Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the human gut microbiome with small-molecule inhibitors

A Publisher Correction to this article was published on 13 June 2023

This article has been updated

Abstract

The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy. In this Review, we will discuss the challenges of studying this microbial community, the historic use of small-molecule inhibitors in microbial ecology, and recent applications of this strategy. We also discuss the evidence suggesting that host-targeted drugs can affect the growth and metabolism of gut microbes. Finally, we address the issues of developing and implementing microbiome-targeted small-molecule inhibitors and define important future directions for this research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches for studying the gut microbiome.
Fig. 2: Small-molecule inhibitors as tools to study the gut microbiome.
Fig. 3: Historical use of small-molecule inhibitors in microbial ecology.
Fig. 4: Inhibition of gut bacterial β-glucuronidases.
Fig. 5: Inhibition of anaerobic choline metabolism in gut bacteria.
Fig. 6: Inhibition of gut bacterial BSHs.
Fig. 7: Inhibition of amino acid decarboxylation by gut bacteria.

Similar content being viewed by others

Change history

References

  1. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  2. Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2018).

    Article  PubMed  Google Scholar 

  3. Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Jia, B., Han, X., Kim, K. H. & Jeon, C. O. Discovery and mining of enzymes from the human gut microbiome. Trends Biotechnol. 40, 240–254 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Oremland, R. S. & Capone, D. G. Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. In Advances in Microbial Ecology (ed. Marshall, K. C.) 285–383 (Springer, 1988).

  7. Walker, A. W., Duncan, S. H., Louis, P. & Flint, H. J. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 22, 267–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Stewart, E. J. Growing unculturable bacteria. J. Bacteriol. 194, 4151–4160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2010).

    Article  Google Scholar 

  10. Jia, W., Li, H., Zhao, L. & Nicholson, J. K. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug. Discov. 7, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Holmes, E. et al. Therapeutic modulation of microbiota–host metabolic interactions. Sci. Transl. Med. 4, 137rv6 (2012).

    Article  PubMed  Google Scholar 

  12. Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schwartz, D. J., Langdon, A. E. & Dantas, G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 12, 82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elvers, K. T. et al. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open. 10, e035677 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Munck, C., Sheth, R. U., Freedberg, D. E. & Wang, H. H. Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR–Cas spacer acquisition platform. Nat. Commun. 11, 95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Monteagudo-Mera, A. et al. High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Benef. Microbes 7, 247–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Azcarate-Peril, M. A. et al. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl Acad. Sci. 114, E367–E375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kearney, S. M., Gibbons, S. M., Erdman, S. E. & Alm, E. J. Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. Cell Rep. 24, 1842–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shepherd, E. S., Deloache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365–378 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Sperti, G. S. Probiotics (Avi Publishing Company, 1971).

  27. Dinleyici, E. C., Eren, M., Ozen, M., Yargic, Z. A. & Vandenplas, Y. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert. Opin. Biol. Ther. 12, 395–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Na, X. & Kelly, C. Probiotics in Clostridium difficile infection. J. Clin. Gastroenterol. 45, S154–S158 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sánchez, B. et al. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61, 1600240 (2017).

    Article  Google Scholar 

  30. Gibson, G. R. & Wang, X. Inhibitory effects of bifidobacteria on other colonic bacteria. J. Appl. Bacteriol. 77, 412–420 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Hansen, R. Bifidobacteria have come to Denmark to stay. N. Eur. Dairy. J. 51, 79–83 (1985).

    Google Scholar 

  32. Nishizawa, Y. Physiological activity of bifidobacteria. Shonika Shinryo 23, 1213–1218 (1960).

    Google Scholar 

  33. Mizutani, T. & Mitsuoka, T. Inhibitory effect of some intestinal bacteria on liver tumorigenesis in gnotobiotic C3H/HE male mice. Cancer Lett. 11, 89–95 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. Howarth, G. S. & Wang, H. Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients 5, 58–81 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grangette, C. et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. 102, 10321–10326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones, M. L., Chen, H., Ouyang, W., Metz, T. & Prakash, S. Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J. Biomed. Biotechnol. 2004, 61–69 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carroll, I. M. et al. Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G729–G738 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Palmer, J. D. et al. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect. Dis. 4, 39–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Dosoky, N. S., Guo, L., Chen, Z., Feigley, A. V. & Davies, S. S. Dietary fatty acids control the species of N-acyl-phosphatidylethanolamines synthesized by therapeutically modified bacteria in the intestinal tract. ACS Infect. Dis. 4, 3–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Bouhnik, Y. et al. Fecal recovery in humans of viable Bifidobacterium sp. ingested in fermented milk. Gastroenterology 102, 875–878 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. McCallin, S., Sarker, S. A., Sultana, S., Oechslin, F. & Brüssow, H. Metagenome analysis of Russian and Georgian pyophage cocktails and a placebo-controlled safety trial of single phage versus phage cocktail in healthy Staphylococcus aureus carriers. Environ. Microbiol. 20, 3278–3293 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hsu, B. B., Way, J. C. & Silver, P. A. Stable neutralization of a virulence factor in bacteria using temperate phage in the mammalian gut. mSystems 5, e00013-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reyes, A., Wu, M., McNulty, N. P., Rohwer, F. L. & Gordon, J. I. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl Acad. Sci. USA 110, 20236–20241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voorhees, P. J., Cruz-Teran, C., Edelstein, J. & Lai, S. K. Challenges and opportunities for phage-based in situ microbiome engineering in the gut. J. Control. Rel. 326, 106–119 (2020).

    Article  CAS  Google Scholar 

  49. Eiseman, B., Silen, W., Bascom, G. S. & Kauvar, A. J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854–859 (1958).

    CAS  PubMed  Google Scholar 

  50. Wang, J. W. et al. Fecal microbiota transplantation: review and update. J. Formos. Med. Assoc. 118, S23–S31 (2019).

    Article  PubMed  Google Scholar 

  51. Mullish, B. H. & Williams, H. R. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin. Med. 18, 237–241 (2018).

    Article  Google Scholar 

  52. Johnson, S. et al. Clinical practice guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 73, e1029–e1044 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Fischer, M. et al. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: a promising treatment approach. Gut Microbes 8, 289–302 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Staley, C., Kelly, C. R., Brandt, L. J., Khoruts, A. & Sadowsky, M. J. Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. mBio 7, e01965-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Seekatz, A. M. et al. Fecal microbiota transplantation eliminates Clostridium difficile in a murine model of relapsing disease. Infect. Immun. 83, 3838–3846 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khoruts, A. & Sadowsky, M. J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 13, 508–516 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fecal microbiota for transplantation: Safety alert — Risk of serious adverse events likely due to transmission of pathogenic organisms. FDA www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission?utm_campaign=FDA (2020).

  58. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation — testing of stool donors for enteropathogenic Escherichia coli and shigatoxin-producing Escherichia coli. FDA www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additional-safety-protections-regarding-use-fecal-microbiota-transplantation (2020).

  59. McCoubrey, L. E., Elbadawi, M. & Basit, A. W. Current clinical translation of microbiome medicines. Trends Pharmacol. Sci. 43, 281–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Staley, J. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. Caumette, P., Bertrand, J.-C. & Normand, P. Some historical elements of microbial ecology. In Environmental Microbiology: Fundamentals and Applications 9–24 (Springer, 2015).

  62. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17, 2374–2377 (1978).

  64. Goenrich, M. et al. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues. J. Biol. Inorg. Chem. 9, 691–705 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Webster, T. M. et al. Anaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid. MicrobiologyOpen 5, 537–550 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xu, K., Liu, H. & Chen, J. Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. Bioresour. Technol. 101, 2600–2607 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Santoro, N. & Konisky, J. Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system. J. Bacteriol. 169, 660–665 (1987).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dybas, M. & Konisky, J. Transport of coenzyme M (2-mercaptoethanesulfonic acid) and methylcoenzyme M [(2-methylthio)ethanesulfonic acid] in Methanococcus voltae: identification of specific and general uptake systems. J. Bacteriol. 171, 5866 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beauchemin, K. A., Ungerfeld, E. M., Eckard, R. J. & Wang, M. Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 14, s2–s16 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, Z. W. et al. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: a review. Anim. Feed. Sci. Technol. 236, 107–114 (2018).

    Article  CAS  Google Scholar 

  71. McGinn, S. M., Flesch, T. K., Beauchemin, K. A., Shreck, A. & Kindermann, M. Micrometeorological methods for measuring methane emission reduction at beef cattle feedlots: evaluation of 3-nitrooxypropanol feed additive. J. Environ. Qual. 48, 1454–1461 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Lie, T. J., Godchaux, W. & Leadbetter, E. R. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl. Environ. Microbiol. 65, 4611–4617 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lie, T. J., Pitta, T., Leadbetter, E. R., Godchaux, W. III & Leadbetter, J. R. Sulfonates: novel electron acceptors in anaerobic respiration. Arch. Microbiol. 166, 204–210 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975–2982 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Postgate, J. Competitive inhibition of sulfate reduction by selenate. Nature 172, 670–671 (1949).

    Article  Google Scholar 

  76. Postgate, J. Competitive and non-competitive inhibitors of bacterial sulfate reduction. J. Gen. Microbiol. 6, 128–142 (1952).

    Article  CAS  PubMed  Google Scholar 

  77. Furusaka, C. Sulfate transport and metabolism by Desulfovibrio desulfuricans. Nature 192, 427–429 (1961).

    Article  CAS  PubMed  Google Scholar 

  78. Bandurski, R. S., Wilson, L. G. & Squires, C. L. The mechanism of ‘active sulfate’ formation. J. Am. Chem. Soc. 78, 6408–6409 (1956).

    Article  CAS  Google Scholar 

  79. Taylor, B. F. & Oremland, R. Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of group VI elements. Curr. Microbiol. 3, 101–103 (1979).

    Article  CAS  Google Scholar 

  80. Cappenberg, T. E. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. I. Field observations. Antonie van Leeuwenhoek J. Microbiol. 40, 285–295 (1974).

    Article  CAS  PubMed  Google Scholar 

  81. Oremland, R. & Silverman, M. P. Microbial sulfate reduction measured by an automated electrical impedance technique. Geomicrobiol. J. 1, 355–372 (1979).

    Article  CAS  Google Scholar 

  82. Sorensen, J., Christensen, D. & Jorgensen, B. B. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments. Appl. Environ. Microbiol. 42, 5–11 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith, R. L. & Klug, M. J. Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments. Appl. Environ. Microbiol. 42, 116–121 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Culbertson, C. W., Zehnder, A. J. B. & Oremland, R. S. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Appl. Environ. Microbiol. 41, 396–403 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sorensen, J. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol. 43, 319–324 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Compeau, G. C. & Bartha, R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 50, 498–502 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Burdige, D. J. & Nealson, K. H. Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl. Environ. Microbiol. 50, 491–497 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Capone, D. G. & Carpenter, E. J. Nitrogen fixation in the marine environment. Science 217, 1140–1142 (1982).

    Article  CAS  PubMed  Google Scholar 

  89. Tonsager, S. R. & Averill, B. A. Difficulties in the analysis of acid-labile sulfide in Mo-S and Mo-Fe-S systems. Anal. Biochem. 102, 13–15 (1980).

    Article  CAS  PubMed  Google Scholar 

  90. Engelbrektson, A. et al. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front. Microbiol. 5, 315 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stoeva, M. K. et al. Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME J. 14, 450–462 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Goring, C. A. I. Control of nitrification by 2-chloro-6-(trichloro-methyl)pyridine. Soil. Sci. 93, 211–218 (1962).

    Article  CAS  Google Scholar 

  93. Woodward, E. E., Edwards, T. M., Givens, C. E., Kolpin, D. W. & Hladik, M. L. Widespread use of the nitrification inhibitor nitrapyrin: assessing benefits and costs to agriculture, ecosystems, and environmental health. Environ. Sci. Technol. 55, 1345–1353 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Hall, G. H. Nitrification in lakes. In Nitrification (ed. Prosser, J. I.) 127–156 (IRL Press, 1986).

  95. Shi, X. et al. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Appl. Environ. Microbiol. 82, 5236–5248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Campbell, N. E. R. & Aleem, M. I. H. The effect of 2-chloro, 6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. Antonie van Leeuwenhoek J. Microbiol. 31, 124–136 (1965).

    Article  CAS  PubMed  Google Scholar 

  97. Hu, H.-W. & He, J.-Z. Manipulating the soil microbiome for improved nitrogen management. Microbiol. Aust. 39, 18–21 (2018).

    Article  Google Scholar 

  98. Prosser, J. I. Autotrophic nitrification in bacteria. In Advances In Microbial Physiology Vol. 30, 125–181 (Academic Press, 1989).

  99. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Edwinson, A. L. et al. Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat. Microbiol. 7, 680–694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dashnyam, P. et al. β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci. Rep. 8, 16372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pellock, S. J. & Redinbo, M. R. Glucuronides in the gut: sugar-driven symbioses between microbe and host. J. Biol. Chem. 292, 8569–8576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eiji, A. et al. Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn J. Cancer Res. 84, 697–702 (1993).

    Article  Google Scholar 

  104. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Mathijssen, R. H. J. et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 7, 2182–2194 (2001).

    CAS  PubMed  Google Scholar 

  106. Ahmad, S. et al. A high throughput assay for discovery of bacterial β-glucuronidase inhibitors. Curr. Chem. Genom. 5, 13–20 (2011).

    Article  Google Scholar 

  107. Roberts, A. B., Wallace, B. D., Venkatesh, M. K., Mani, S. & Redinbo, M. R. Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol. Pharmacol. 84, 208–217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wallace, B. D. et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol. 22, 1238–1249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pellock, S. J. et al. Discovery and characterization of FMN-binding β-glucuronidases in the human gut microbiome. J. Mol. Biol. 431, 970–980 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ervin, S. M. et al. Targeting regorafenib-induced toxicity through inhibition of gut microbial β-glucuronidases. ACS Chem. Biol. 14, 2737–2744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pellock, S. et al. Gut microbial β-glucuronidase inhibition via catalytic cycle interception. ACS Cent. Sci. 4, 868–879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jariwala, P. B. et al. Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling. ACS Chem. Biol. 15, 217–225 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Bhatt, A. P. et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc. Natl Acad. Sci. USA 117, 7374–7381 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang, J. et al. Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nat. Commun. 13, 1–14 (2022).

    Google Scholar 

  115. Ervin, S. M. et al. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J. Biol. Chem. 294, 18586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saitta, K. S. et al. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica 44, 28–35 (2014).

    Article  PubMed  Google Scholar 

  117. Awolade, P. et al. Therapeutic significance of β-glucuronidase activity and its inhibitors: a review. Eur. J. Med. Chem. 187, 111921 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Lin, H.-Y. et al. Entropy-driven binding of gut bacterial β-glucuronidase inhibitors ameliorates irinotecan-induced toxicity. Commun. Biol. 4, 280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng, K. W. et al. Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol. Res. 139, 41–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Cheng, K.-W. et al. Specific inhibition of bacterial β-glucuronidase by pyrazolo[4,3-c]quinoline derivatives via a pH-dependent manner to suppress chemotherapy-induced intestinal toxicity. J. Med. Chem. 60, 9222–9238 (2017).

    Article  PubMed  Google Scholar 

  121. Ahmad, S., Hughes, M. A., Yeh, L.-A. & Scott, J. E. Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. J. Biomol. Screen. 17, 957–965 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kong, R. et al. Old drug new use — amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin. Cancer Res. 20, 3521–3530 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Al-Waiz, M., Mikov, M., Mitchell, S. C. & Smith, R. L. The exogenous origin of trimethylamine in the mouse animal studies. Metabolism 41, 135–136 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, Y.-M. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shan, Z. et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am. J. Clin. Nutr. 106, 888–894 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu, K. Y. et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci. Rep. 7, 1445 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl Acad. Sci. 109, 21307–21312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bodea, S., Funk, M. A., Balskus, E. P. & Drennan, C. L. Molecular basis of C–N bond cleavage by the glycyl radical enzyme choline trimethylamine-lyase. Cell Chem. Biol. 23, 1206–1216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Craciun, S., Marks, J. A. & Balskus, E. P. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem. Biol. 9, 1408–1413 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gupta, N. et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler. Thromb. Vasc. Biol. 40, 1239–1255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Orman, M. et al. Structure-guided identification of a small molecule that inhibits anaerobic choline metabolism by human gut bacteria. J. Am. Chem. Soc. 141, 33–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Yang, Z. et al. Revealing quantum mechanical effects in enzyme catalysis with large-scale electronic structure simulation. React. Chem. Eng. 4, 298–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Bollenbach, M., Ortega, M., Orman, M., Drennan, C. L. & Balskus, E. P. Discovery of a cyclic choline analog that inhibits anaerobic choline metabolism by human gut bacteria. ACS Med. Chem. Lett. 11, 1980–1985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gabr, M. T., Machalz, D., Pach, S. & Wolber, G. A benzoxazole derivative as an inhibitor of anaerobic choline metabolism by human gut microbiota. RSC Med. Chem. 11, 1402–1412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gabr, M. & Świderek, K. Discovery of a histidine-based scaffold as an inhibitor of gut microbial choline trimethylamine-lyase. ChemMedChem 15, 2273–2279 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Gabr, M. T., Deganutti, G. & Reynolds, C. A. Peptidomimetic-based approach toward inhibitors of microbial trimethylamine lyases. Chem. Biol. Drug. Des. 97, 231–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Winter, M. et al. Chemical derivatization enables MALDI-TOF-based high-throughput screening for microbial trimethylamine (TMA)-lyase inhibitors. SLAS Discov. 24, 766–777 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Fiorucci, S. & Distrutti, E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol. Med. 21, 702–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Adhikari, A. A. et al. Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nat. Chem. Biol. 16, 318–326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Setchell, K. D., Lawson, A. M., Tanida, N. & Sjövall, J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J. Lipid Res. 24, 1085–1100 (1983).

    Article  CAS  PubMed  Google Scholar 

  145. Song, Z. et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chen, M. L., Takeda, K. & Sundrud, M. S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 12, 851–861 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, Z. et al. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl. Environ. Microbiol. 78, 8795–8802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Smith, K., Zeng, X. & Lin, J. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system. PLoS One 9, e85344 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Adhikari, A. A. et al. A gut-restricted lithocholic acid analog as an inhibitor of gut bacterial bile salt hydrolases. ACS Chem. Biol. 16, 1401–1412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kollonitsch, J. et al. Selective inhibitors of biosynthesis of aminergic neurotransmitters. Nature 274, 906–908 (1978).

    Article  CAS  PubMed  Google Scholar 

  152. Williams, B. B. et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16, 495–503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van Kessel, S. P. et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun. 10, 310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rekdal, V. M., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019).

    Article  PubMed Central  Google Scholar 

  155. Jankovic, J. & Tan, E. K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiat. 91, 795–808 (2020).

    Article  PubMed  Google Scholar 

  156. Hashim, H. et al. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One 9, e112330 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Nicholas, D. J., Nason, A. & McElroy, W. D. Molybdenum and nitrate reductase. I. Effect of molybdenum deficiency on the Neurospora enzyme. J. Biol. Chem. 207, 341–351 (1954).

    Article  CAS  PubMed  Google Scholar 

  158. Nicholas, D. J. & Nason, A. Diphosphopyridine nucleotide-nitrate reductase from Escherichia coli. J. Bacteriol. 69, 580–583 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schwarz, G., Mendel, R. R. & Ribbe, M. W. Molybdenum cofactors, enzymes and pathways. Nature 460, 839–847 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Higgins, E. S., Richert, D. A. & Westerfeld, W. W. Tungstate antagonism of molybdate in Aspergillus niger. Exp. Biol. Med. 92, 509–511 (1956).

    Article  CAS  Google Scholar 

  161. Keeler, R. F. & Varner, J. E. Tungstate as an antagonist of molybdate in Azotobacter vinelandii. Arch. Biochem. Biophys. 70, 585–590 (1957).

    Article  CAS  PubMed  Google Scholar 

  162. Takahashi, H. & Nason, A. Tungstate as a competitive inhibitor of molybdate in nitrite assimilation and in N2 fixation by Azotobacter. Biochim. Biophys. Acta 23, 433–435 (1957).

    Article  CAS  PubMed  Google Scholar 

  163. Riddle, G. D., Simonson, J. G., Hales, B. J. & Braymer, H. D. Nitrogen fixation system of tungsten-resistant mutants of Azotobacter vinelandii. J. Bacteriol. 152, 72–80 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hales, B. J. & Case, E. E. Nitrogen fixation by Azotobacter vinelandii in tungsten-containing medium. J. Biol. Chem. 262, 16205–16211 (1987).

    Article  CAS  PubMed  Google Scholar 

  165. Gates, A. J. et al. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media. FEMS Microbiol. Lett. 220, 261–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Iobbi-Nivol, C. & Leimkühler, S. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1827, 1086–1101 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hughes, E. R. et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21, 208–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhu, W. et al. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J. Exp. Med. 216, 2378–2393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xu, K. et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 70, 1486–1494 (2021).

    Article  CAS  Google Scholar 

  172. Guandalini, G. S. et al. Tissue distribution of tungsten in mice following oral exposure to sodium tungstate. Chem. Res. Toxicol. 24, 488–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Schwarz, G. Molybdenum cofactor and human disease. Curr. Opin. Chem. Biol. 31, 179–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Weersma, R. K., Zhernakova, A. & Fu, J. Interaction between drugs and the gut microbiome. Gut 69, 1510–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Tsunoda, S. M., Gonzales, C., Jarmusch, A. K., Momper, J. D. & Ma, J. D. Contribution of the gut microbiome to drug disposition, pharmacokinetic and pharmacodynamic variability. Clin. Pharmacokinet. 60, 971–984 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Luo, Y. & Zhou, T. Connecting the dots: targeting the microbiome in drug toxicity. Med. Res. Rev. 42, 83–111 (2021).

    Article  PubMed  Google Scholar 

  177. Nuzzo, A. & Brown, J. R. The microbiome factor in drug discovery and development. Chem. Res. Toxicol. 33, 119–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Clarke, G. et al. Gut reactions: breaking down xenobiotic–microbiome interactions. Pharmacol. Rev. 71, 198–224 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Zimmermann, M., Patil, K. R., Typas, A. & Maier, L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Mol. Syst. Biol. 17, e10116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Parihar, S. P., Guler, R. & Brombacher, F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat. Rev. Immunol. 19, 104–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Dias, A. M. et al. Gut bacterial microbiome composition and statin intake — a systematic review. Pharmacol. Res. Perspect. 8, e00601 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lombard, J. & Moreira, D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol. Biol. Evol. 28, 87–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Nolan, J. A., Kinsella, M., Hill, C., Joyce, S. A. & Gahan, C. G. M. Analysis of the impact of rosuvastatin on bacterial mevalonate production using a UPLC-mass spectrometry approach. Curr. Microbiol. 73, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Hedl, M. & Rodwell, V. W. Inhibition of the class II HMG-CoA reductase of Pseudomonas mevalonii. Protein Sci. 13, 1693–1697 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Masadeh, M., Mhaidat, N., Alzoubi, K., Al-azzam, S. & Alnasser, Z. Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann. Clin. Microbiol. Antimicrob. 11, 13 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Thangamani, S. et al. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci. Rep. 5, 16407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kim, J. et al. Alterations in gut microbiota by statin therapy and possible intermediate effects on hyperglycemia and hyperlipidemia. Front. Microbiol. 10, 1947 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Kummen, M. et al. Rosuvastatin alters the genetic composition of the human gut microbiome. Sci. Rep. 10, 5397 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Tan, K., Tesar, C., Wilton, R., Jedrzejczak, R. P. & Joachimiak, A. Interaction of antidiabetic α‐glucosidase inhibitors and gut bacteria α‐glucosidase. Protein Sci. 27, 1498–1508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gloster, T. M. & Davies, G. J. Glycosidase inhibition: assessing mimicry of the transition state. Org. Biomol. Chem. 8, 305–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Brunkhorst, C., Andersen, C. & Schneider, E. Acarbose, a pseudooligosaccharide, is transported but not metabolized by the maltose-maltodextrin system of Escherichia coli. J. Bacteriol. 181, 2612–2619 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Santilli, A. D., Russell, J. T., Triplett, E. W., Whitehead, K. J. & Whitehead, D. C. Non-lethal growth inhibition by arresting the starch utilization system of clinically relevant human isolates of Bacteroides dorei. MedChemComm 10, 1875–1880 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Santilli, A. D., Dawson, E. M., Whitehead, K. J. & Whitehead, D. C. Nonmicrobicidal small molecule inhibition of polysaccharide metabolism in human gut microbes: a potential therapeutic avenue. ACS Chem. Biol. 13, 1165–1172 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Zhang, L. et al. Alpha-glucosidase inhibitors alter gut microbiota and ameliorate collagen-induced arthritis. Front. Pharmacol. 10, 1684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhang, M. et al. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res. Care 7, e000717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Kishida, Y., Okubo, H., Ohno, H., Oki, K. & Yoneda, M. Effect of miglitol on the suppression of nonalcoholic steatohepatitis development and improvement of the gut environment in a rodent model. J. Gastroenterol. 52, 1180–1191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wu, W. et al. Butyrolactone‐I, an efficient α‐glucosidase inhibitor, improves type 2 diabetes with potent TNF‐α-lowering properties through modulating gut microbiota in db/db mice. FASEB J. 33, 12616–12629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Su, B. et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J. Diabetes 7, 729–739 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, X. et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 8, 293–307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gu, Y. et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun. 8, 1785 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Balaich, J. et al. The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature 600, 110–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Shin, N. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 5, 14405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Silamiķele, L. et al. Metformin strongly affects gut microbiome composition in high-fat diet-induced type 2 diabetes mouse model of both sexes. Front. Endocrinol. 12, 626359 (2021).

    Article  Google Scholar 

  208. Elbere, I. et al. Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One 15, e0241338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Foretz, M., Guigas, B. & Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 15, 569–589 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kenny, D. J. et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28, 245–257.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Parasar, B. et al. Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity. ACS Cent. Sci. 5, 867–873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Keller, L. J., Babin, B. M., Lakemeyer, M. & Bogyo, M. Activity-based protein profiling in bacteria: applications for identification of therapeutic targets and characterization of microbial communities. Curr. Opin. Chem. Biol. 54, 45–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Hart, E. M. et al. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc. Natl Acad. Sci. USA 116, 21748–21757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Mateus, A. et al. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol. Syst. Biol. 14, 1–15 (2018).

    Article  Google Scholar 

  216. Zhao, X., Yang, X. & Hang, H. C. Chemoproteomic analysis of microbiota metabolite-protein targets and mechanisms. Biochemistry 61, 2822–2834 (2022).

    Article  CAS  PubMed  Google Scholar 

  217. Zahir, T. et al. High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. Commun. Biol. 2, 269 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Chen, P. B. et al. Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat. Biotechnol. 38, 1288–1297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Joice, R., Yasuda, K., Shafquat, A., Morgan, X. C. & Huttenhower, C. Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab. 20, 731–741 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Tong, A. B. et al. Could AlphaFold revolutionize chemical therapeutics? Nat. Struct. Mol. Biol. 28, 771–772 (2021).

    Article  CAS  PubMed  Google Scholar 

  222. Phelan, V. V., Liu, W. T., Pogliano, K. & Dorrestein, P. C. Microbial metabolic exchange — the chemotype-to-phenotype link. Nat. Chem. Biol. 8, 26–35 (2012).

    Article  CAS  Google Scholar 

  223. Zelezniak, A. et al. Metabolic dependencies drive species cooccurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, E7156 (2015).

    Article  Google Scholar 

  224. Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16, 82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Jean-Pierre, F., Henson, M. A. & O’Toole, G. A. Metabolic modeling to interrogate microbial disease: a tale for experimentalists. Front. Mol. Biosci. 8, 1–11 (2021).

    Article  Google Scholar 

  226. Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Mars, R. A. T. et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 182, 1460–1473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lagier, J. C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Gordon, H. A. & Pesti, L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol. Rev. 35, 390–429 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host–microbiota interactions in animal models and humans. Genes Dev. 27, 701–718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Martín, R., Bermúdez-Humarán, L. G. & Langella, P. Gnotobiotic rodents: an in vivo model for the study of microbe–microbe interactions. Front. Microbiol. 7, 409 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Reddy, B. S. & Watanabe, K. Effect of cholesterol metabolites and promoting effect of lithocholic acid in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 39, 1521–1524 (1979).

    CAS  PubMed  Google Scholar 

  235. Tlaskalová-Hogenová, H. et al. Development of immunological capacity under germfree and conventional conditions. Ann. NY Acad. Sci. 409, 96–113 (1983).

    Article  PubMed  Google Scholar 

  236. Mørland, B., Smievoll, A. I. & Midtvedt, T. Comparison of peritoneal macrophages from germfree and conventional mice. Infect. Immun. 26, 1129–1136 (1979).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Deplancke, B. & Gaskins, H. R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 73, 1131S–1141S (2001).

    Article  CAS  PubMed  Google Scholar 

  238. Hooper, L. V. et al. Molecular analysis of commensal host–microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  239. Ursell, L. K., Metcalf, J. L., Parfrey, L. W. & Knight, R. Defining the human microbiome. Nutr. Rev. 70, S38–S44 (2012).

    Article  PubMed  Google Scholar 

  240. Aranda-Díaz, A. et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota. Cell Host Microbe 30, 260–272.e5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Javdan, B. et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell 181, 1661–1679.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  244. Thomas, A. M. & Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 17, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank V. Nieto for helpful feedback and his critical review of this manuscript. Figures 1 and 2 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

E.P.B. and W.J.S.-E. conceived this Review. W.J.S.-E. wrote a first draft. E.P.B., A.Y.M.W., M.A.A.R., R.N., K.C.R.-C. and M.L.W. wrote and revised subsequent drafts. A.Y.M.W., M.A.A.R., R.N., K.C.R.-C. and M.L.W. contributed equally.

Corresponding author

Correspondence to Emily P. Balskus.

Ethics declarations

Competing interests

E.P.B. is an inventor on patents describing small-molecule inhibitors of anaerobic gut microbial choline metabolism and l-dopa decarboxylation.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Activity-based protein profiling

Proteomics method of identifying functional and expressed proteins (often enzymes) in a native system that uses small-molecule probes, which undergo reaction with specific amino acid residues to form stable covalent linkages, allowing for subsequent protein labeling and/or pulldown.

Conventional (animal)

Having a native, typically diverse microbiome.

Culture-independent

Method that does not require growing an organism in a laboratory setting.

Faecal microbiome transplant

(FMT). The administration of faecal matter from a healthy donor into the intestinal tract of a recipient in order to directly change the recipient’s gut microbial composition and confer a health benefit.

Germ-free

An environment in which no microorganisms are present.

Gnotobiotic

An environment in which all microorganisms present are known; usually germ-free before being inoculated with a defined group of microorganisms.

Host

Organism in which the microbiome resides.

Metabolomics

Analysis of small molecules in biological samples used to identify and quantify either global or targeted metabolites, typically through mass spectrometry-based and nuclear-magnetic-resonance-based methods.

Metagenomics

Analysis of total genetic material (DNA) isolated from complex (microbial) samples obtained directly from environments (for example, gut or skin microbiomes), typically used to study the diversity, abundance and potential functions of community members without requiring cultivation.

Metatranscriptomics

Gene expression profiling of complex (microbial) samples obtained directly from environments (gut or skin microbiomes), typically used to identify and quantify actively transcribed genes in microbial habitats.

Microbiome

The collective community of microorganisms (bacteria, viruses, fungi, protozoa, archaea) living in a habitat.

Prebiotics

Substrates (typically carbohydrates) that are selectively utilized by gut microorganisms conferring health benefits.

Probiotic

Live microorganism which, when administered in adequate amounts, confers a health benefit for the host.

Proteomics

Analysis of proteomes of biological samples used to identify and quantify either global or targeted proteins, typically through mass-spectrometry-based and gel-based methods.

Xenobiotic

A substance that is not endogenous to the environment or system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, A.Y.M., Aguilar Ramos, M.A., Narayan, R. et al. Targeting the human gut microbiome with small-molecule inhibitors. Nat Rev Chem 7, 319–339 (2023). https://doi.org/10.1038/s41570-023-00471-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00471-4

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology