Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Recognizing the best catalyst for a reaction

Abstract

Heterogeneous catalysis is immensely important, providing access to materials essential for the well-being of society, and improved catalysts are continuously required. New catalysts are frequently tested under different conditions making it difficult to determine the best catalyst. Here we describe a general approach to identify the best catalyst using a data set based on all reactions under kinetic control to calculate a set of key performance indicators (KPIs). These KPIs are normalized to take into account the variation in reaction conditions. Plots of the normalized KPIs are then used to demonstrate the best catalyst using two case studies: (i) acetylene hydrochlorination, a reaction of current interest for vinyl chloride manufacture, and (ii) the selective oxidation of methane to methanol using O2 in water, a reaction that has attracted very recent attention in the academic literature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acetylene hydrochlorination publications.
Fig. 2: Acetylene hydrochlorination reaction data based on key performance indicators.
Fig. 3: Selective methane oxidation reaction data based on key performance indicator.

Similar content being viewed by others

References

  1. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  2. Ito, T. & Lunsford, J. H. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature 314, 721–722 (1985).

    Article  CAS  Google Scholar 

  3. Hutchings, G. J., Scurrell, M. S. & Woodhouse, J. R. Oxidative coupling of methane using oxide catalysts. Chem. Soc. Rev. 18, 251–283 (1989).

    Article  CAS  Google Scholar 

  4. Lee, J. S. & Oyama, S. T. Oxidative coupling of methane to higher hydrocarbons. Catal. Rev. 30, 249–280 (1988).

    Article  CAS  Google Scholar 

  5. Hutchings, G. J., Scurrell, M. S. & Woodhouse, J. R. The role of gas phase reaction in the selective oxidation of methane. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39880000253 (1988).

    Article  Google Scholar 

  6. Bond, G. C. & Wells, P. B. in Studies in Surface Science and Catalysis Vol. 31 (eds Delmon, B. et al.) 827–835 (Elsevier, 1987).

  7. Lange, J.-P. Performance metrics for sustainable catalysis in industry. Nat. Catal. 4, 186–192 (2021).

    Article  CAS  Google Scholar 

  8. Liu, Y., Zhao, L., Zhang, Y., Zhang, L. & Zan, X. Progress and challenges of mercury-free catalysis for acetylene hydrochlorination. Catalysts 10, 1218 (2020).

    Article  CAS  Google Scholar 

  9. Johnston, P., Carthey, N. & Hutchings, G. J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 137, 14548–14557 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Kaiser, S. K. et al. Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nat. Commun. 12, 4016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, J. et al. Ultra-low Ru-promoted CuCl2 as highly active catalyst for the hydrochlorination of acetylene. RSC Adv. 5, 38159–38163 (2015).

    Article  CAS  Google Scholar 

  12. Lin, R., Kaiser, S. K., Hauert, R. & Pérez-Ramírez, J. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination. ACS Catal. 8, 1114–1121 (2018).

    Article  CAS  Google Scholar 

  13. Tenopir, C. & King, D. W. in The Future of the Academic Journal 2nd edn (eds Cope, B. & Phillips, A.) 159–178 (Chandos Publishing, 2014).

  14. Perego, C. & Peratello, S. Experimental methods in catalytic kinetics. Catal. Today 52, 133–145 (1999).

    Article  CAS  Google Scholar 

  15. Kaiser, S. K., Clark, A. H., Cartocci, L., Krumeich, F. & Pérez-Ramírez, J. Sustainable synthesis of bimetallic single atom gold-based catalysts with enhanced durability in acetylene hydrochlorination. Small 17, 2004599 (2021).

    Article  CAS  Google Scholar 

  16. Conte, M., Carley, A. F. & Hutchings, G. J. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catal. Lett. 124, 165–167 (2008).

    Article  CAS  Google Scholar 

  17. Hutchings, G. J. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 96, 292–295 (1985).

    Article  CAS  Google Scholar 

  18. Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Nkosi, B., Coville, N. J. & Hutchings, G. J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts. Appl. Catal. 43, 33–39 (1988).

    Article  CAS  Google Scholar 

  20. Conte, M. et al. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. J. Catal. 257, 190–198 (2008).

    Article  CAS  Google Scholar 

  21. Sun, X. et al. Facile synthesis of precious-metal single-site catalysts using organic solvents. Nat. Chem. 12, 560–567 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. IEA. Flaring Emissions (IEA, 2022); https://www.iea.org/reports/flaring-emissions.

  23. Hargreaves, J. S. J., Hutchings, G. J. & Joyner, R. W. Control of product selectivity in the partial oxidation of methane. Nature 348, 428–429 (1990).

    Article  CAS  Google Scholar 

  24. Periana, R. A. et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Freakley, S. J. et al. Methane oxidation to methanol in water. Acc. Chem. Res. 54, 2614–2623 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Hutchings, G. J. Effect of promoters and reactant concentration on the selective oxidation of n-butane to maleic anhydride using vanadium phosphorus oxide catalysts — a review. Appl. Catal. 72, 1–32 (1991).

    Article  CAS  Google Scholar 

  28. Liu, L., Ye, X. P. & Bozell, J. J. A comparative review of petroleum-based and bio-based acrolein production. ChemSusChem 5, 1162–1180 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    Article  CAS  Google Scholar 

  30. Yu, T. et al. Highly selective oxidation of methane into methanol over Cu-promoted monomeric Fe/ZSM-5. ACS Catal. 11, 6684–6691 (2021).

    Article  CAS  Google Scholar 

  31. Sobolev, V. I., Dubkov, K. A., Panna, O. V. & Panov, G. I. Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal. Today 24, 251–252 (1995).

    Article  CAS  Google Scholar 

  32. Agarwal, N. et al. Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Patrick, T. et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55, 5467–5471 (2016).

    Article  Google Scholar 

  36. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article  PubMed  Google Scholar 

  37. Narsimhan, K., Iyoki, K., Dinh, K. & Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Koishybay, A. & Shantz, D. F. Water is the oxygen source for methanol produced in partial oxidation of methane in a flow reactor over Cu-SSZ-13. J. Am. Chem. Soc. 142, 11962–11966 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Qi, G. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 5, 45–54 (2022).

    Article  CAS  Google Scholar 

  41. Bowker, M. et al. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck–Cardiff centre on the fundamentals of heterogeneous catalysis (FUNCAT). Angew. Chem. Int. Ed. 61, e2022090 (2022).

    Article  Google Scholar 

  42. Zhang, C., Kang, L., Zhu, M. & Dai, B. Nitrogen-doped active carbon as a metal-free catalyst for acetylene hydrochlorination. RSC Adv. 5, 7461–7468 (2015).

    Article  CAS  Google Scholar 

  43. Dong, X. et al. Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination. J. Catal. 359, 161–170 (2018).

    Article  CAS  Google Scholar 

  44. Liu, Y. et al. Characteristics of activated carbons modulate the catalytic performance for acetylene hydrochlorination. Mol. Catal. 483, 110707 (2020).

    Article  CAS  Google Scholar 

  45. Wang, J., Gong, W., Zhu, M. & Dai, B. Effect of carbon defects on the nitrogen-doped carbon catalytic performance for acetylene hydrochlorination. Appl. Catal. A Gen. 564, 72–78 (2018).

    Article  CAS  Google Scholar 

  46. Shen, Z. et al. Nitrogen-doped porous carbon from biomass with superior catalytic performance for acetylene hydrochlorination. RSC Adv. 10, 14556–14569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, T. et al. Oxygen and nitrogen-doped metal-free carbon catalysts for hydrochlorination of acetylene. Chin. J. Chem. Eng. 24, 484–490 (2016).

    Article  CAS  Google Scholar 

  48. Li, X., Wang, Y., Kang, L., Zhu, M. & Dai, B. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. J. Catal. 311, 288–294 (2014).

    Article  CAS  Google Scholar 

  49. Li, X. et al. MOF-derived various morphologies of N-doped carbon composites for acetylene hydrochlorination. J. Mater. Sci. 53, 4913–4926 (2018).

    Article  CAS  Google Scholar 

  50. Li, X., Zhang, J. & Li, W. MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 44, 146–154 (2016).

    Article  Google Scholar 

  51. Yang, Y., Lan, G., Wang, X. & Li, Y. Direct synthesis of nitrogen-doped mesoporous carbons for acetylene hydrochlorination. Chin. J. Catal. 37, 1242–1248 (2016).

    Article  CAS  Google Scholar 

  52. Qiao, X. et al. Constructing a fragmentary g-C3N4 framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination. Catal. Sci. Technol. 9, 3753–3762 (2019).

    Article  CAS  Google Scholar 

  53. Lan, G. et al. Wheat flour-derived N-doped mesoporous carbon extrudate as superior metal-free catalysts for acetylene hydrochlorination. Chem. Commun. 54, 623–626 (2018).

    Article  CAS  Google Scholar 

  54. Zhao, C., Qiao, X., Yi, Z., Guan, Q. & Li, W. Active centre and reactivity descriptor of a green single component imidazole catalyst for acetylene hydrochlorination. Phys. Chem. Chem. Phys. 22, 2849–2857 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, X. et al. Mechanism exploring of acetylene hydrochlorination using hexamethylenetetramine as a single active site metal-free catalyst. Catal. Commun. 147, 106147 (2020).

    Article  CAS  Google Scholar 

  56. Qi, X., Chen, W. & Zhang, J. Sulphur-doped activated carbon as a metal-free catalyst for acetylene hydrochlorination. RSC Adv. 10, 34612–34620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, Y. et al. Solvent-assisted synthesis of N-doped activated carbon-based catalysts for acetylene hydrochlorination. Appl. Catal. A Gen. 611, 117902 (2021).

    Article  CAS  Google Scholar 

  58. Lu, F., Xu, D., Lu, Y., Dai, B. & Zhu, M. High nitrogen carbon material with rich defects as a highly efficient metal-free catalyst for excellent catalytic performance of acetylene hydrochlorination. Chin. J. Chem. Eng. 29, 196–203 (2021).

    Article  CAS  Google Scholar 

  59. Qiao, X., Zhao, C., Zhou, Z., Guan, Q. & Li, W. Constructing pyridinic N-rich aromatic ladder structure catalysts from industrially available polyacrylonitrile resin for acetylene hydrochlorination. ACS Sustain. Chem. Eng. 7, 17979–17989 (2019).

    Article  CAS  Google Scholar 

  60. Mei, S. et al. N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chem. Eng. J. 371, 118–129 (2019).

    Article  CAS  Google Scholar 

  61. Zhao, J. et al. Nitrogen-modified activated carbon supported bimetallic gold–cesium(i) as highly active and stable catalyst for the hydrochlorination of acetylene. RSC Adv. 5, 6925–6931 (2015).

    Article  CAS  Google Scholar 

  62. Smith, D. M., Walsh, P. M. & Slager, T. L. Studies of silica-supported metal chloride catalysts for the vapor-phase hydrochlorination of acetylene. J. Catal. 11, 113–130 (1968).

    Article  CAS  Google Scholar 

  63. Zhao, W., Zhu, M. & Dai, B. Cobalt-nitrogen-activated carbon as catalyst in acetylene hydrochlorination. Catal. Commun. 98, 22–25 (2017).

    Article  CAS  Google Scholar 

  64. Wu, Y. et al. PhnSnCl4-n supported on activated carbon as novel tin-based catalysts for acetylene hydrochlorination. Quim. Nova 42, 752–759 (2019).

    CAS  Google Scholar 

  65. Li, J. et al. Synergistically catalytic hydrochlorination of acetylene over the highly dispersed Ru active species embedded in P-containing ionic liquids. ACS Sustain. Chem. Eng. 8, 10173–10184 (2020).

    Article  CAS  Google Scholar 

  66. Zhao, J. et al. Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene. Chem. Eng. J. 360, 38–46 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Johnson Matthey for financial support and the Max Planck Centre for the Fundamentals on Heterogeneous Catalysis for support. We also thank the EPSRC and UK Catalysis Hub (grants EP/K014714/1, EP/K014714/1, EP/K014668/1, EP/K014706/1, EP/H000925/1 and EP/I019693/1).

Author information

Authors and Affiliations

Authors

Contributions

A.L., L.R.S. and G.J.H. performed the literature search and collated all the data. All authors contributed substantially to the writing, reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Graham J. Hutchings.

Ethics declarations

Competing interests

TP.J. and J.J.S. are employees of Johnson Matthey, a company that commercially supplies a gold catalyst for acetylene hydrochlorination for use in China. G.J.H., A.L., L.R.S. and S.P. are supported by Johnson Matthey in their research on acetylene hydrochlorination.

Peer review

Peer review information

Nature Reviews Chemistry thanks B. Weckhuysen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazaridou, A., Smith, L.R., Pattisson, S. et al. Recognizing the best catalyst for a reaction. Nat Rev Chem 7, 287–295 (2023). https://doi.org/10.1038/s41570-023-00470-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00470-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing