Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Direct synthesis of amorphous coordination polymers and metal–organic frameworks

Abstract

Coordination polymers (CPs) and their subset, metal–organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routes to directly synthesize aCPs and amorphous metal−organic frameworks.
Fig. 2: Flexible and/or asymmetric ligands for directly synthesizing aCPs and aMOFs.
Fig. 3: Templating and seeding strategies for the direct synthesis of aCPs and aMOFs.
Fig. 4: Controlling material properties of MOFs using seeding agents.
Fig. 5: Transitioning between aCPs and crystalline CPs through solvent choice.

Similar content being viewed by others

References

  1. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kitagawa, S., Kitaura, R. & Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  3. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  4. Maurin, G., Serre, C., Cooper, A. & Férey, G. The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 46, 3104–3107 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Michal, B. T., McKenzie, B. M., Felder, S. E. & Rowan, S. J. Metallo-, thermo-, and photoresponsive shape memory and actuating liquid crystalline elastomers. Macromolecules 48, 3239–3246 (2015).

    Article  CAS  Google Scholar 

  6. Han, X., Yang, S. & Schröder, M. Porous metal–organic frameworks as emerging sorbents for clean air. Nat. Rev. Chem. 3, 108–118 (2019).

    Article  CAS  Google Scholar 

  7. Du, Q. et al. Preparation of modified zirconium-based metal–organic frameworks (Zr-MOFs) supported metals and recent application in environment: a review and perspectives. Surf. Interfaces 28, 101647 (2022).

    Article  CAS  Google Scholar 

  8. Miyasaka, H. Charge manipulation in metal–organic frameworks: toward designer functional molecular materials. Bull. Chem. Soc. Jpn. 94, 2929–2955 (2021).

    Article  CAS  Google Scholar 

  9. Winter, A. & Schubert, U. S. Synthesis and characterization of metallo-supramolecular polymers. Chem. Soc. Rev. 45, 5311–5357 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Kumar, P. et al. Regeneration, degradation, and toxicity effect of MOFs: opportunities and challenges. Environ. Res. 176, 108488 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Feng, L., Wang, K.-Y., Day, G. S., Ryder, M. R. & Zhou, H.-C. Destruction of metal–organic frameworks: positive and negative aspects of stability and lability. Chemi. Rev. 120, 13087–13133 (2020).

    Article  CAS  Google Scholar 

  12. Ettlinger, R. et al. Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chem. Soc. Rev. 51, 464–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez-González, E., Tsang, M. Y., Troyano, J., Craig, G. A. & Furukawa, S. Assembling metal–organic cages as porous materials. Chem. Soc. Rev. 51, 4876–4889 (2022).

    Article  PubMed  Google Scholar 

  14. Hosono, N. & Kitagawa, S. Modular design of porous soft materials via self-organization of metal–organic cages. Acc. Chem. Res. 51, 2437–2446 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y. et al. Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams. J. Am. Chem. Soc. 138, 10810–10813 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  17. Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020).

    Article  CAS  Google Scholar 

  18. Lin, W., Rieter, W. J. & Taylor, K. M. Modular synthesis of functional nanoscale coordination polymers. Angew. Chem. Int. Ed. 48, 650–658 (2009).

    Article  CAS  Google Scholar 

  19. Ahmed, H. et al. Acoustomicrofluidic assembly of oriented and simultaneously activated metal–organic frameworks. Nat. Commun. 10, 2282 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hosono, N. Design of porous coordination materials with dynamic properties. Bull. Chem. Soc. Jpn. 94, 60–69 (2021).

    Article  CAS  Google Scholar 

  21. Bennett, T. D., Coudert, F.-X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021). A perspective highlighting topological disorder as a key future research direction of porous materials.

    Article  CAS  PubMed  Google Scholar 

  22. Ashworth, C. Characterizing amorphous MOFs. Nat. Rev. Chem. 5, 298–298 (2021).

    Article  Google Scholar 

  23. Bennett, T. D. & Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 3, 431–440 (2018). A review emphasizing various ways to post-synthetically form aCPs and aMOFs.

    Article  Google Scholar 

  24. Spokoyny, A. M., Kim, D., Sumrein, A. & Mirkin, C. A. Infinite coordination polymer nano- and microparticle structures. Chem. Soc. Rev. 38, 1218–1227 (2009). A review summarizing the synthesis, morphologies and applications of aCP particles.

    Article  CAS  PubMed  Google Scholar 

  25. Oh, M. & Mirkin, C. A. Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438, 651–654 (2005). A pioneering study on synthesizing aCPs through the mixed solvent method.

    Article  CAS  PubMed  Google Scholar 

  26. Ma, N. & Horike, S. Metal–organic network-forming glasses. Chem. Rev. 122, 4163–4203 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Ma, Q., Jin, H. & Li, Y. Tuning the adsorption selectivity of ZIF-8 by amorphization. Chem. Eur. J. 26, 13137–13141 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Orellana-Tavra, C. et al. Amorphous metal–organic frameworks for drug delivery. Chem. Commun. 51, 13878–13881 (2015).

    Article  CAS  Google Scholar 

  29. Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal‒organic framework. Nat. Commun. 6, 6662 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Ejima, H. et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science 341, 154–157 (2013). A pivotal study demonstrating the direct synthesis of metal–phenolic coatings on various organic, inorganic and biological templates.

    Article  CAS  PubMed  Google Scholar 

  31. You, X. et al. Metal-coordinated sub-10 nm membranes for water purification. Nat. Commun. 10, 4160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horike, S., Nagarkar, S. S., Ogawa, T. & Kitagawa, S. A new dimension for coordination polymers and metal–organic frameworks: towards functional glasses and liquids. Angew. Chem. Int. Ed. 59, 6652–6664 (2020).

    Article  CAS  Google Scholar 

  33. Zhong, Q.-Z. et al. Oxidation-mediated kinetic strategies for engineering metal–phenolic networks. Angew. Chem. Int. Ed. 58, 12563–12568 (2019).

    Article  CAS  Google Scholar 

  34. Saha, S., Wiebcke, M. & Huber, K. Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ static light scattering at variable temperature and kinetic modeling. Cryst. Growth Des. 18, 4653–4661 (2018). An investigation into the formation and crystallization of MOFs and aMOF seeds.

    Article  CAS  Google Scholar 

  35. Gao, Z. et al. Topological distortion driven amorphous spherical MOFs for high quality single‐mode microlasers. Angew. Chem. Int. Ed. 60, 6362–6366 (2021).

    Article  CAS  Google Scholar 

  36. Thyagarajan, R. & Sholl, D. S. A database of porous rigid amorphous materials. Chem. Mater. 32, 8020–8033 (2020).

    Article  CAS  Google Scholar 

  37. Khare, E., Holten-Andersen, N. & Buehler, M. J. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat. Rev. Mater. 6, 421–436 (2021).

    Article  CAS  Google Scholar 

  38. Guo, J. et al. Engineering multifunctional capsules through the assembly of metal–phenolic networks. Angew. Chem. Int. Ed. 53, 5546–5551 (2014).

    Article  CAS  Google Scholar 

  39. Guan, B. Y. et al. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. 29, 1605902 (2017).

    Article  Google Scholar 

  40. Geng, H. et al. Metal ion-directed functional metal–phenolic materials. Chem. Rev. 122, 11432–11473 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, B., Zhang, J. & Li, L. Metal–DNA coordination-driven self-assembly: a conceptual methodology to expand the repertoire of DNA nanobiotechnology. Eur. J. Chem. 25, 13452–13457 (2019). A review summarizing the synthesis of aCPs through metal–DNA coordination.

    Article  CAS  Google Scholar 

  42. Liu, C. et al. Self-assembly of copper–DNAzyme nanohybrids for dual-catalytic tumor therapy. Angew. Chem. Int. Ed. 133, 14324–14328 (2021).

    Article  Google Scholar 

  43. Lopez, A. & Liu, J. Self-assembly of nucleobase, nucleoside and nucleotide coordination polymers: from synthesis to applications. ChemNanoMat 3, 670–684 (2017).

    Article  CAS  Google Scholar 

  44. Nishiyabu, R. et al. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc. 131, 2151–2158 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Wei, H., Li, B., Du, Y., Dong, S. & Wang, E. Nucleobase–metal hybrid materials: preparation of submicrometer-scale, spherical colloidal particles of adenine–gold(III) via a supramolecular hierarchical self-assembly approach. Chem. Mater. 19, 2987–2993 (2007).

    Article  CAS  Google Scholar 

  46. Nishiyabu, R., Aimé, C., Gondo, R., Noguchi, T. & Kimizuka, N. Confining molecules within aqueous coordination nanoparticles by adaptive molecular self-assembly. Angew. Chem. Int. Ed. 48, 9465–9468 (2009).

    Article  CAS  Google Scholar 

  47. Wang, C., Di, Z., Xiang, Z., Zhao, J. & Li, L. Coordination-driven assembly of proteins and nucleic acids in a single architecture for carrier-free intracellular co-delivery. Nano Today 38, 101140 (2021).

    Article  CAS  Google Scholar 

  48. Pires, M. M. & Chmielewski, J. Self-assembly of collagen peptides into microflorettes via metal coordination. J. Am. Chem. Soc. 131, 2706–2712 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Aronsson, C., Selegård, R. & Aili, D. Zinc-triggered hierarchical self-assembly of fibrous helix–loop–helix peptide superstructures for controlled encapsulation and release. Macromolecules 49, 6997–7003 (2016).

    Article  CAS  Google Scholar 

  50. Przybyla, D. E., Rubert Pérez, C. M., Gleaton, J., Nandwana, V. & Chmielewski, J. Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres. J. Am. Chem. Soc. 135, 3418–3422 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Richardson, J. J. et al. Continuous metal–organic framework biomineralization on cellulose nanocrystals: extrusion of functional composite filaments. ACS Sustain. Chem. Eng. 7, 6287–6294 (2019).

    Article  CAS  Google Scholar 

  52. Park, S. H. & Lee, S. J. Versatile amorphous structures of phosphonate metal–organic framework/alginate composite for tunable sieving of ions. Adv. Funct. Mater. 29, 1904016 (2019).

    Article  CAS  Google Scholar 

  53. Sun, Z. et al. Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers. Angew. Chem. Int. Ed. 54, 7944–7948 (2015).

    Article  CAS  Google Scholar 

  54. Nadar, S. S., Vaidya, L., Maurya, S. & Rathod, V. K. Polysaccharide based metal organic frameworks (polysaccharide-MOF): a review. Coord. Chem. Rev. 396, 1–21 (2019).

    Article  CAS  Google Scholar 

  55. Liang, K. et al. Biomimetic mineralization of metal–organic frameworks around polysaccharides. Chem. Commun. 53, 1249–1252 (2017).

    Article  CAS  Google Scholar 

  56. Wang, X. et al. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces. Environ. Sci. Nano 4, 2193–2204 (2017).

    Article  CAS  Google Scholar 

  57. Ma, T.-Y., Li, H., Tang, A.-N. & Yuan, Z.-Y. Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small 7, 1827–1837 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, T.-Y., Lin, X.-Z. & Yuan, Z.-Y. Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem. 20, 7406–7415 (2010).

    Article  CAS  Google Scholar 

  59. Haskouri, J. E. et al. S+I ionic formation mechanism to new mesoporous aluminum phosphonates and diphosphonates. Chem. Mater. 16, 4359–4372 (2004).

    Article  Google Scholar 

  60. Ai, Y. et al. General construction of 2D ordered mesoporous iron-based metal–organic nanomeshes. Small 16, 2002701 (2020).

    Article  CAS  Google Scholar 

  61. Zhu, Y.-P., Ren, T.-Z. & Yuan, Z.-Y. Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst. Nanoscale 6, 11395–11402 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, H. J. et al. Morphological and structural evolutions of metal–organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem. Int. Ed. 54, 10564–10568 (2015). A report on the synthesis and comparison of compositionally similar crystalline CPs and aCPs.

    Article  CAS  Google Scholar 

  63. Kaminker, R., Popovitz-Biro, R. & van der Boom, M. E. Coordination-polymer nanotubes and spheres: a ligand-structure effect. Angew. Chem. Int. Ed. 50, 3224–3226 (2011).

    Article  CAS  Google Scholar 

  64. Wang, Y.-M., Liu, W. & Yin, X.-B. Self-limiting growth nanoscale coordination polymers for fluorescence and magnetic resonance dual-modality imaging. Adv. Funct. Mater. 26, 8463–8470 (2016).

    Article  CAS  Google Scholar 

  65. Zhang, Z., Nguyen, H. T. H., Miller, S. A. & Cohen, S. M. polyMOFs: a class of interconvertible polymer–metal–organic-framework hybrid materials. Angew. Chem. Int. Ed. 54, 6152–6157 (2015).

    Article  CAS  Google Scholar 

  66. Zhang, Z. et al. Polymer–metal–organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 138, 920–925 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Cazacu, M. et al. Hydrophobic, amorphous metal–organic network readily prepared by complexing the aluminum ion with a siloxane spaced dicarboxylic acid in aqueous medium. J. Appl. Polym. Sci. 136, 47144 (2019).

    Article  Google Scholar 

  68. Rahim, M. A. et al. Surface-confined amorphous films from metal–coordinated simple phenolic ligands. Chem. Mater. 27, 5825–5832 (2015).

    Article  CAS  Google Scholar 

  69. Lin, Z. et al. Ordered mesoporous metal–phenolic network particles. J. Am. Chem. Soc. 142, 335–341 (2020). A report on engineering aMOFs with ordered porous structures.

    Article  CAS  PubMed  Google Scholar 

  70. Yun, G. et al. Self-assembly of nano- to macroscopic metal–phenolic materials. Chem. Mater. 30, 5750–5758 (2018).

    Article  CAS  Google Scholar 

  71. Mitsuka, Y. et al. Fabrication of integrated copper-based nanoparticles/amorphous metal–organic framework by a facile spray-drying method: highly enhanced CO2 hydrogenation activity for methanol synthesis. Angew. Chem. Int. Ed. 133, 22457–22462 (2021).

    Article  Google Scholar 

  72. Li, L., Zhang, G. & Su, Z. One-step assembly of phytic acid metal complexes for superhydrophilic coatings. Angew. Chem. Int. Ed. 55, 9093–9096 (2016).

    Article  CAS  Google Scholar 

  73. Ping, Y. et al. pH-responsive capsules engineered from metal–phenolic networks for anticancer drug delivery. Small 11, 2032–2036 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, W. et al. Cobalt-directed assembly of antibodies onto metal–phenolic networks for enhanced particle targeting. Nano Lett. 20, 2660–2666 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, J. et al. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 53, 1269–1278 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Gagnon, K. J., Perry, H. P. & Clearfield, A. Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 112, 1034–1054 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Li, B. & Zeng, H. C. Synthetic chemistry and multifunctionality of an amorphous Ni-MOF-74 shell on a Ni/SiO2 hollow catalyst for efficient tandem reactions. Chem. Mater. 31, 5320–5330 (2019).

    Article  CAS  Google Scholar 

  78. Zhang, Q. et al. In situ growth of ultrathin Co-MOF nanosheets on α-Fe2O3 hematite nanorods for efficient photoelectrochemical water oxidation. Sol. Energy 171, 388–396 (2018).

    Article  CAS  Google Scholar 

  79. Li, L. et al. Fabricating nano-IrO2@amorphous Ir-MOF composites for efficient overall water splitting: a one-pot solvothermal approach. J. Mater. Chem. A 8, 25687–25695 (2020).

    Article  CAS  Google Scholar 

  80. Zhao, M. et al. Core–shell palladium nanoparticle@metal–organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 136, 1738–1741 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Jo, C., Lee, H. J. & Oh, M. One-pot synthesis of silica@coordination polymer core–shell microspheres with controlled shell thickness. Adv. Mater. 23, 1716–1719 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Wu, X. et al. Packaging and delivering enzymes by amorphous metal–organic frameworks. Nat. Commun. 10, 5165 (2019). An article comparing the performance of enzyme-loaded aMOFs and crystalline MOFs.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Y., Xu, L. & Ge, J. Multienzyme system in amorphous metal–organic frameworks for intracellular lactate detection. Nano Lett. 22, 5029–5036 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Hammi, N. et al. Polysaccharide templated biomimetic growth of hierarchically porous metal–organic frameworks. Microporous Mesoporous Mater. 306, 110429 (2020).

    Article  CAS  Google Scholar 

  85. Liu, F. et al. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 6, 8003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gong, X. et al. Rapid generation of metal–organic framework phase diagrams by high-throughput transmission electron microscopy. J. Am. Chem. Soc. 144, 6674–6680 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Madsen, R. S. K. et al. Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science 367, 1473–1476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, T. et al. Large-area synthesis of ultrathin, flexible, and transparent conductive metal–organic framework thin films via a microfluidic-based solution shearing process. Adv. Mater. 34, 2107696 (2022).

    Article  CAS  Google Scholar 

  89. Ogata, A. F. et al. Direct observation of amorphous precursor phases in the nucleation of protein–metal–organic frameworks. J. Am. Chem. Soc. 142, 1433–1442 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, X. et al. Three-step nucleation of metal–organic framework nanocrystals. Proc. Natl Acad. Sci. USA 118, e2008880118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Venna, S. R., Jasinski, J. B. & Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010). A study highlighting that crystalline MOFs often first start as amorphous materials.

    Article  CAS  PubMed  Google Scholar 

  92. Goesten, M. G. et al. Evidence for a chemical clock in oscillatory formation of UiO-66. Nat. Commun. 7, 11832 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Surblé, S., Millange, F., Serre, C., Férey, G. & Walton, R. I. An EXAFS study of the formation of a nanoporous metal–organic framework: evidence for the retention of secondary building units during synthesis. Chem. Commun. 14, 1518–1520 (2016).

    Google Scholar 

  94. Cerasale, D. J., Ward, D. C. & Easun, T. L. MOFs in the time domain. Nat. Rev. Chem. 6, 9–30 (2022).

    Article  Google Scholar 

  95. Cravillon, J. et al. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 50, 8067–8071 (2011).

    Article  CAS  Google Scholar 

  96. Richardson, J. J. & Liang, K. Nano-biohybrids: in vivo synthesis of metal–organic frameworks inside living plants. Small 14, 1702958 (2018).

    Article  Google Scholar 

  97. Terban, M. W. et al. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale 10, 4291–4300 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Pan, S. et al. Rational modulating electronegativity of substituents in amorphous metal–organic frameworks for water oxidation catalysis. Int. J. Hydrog. Energy 45, 9723–9732 (2020).

    Article  CAS  Google Scholar 

  99. Xu, H., Sommer, S., Broge, N. L. N., Gao, J. & Iversen, B. B. The chemistry of nucleation: in situ pair distribution function analysis of secondary building units during UiO-66 MOF formation. Chem. Eur. J. 25, 2051–2058 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, T. et al. Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(III) removal. J. Mater. Chem. A 7, 2845–2854 (2019).

    Article  CAS  Google Scholar 

  101. Zhang, Y., Gao, T., Jin, Z., Chen, X. & Xiao, D. A robust water oxidation electrocatalyst from amorphous cobalt–iron bimetallic phytate nanostructures. J. Mater. Chem. A 4, 15888–15895 (2016).

    Article  CAS  Google Scholar 

  102. Xing, W. et al. Rational synthesis of amorphous iron–nickel phosphonates for highly efficient photocatalytic water oxidation with almost 100% yield. Angew. Chem. Int. Ed. 59, 1171–1175 (2020).

    Article  CAS  Google Scholar 

  103. Hidalgo, T. et al. Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. J. Mater. Chem. B 5, 2813–2822 (2017). A study demonstrating how the final structure can affect the properties of MOFs with the same composition.

    Article  CAS  PubMed  Google Scholar 

  104. Cooper, L. et al. A biocompatible porous Mg–gallate metal–organic framework as an antioxidant carrier. Chem. Commun. 51, 5848–5851 (2015).

    Article  CAS  Google Scholar 

  105. Sonnauer, A. et al. Giant pores in a chromium 2,6-naphthalenedicarboxylate open-framework structure with MIL-101 topology. Angew. Chem. Int. Ed. 48, 3791–3794 (2009).

    Article  CAS  Google Scholar 

  106. Zhang, Z. et al. Well-defined metal–organic framework hollow nanocages. Angew. Chem. Int. Ed. 53, 429–433 (2014).

    Article  CAS  Google Scholar 

  107. Xin, Z., Chen, X., Wang, Q., Chen, Q. & Zhang, Q. Nanopolyhedrons and mesoporous supra-structures of zeolitic imidazolate framework with high adsorption performance. Microporous Mesoporous Mater. 169, 218–221 (2013).

    Article  CAS  Google Scholar 

  108. Jeon, Y.-M., Heo, J. & Mirkin, C. A. Dynamic interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers. J. Am. Chem. Soc. 129, 7480–7481 (2007). A study demonstrating that aCPs can be converted into crystalline CPs and vice versa through the choice of solvent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zou, L., Hou, C.-C., Liu, Z., Pang, H. & Xu, Q. Superlong single-crystal metal–organic framework nanotubes. J. Am. Chem. Soc. 140, 15393–15401 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Wu, S., Zhuang, G., Wei, J., Zhuang, Z. & Yu, Y. Shape control of core–shell MOF@MOF and derived MOF nanocages via ion modulation in a one-pot strategy. J. Mater. Chem. A 6, 18234–18241 (2018).

    Article  CAS  Google Scholar 

  111. Wang, B. et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 13, 2200–2208 (2020).

    Article  CAS  Google Scholar 

  112. Zhu, Y.-P., Ma, T.-Y., Liu, Y.-L., Ren, T.-Z. & Yuan, Z.-Y. Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg. Chem. Front. 1, 360–383 (2014).

    Article  CAS  Google Scholar 

  113. Wang, H. et al. Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues. J. Am. Ceram. Soc. 102, 4602–4611 (2019).

    Article  CAS  Google Scholar 

  114. Li, J. et al. Low-crystalline bimetallic metal–organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 4, 285–292 (2018).

    Article  Google Scholar 

  115. Cao, S., Bennett, T. D., Keen, D. A., Goodwin, A. L. & Cheetham, A. K. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chem. Commun. 48, 7805–7807 (2012). A study on the amorphization of pre-synthesized crystalline MOFs.

    Article  CAS  Google Scholar 

  116. Chen, J. et al. Programmable permeability of metal–phenolic network microcapsules. Chem. Mater. 32, 6975–6982 (2020).

    Article  CAS  Google Scholar 

  117. Lin, C.-E. et al. Ultrathin nanofilm with tailored pore size fabricated by metal–phenolic network for precise and rapid molecular separation. Sep. Purif. Technol. 207, 435–442 (2018).

    Article  CAS  Google Scholar 

  118. Feller, R. K. & Cheetham, A. K. Fe(III), Mn(II), Co(II), and Ni(II) 3,4,5-trihydroxybenzoate (gallate) dihydrates; a new family of hybrid framework materials. Solid State Sci. 8, 1121–1125 (2006).

    Article  CAS  Google Scholar 

  119. Zhang, R.-Z. et al. Effect of surface charge status of amorphous porous coordination polymer particles on the adsorption of organic dyes from an aqueous solution. J. Colloid Interface Sci. 525, 54–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Fonseca, J. & Choi, S. Synthesis of a novel amorphous metal organic framework with hierarchical porosity for adsorptive gas separation. Microporous Mesoporous Mater. 310, 110600 (2021).

    Article  CAS  Google Scholar 

  121. Veliscek-Carolan, J., Rawal, A., Luca, V. & Hanley, T. L. Zirconium phosphonate sorbents with tunable structure and function. Microporous Mesoporous Mater. 252, 90–104 (2017).

    Article  CAS  Google Scholar 

  122. Rahim, M. A. et al. Self-assembly of a metal–phenolic sorbent for broad-spectrum metal sequestration. ACS Appl. Mater. Interfaces 12, 3746–3754 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Hamilton, T. D. et al. Thixotropic hydrogel derived from a product of an organic solid-state synthesis: properties and densities of metal–organic nanoparticles. J. Am. Chem. Soc. 133, 3365–3371 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Patterson, J. P. et al. Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137, 7322–7328 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Cravillon, J. et al. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23, 2130–2141 (2011).

    Article  CAS  Google Scholar 

  128. Hikov, T., Schröder, C. A., Cravillon, J., Wiebcke, M. & Huber, K. In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys. 14, 511–521 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Saha, S. et al. Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering experiments. Cryst. Growth Des. 16, 2002–2010 (2016).

    Article  CAS  Google Scholar 

  130. Castillo-Blas, C., Moreno, J. M., Romero-Muñiz, I. & Platero-Prats, A. E. Applications of pair distribution function analyses to the emerging field of non-ideal metal–organic framework materials. Nanoscale 12, 15577–15587 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Nayuk, R. et al. Modulated formation of MOF-5 nanoparticles — a SANS analysis. J. Phys. Chem. C 116, 6127–6135 (2012).

    Article  CAS  Google Scholar 

  132. Moh, P. Y., Brenda, M., Anderson, M. W. & Attfield, M. P. Crystallisation of solvothermally synthesised ZIF-8 investigated at the bulk, single crystal and surface level. CrystEngComm 15, 9672–9678 (2013).

    Article  CAS  Google Scholar 

  133. Seeber, G. et al. Following the self assembly of supramolecular MOFs using X-ray crystallography and cryospray mass spectrometry. Chem. Sci. 1, 62–67 (2010).

    Article  CAS  Google Scholar 

  134. Van Vleet, M. J., Weng, T., Li, X. & Schmidt, J. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem. Rev. 118, 3681–3721 (2018).

    Article  PubMed  Google Scholar 

  135. Frost, J. M. et al. From discrete molecule, to polymer, to MOF: mapping the coordination chemistry of CdII using 113Cd solid-state NMR. Chem. Commun. 52, 10680–10683 (2016).

    Article  CAS  Google Scholar 

  136. Haouas, M., Volkringer, C., Loiseau, T., Férey, G. & Taulelle, F. In situ NMR, ex situ XRD and SEM study of the hydrothermal crystallization of nanoporous aluminum trimesates MIL-96, MIL-100, and MIL-110. Chem. Mater. 24, 2462–2471 (2012). An investigation of the crystallization process of different MOFs using an array of techniques.

    Article  CAS  Google Scholar 

  137. Song, X. et al. Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing. RSC Adv. 7, 8661–8669 (2017).

    Article  CAS  Google Scholar 

  138. Elsabawy, K. M. & Fallatah, A. M. Synthesis of newly wings like structure non-crystalline Ni++-1,3,5-tribenzyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione coordinated MOFs for CO2-capture. J. Mol. Struct. 1177, 255–259 (2019).

    Article  CAS  Google Scholar 

  139. He, Q. et al. Solvent-free synthesis of uniform MOF shell‐derived carbon confined SnO2/Co nanocubes for highly reversible lithium storage. Small 13, 1701504 (2017).

    Article  Google Scholar 

  140. Poryvaev, A. S., Polyukhov, D. M. & Fedin, M. V. Mitigation of pressure-induced amorphization in metal–organic framework ZIF-8 upon EPR control. ACS Appl. Mater. Interfaces 12, 16655–16661 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. He, Z., Honeycutt, C. W., Zhang, T. & Bertsch, P. M. Preparation and FT-IR characterization of metal phytate compounds. J. Environ. Qual. 35, 1319–1328 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Ding, M., Cai, X. & Jiang, H.-L. Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, Y., Lv, S., Liu, D. & Song, F. Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomater. 116, 16–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Kim, S., Peterson, A. M. & Holten-Andersen, N. Enhanced water retention maintains energy dissipation in dehydrated metal-coordinate polymer networks: another role for Fe-catechol cross-links? Chem. Mater. 30, 3648–3655 (2018).

    Article  CAS  Google Scholar 

  145. Zhou, C. et al. Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Yun, G., Richardson, J. J., Biviano, M. & Caruso, F. Tuning the mechanical behavior of metal–phenolic networks through building block composition. ACS Appl. Mater. Interfaces 11, 6404–6410 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Chen, J. et al. Metal–phenolic coatings as a platform to trigger endosomal escape of nanoparticles. ACS Nano 13, 11653–11664 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Björnmalm, M. et al. In vivo biocompatibility and immunogenicity of metal–phenolic gelation. Chem. Sci. 10, 10179–10194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ariga, K. Nanoarchitectonics: what’s coming next after nanotechnology? Nanoscale Horiz. 6, 364–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Park, J. H. et al. A cytoprotective and degradable metal–polyphenol nanoshell for single-cell encapsulation. Angew. Chem. Int. Ed. 53, 12420–12425 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Research Council (ARC) through the Discovery Project (DP200100713) scheme. J.J.R. acknowledges JSPS KAKENHI Grant Number 20F20373 and JSPS Fellowship P20373 and is a recipient of an ARC Future Fellowship (project number FT210100669). F.C. acknowledges the award of a National Health and Medical Research Council Senior Principal Research Fellowship (GNT1135806). The authors thank B. Abrahams for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content and writing of the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Frank Caruso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Richardson, J.J., Zhou, J. et al. Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat Rev Chem 7, 273–286 (2023). https://doi.org/10.1038/s41570-023-00474-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00474-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing