of chiral amino acids with capillary electrophoresis for biosignature detection in extraterrestrial samples. Anal. Chem. 89, 1329–1337 (2017).

    Article  CAS  PubMed  Google Scholar 

  289. Rosini, E., D’Antona, P. & Pollegioni, L. Biosensors for d-amino acids: detection methods and applications. Int. J. Mol. Sci. 21, 4574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.L., Z.W. and Y.Z. acknowledge the financial support of the National Institute of General Medical Sciences of the National Institutes of Health (NIH) (R01GM146962) and National Science Foundation (NSF) (ECCS-2001650). D.W.A acknowledges the support of the R. A. Welch Foundation (Y-0026). H.W. acknowledges the financial support of Israel Science Foundation 337/19, Ministry of Health, and Allen and Jewell Prince Center for Neurodegenerative Disorders of the Brain.

Author information

Authors and Affiliations

Authors

Contributions

All authors collected data, wrote and edited the manuscript. Y.L. drafted the manuscript. D.W.A and H.W. provided substantial content. Y. L., Z. W. and Y. Z. conceived the content, and edited and finalized the manuscript.

Corresponding authors

Correspondence to Zilong Wu, Daniel W. Armstrong, Herman Wolosker or Yuebing Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Jean-Pierre Mothet, Yang Zhao and the other anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chiral

The geometric property of a molecule that precludes it from being superimposable on its mirror image.

Chiral selectors

Chiral components in the chiral separation system that interact enantioselectively with the target chiral molecule.

Chiroptical

The optical properties related to the interaction of chirality.

Enantiomeric excess

The excess of one enantiomer over the other in a mixture of enantiomers.

Enantiomers

A pair of compounds that are not superposable onto their own mirror image.

Metabolites

Substances produced after metabolism (food, drugs or chemical digestion).

Metabolomics

A systematic study of chemical processes involving metabolites, the small-molecule substrates, intermediates and products of cell metabolism.

Metamaterials

Materials engineered to have a property that is not found in the equivalent naturally occurring materials.

Metasurfaces

2D thin film materials that can modulate the propagation of electromagnetic waves.

Multiplexed

A way of measuring the concentration of multiple biomarkers.

Recovery rates

The percentages of molecular concentration that can be recovered from the total concentration after physical or chemical processes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, Z., Armstrong, D.W. et al. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 7, 355–373 (2023). https://doi.org/10.1038/s41570-023-00476-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00476-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing