Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Time-resolved transmission electron microscopy for nanoscale chemical dynamics

Abstract

The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump–probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timescales for chemical processes.
Fig. 2: Methodologies for time-resolved transmission electron microscopy.
Fig. 3: Phase transformation dynamics probed by time-resolved transmission electron microscopic imaging, diffraction and spectroscopy.
Fig. 4: Charge–heat transfer dynamics and imaging of plasmonic fields studied by time-resolved transmission electron microscopy.
Fig. 5: Restructuring dynamics of individual nanoparticles.
Fig. 6: Time-resolved transmission electron microscopy imaging of nanomechanical dynamics.
Fig. 7: Transmission electron microscopy schematic and the future of this analytical technique.

References

  1. Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, J. et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taheri, M. L. et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86–95 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng, H. & Zhu, Y. Perspectives on in situ electron microscopy. Ultramicroscopy 180, 188–196 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, C. et al. Recent progress of in situ transmission electron microscopy for energy materials. Adv. Mater. 32, 1904094 (2020).

    Article  CAS  Google Scholar 

  6. Jinschek, J. R. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem. Commun. 50, 2696–2706 (2014).

    Article  CAS  Google Scholar 

  7. Su, Z., Baskin, J. S., Zhou, W., Thomas, J. M. & Zewail, A. H. Ultrafast elemental and oxidation-state mapping of hematite by 4D microscopy. J. Am. Chem. Soc. 139, 4916–4922 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Heo, J., Dummett Torres, D., Banerjee, P. & Jain, P. K. In-situ electron microscopy mapping of an order–disorder transition in a superionic conductor. Nat. Commun. 10, 1505 (2019). Real-time, second timescale imaging of the nucleation and propagation of a phase change in nanomaterials, revealing dynamic relationships with crystal structure.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heo, J., Cho, K. & Jain, P. K. Motion of defections in ion-conducting nanowires. Nano Lett. 21, 556–561 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, L. et al. Unveiling the microscopic origins of phase transformations: an in situ TEM perspective. Chem. Mater. 32, 639–650 (2020).

    Article  CAS  Google Scholar 

  11. Bergmann, U. et al. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. Nat. Rev. Phys. 3, 264–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

    Article  CAS  Google Scholar 

  13. Chergui, M. Time-resolved X-ray spectroscopies of chemical systems: new perspectives. Struct. Dyn. 3, 031001 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zimmermann, P. et al. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord. Chem. Rev. 423, 213466 (2020).

    Article  CAS  Google Scholar 

  15. Smith, J. G., Chakraborty, I. & Jain, P. K. In situ single-nanoparticle spectroscopy study of bimetallic nanostructure formation. Angew. Chem. Int. Ed. Engl. 55, 9979–9983 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. van der Veen, R. M., Kwon, O.-H., Tissot, A., Hauser, A. & Zewail, A. H. Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nat. Chem. 5, 395–402 (2013). Imaging optically initiated phase transitions in individual metalorganic nanoparticles with sub-microsecond lifetimes.

    Article  PubMed  Google Scholar 

  17. van der Veen, R. M., Tissot, A., Hauser, A. & Zewail, A. H. Unusual molecular material formed through irreversible transformation and revealed by 4D electron microscopy. Phys. Chem. Chem. Phys. 15, 7831–7838 (2013).

    Article  PubMed  Google Scholar 

  18. Arbouet, A., Caruso, G. M. & Houdellier, F. Ultrafast transmission electron microscopy: historical development, instrumentation, and applications. Adv. Imaging Electron. Phys. 207, 1–72 (2018).

    Article  Google Scholar 

  19. Montgomery, E., Leonhardt, D. & Roehling, J. Ultrafast transmission electron microscopy: techniques and applications. Microsc. Today 29, 46–54 (2021).

    Article  Google Scholar 

  20. Vanacore, G. M., Fitzpatrick, A. W. P. & Zewail, A. H. Four-dimensional electron microscopy: ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today 11, 228–249 (2016).

    Article  CAS  Google Scholar 

  21. Adhikari, A. et al. Four-dimensional ultrafast electron microscopy: insights into an emerging technology. ACS Appl. Mater. Interfaces 9, 3–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Siwick, B. J., Arslan, I. & Wang, X. Frontier nonequilibrium materials science enabled by ultrafast electron methods. MRS Bull. 46, 688–693 (2021).

    Article  CAS  Google Scholar 

  24. Kashin, A. S. & Ananikov, V. P. Monitoring chemical reactions in liquid media using electron microscopy. Nat. Rev. Chem. 3, 624–637 (2019). A thorough review of applications of electron microscopy for monitoring liquid-phase reactions.

    Article  CAS  Google Scholar 

  25. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Micros. Microanal. 25, 563–582 (2019).

    Article  CAS  Google Scholar 

  26. Boyes, E. D., LaGrow, A. P., Ward, M. R., Martin, T. E. & Gai, P. L. Visualizing single atom dynamics in heterogeneous catalysis using analytical in situ environmental scanning transmission electron microscopy. Philos. Trans. A Math. Phys. Eng. Sci. 378, 20190605 (2020).

    PubMed  PubMed Central  Google Scholar 

  27. Gai, P. L., Sharma, R. & Ross, F. M. Environmental (S)TEM studies of gas–liquid–solid interactions under reaction conditions. MRS Bull. 33, 107–114 (2008).

    Article  CAS  Google Scholar 

  28. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, S. et al. Evolution of oxyhalide crystals under electron beam irradiation: an in situ method to understand the origin of structural instability. Inorg. Chem. 57, 8988–8993 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. de Jonge, N., Peckys, D. B., Kremers, G. J. & Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl Acad. Sci. USA 106, 2159–2164 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Niu, K.-Y., Liao, H.-G. & Zheng, H. Revealing dynamic processes of materials in liquids using liquid cell transmission electron microscopy. J. Vis. Exp. 70, 50122 (2012).

    Google Scholar 

  32. Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, B. H. et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 368, 60–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Hauwiller, M. R., Ondry, J. C. & Alivisatos, A. P. Using graphene liquid cell transmission electron microscopy to study in situ nanocrystal etching. J. Vis. Exp. 135, e57665 (2018).

    Google Scholar 

  35. Mele, L. et al. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc. Res. Tech. 79, 239–250 (2016).

    Article  PubMed  Google Scholar 

  36. Allard, L. F. et al. A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Tech. 72, 208–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Shindo, D. et al. Development of a multifunctional TEM specimen holder equipped with a piezodriving probe and a laser irradiation port. J. Electron. Microsc. 58, 245–249 (2009).

    Article  Google Scholar 

  38. Zhang, C. et al. Statistically analyzed photoresponse of elastically bent CdS nanowires probed by light-compatible in situ high-resolution TEM. Nano Lett. 16, 6008–6013 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Vadai, M., Angell, D. K., Hayee, F., Sytwu, K. & Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun. 9, 4658 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang, L., Miller, B. K. & Crozier, P. A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13, 679–684 (2013).

    Article  PubMed  Google Scholar 

  41. Goncalves, F. J. T. et al. Probing microwave fields and enabling in-situ experiments in a transmission electron microscope. Sci. Rep. 7, 11064 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weßels, T. et al. Continuous illumination picosecond imaging using a delay line detector in a transmission electron microscope. Ultramicroscopy 233, 113392 (2022).

    Article  Google Scholar 

  43. Fu, X. et al. Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy. Sci. Adv. 6, eabc3456 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dong, H. et al. Simultaneous atomic-level visualization and high precision photocurrent measurements on photoelectric devices by in situ TEM. RSC Adv. 8, 948–953 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Picher, M., Maxxucco, S., Blankenship, S. & Sharma, R. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy. Ultramicroscopy 150, 10–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Houdellier, F., Caruso, G. M., Weber, S., Kociak, M. & Arbouet, A. Development of a high brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source. Ultramicroscopy 186, 128–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, Y.-J. & Kwon, O.-H. Cathodoluminesence in ultrafast electron microscopy. ACS Nano 15, 19480–19489 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Li, X., Turner, J., Bustillo, K. & Minor, A. M. In situ transmission electron microscopy investigation of electroplasticity in single crystal nickel. Acta Mater. 223, 117461 (2022).

    Article  CAS  Google Scholar 

  50. Plodinec, M., Nerl, H. C., Girgsdies, F., Schlögl, R. & Lunkenbein, T. Insights into chemical dynamics and their impact on the reactivity of Pt nanoparticles during CO oxidation by operando TEM. ACS Catal. 10, 3183–3193 (2020).

    Article  CAS  Google Scholar 

  51. Jiang, Y. et al. In situ observation of hydrogen-induced surface faceting for palladiaum–copper nanocrystals at atmospheric pressure. Angew. Chem. Int. Ed. 55, 12427–12430 (2016).

    Article  CAS  Google Scholar 

  52. Gao, W. et al. Dynamics of transformation from platinum icosahedral nanoparticles to larger FCC crystal at millisecond time resolution. Sci. Rep. 7, 17243 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vendelbo, S. B. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884–890 (2014). Revealing underlying surface chemistries in catalytic reactions by imaging structural changes on Pt particles during CO oxidation.

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida, H. et al. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Levin, B. D. A. Direct detectors and their applications in electron microscopy for materials science. J. Phys. Mater. 4, 042005 (2021).

    Article  CAS  Google Scholar 

  56. Kuhlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  PubMed  Google Scholar 

  57. Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Plotkin-Swing, B. et al. Hybrid pixel direct detector for electron energy loss spectroscopy. Ultramicroscopy 217, 113067 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Beacham, R. et al. Medipix2/Timepix detector for time resolved transmission electron microscopy. J. Instrum. 6, C12052 (2011).

    Article  Google Scholar 

  60. Ryll, H. et al. A pnCCD-based, fast direct single electron imaging camera for TEM and STEM. J. Instrum. 11, P04006 (2016).

    Article  Google Scholar 

  61. McMullan, G., Faruqi, A. R., Clare, D. & Henderson, R. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156–163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Faruqi, A. R., Henderson, R., Pryddetch, M., Allport, P. & Evans, A. Direct single electron detection with a CMOS detector for electron microscopy. Nucl. Instrum. 546, 170–175 (2005).

    Article  CAS  Google Scholar 

  63. McMullan, G., Chen, S., Henderson, R. & Faruqi, A. R. Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109, 1126–1143 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ercius, P. et al. The 4D camera — an 87 kHz frame-rate detector for counted 4D-STEM experiments. Microsc. Microanal. 26, 1896–1897 (2020).

    Article  Google Scholar 

  65. van der Veen, R. M., Penfold, T. J. & Zewail, A. H. Ultrafast core-loss spectroscopy in four-dimensional electron microscopy. Struct. Dyn. 2, 024302 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Carbone, F., Kwon, O. & Zewail, A. H. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Nomura, Y. et al. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding. Nat. Commun. 11, 2824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pomarico, E. et al. Ultrafast electron energy-loss spectroscopy in transmission electron microscopy. MRS Bull. 43, 497–503 (2018).

    Article  Google Scholar 

  70. Vanacore, G. M., van der Veen, R. M. & Zewail, A. H. Origin of axial and radial expansions in carbon nanotubes revealed by ultrafast diffraction and spectroscopy. ACS Nano 9, 1721–1729 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Pate, C. M., Hart, J. L. & Taheri, M. L. RapidEELS: machine learning for denoising and classification in rapid acquisition electron energy loss spectroscopy. Sci. Rep. 11, 19515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hart, J. L. et al. Direct detection electron energy-loss spectroscopy: a method to push the limits of resolution and sensitivity. Sci. Rep. 7, 8243 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Verhoeven, W. et al. Design and characterization of dielectric filled TM110 microwave cavities for ultrafast electron microscopy. Rev. Sci. Instrum. 90, 083703 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Qiu, J. et al. GHz laser-free time-resolved transmission electron microscopy: a stroboscopic high-duty-cycle method. Ultramicroscopy 161, 130–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Jannis, D., Müller-Caspary, K., Beche, A., Oelsner, A. & Verbeeck Spectroscopic coincidence experiments in transmission electron microscopy. Appl. Phys. Lett. 114, 143101 (2019).

    Article  Google Scholar 

  76. Campbell, M. et al. Towards a new generation of pixel detector readout chips. J. Instum. 11, C01007 (2016).

    Google Scholar 

  77. He, Y., Lie, J.-C., Luo, L. & Wang, C. Size dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction conditions. Proc. Natl Acad. Sci. USA 115, 7700–7705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yuan, W. et al. In situ manipulation of the active Au–TiO2 interface with atomic precision during CO oxidation. Science 371, 517–521 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Datta, A. et al. A data reduction and compression description for high throughput time-resolved electron microscopy. Nat. Commun. 12, 664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Horwath, J. P., Zakharov, D. N., Mégret, R. & Stach, E. A. Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images. npj Comput. Mater. 6, 108 (2020).

    Article  Google Scholar 

  81. Stevens, A. et al. Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv. Struct. Chem. Imag. 1, 10 (2015).

    Article  Google Scholar 

  82. Reed, B. W. et al. Electrostatic subframing and compressive-sensing video in transmission electron microscopy. Struct. Dyn. 6, 054303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, X., Zhang, S., Yurtsever, A. & Liang, J. Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: analytical modeling and simulation. Micron 117, 47–54 (2019).

    Article  PubMed  Google Scholar 

  84. Zandi, O. et al. Transient lensing from a photoemitted electron gas imaged by ultrafast electron microscopy. Nat. Commun. 11, 3001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lau, J. W. et al. Laser-free GHz stroboscopic transmission electron microscope: components, system integration, and practical considerations for pump–probe measurements. Rev. Sci. Instrum. 91, 021301 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Nukala, P. et al. Inverting polar domains via electrical pulsing in metallic germanium telluride. Nat. Commun. 8, 15033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Voisin, T. et al. In situ TEM observations of high-strain-rate deformation and fracture in pure copper. Mater. Today 33, 10–16 (2020).

    Article  CAS  Google Scholar 

  88. Sohn, S., Xie, Y., Jung, Y., Schroers, J. & Cha, J. J. Tailoring crystallization phases in metallic glass nanorods via nucleus starvation. Nat. Commun. 8, 1980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Orava, J. et al. In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass. Nat. Commun. 12, 2839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, J. S. et al. Imaging of transient structures using nanosecond in situ TEM. Science 321, 1472–1475 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Olshin, P. K., Bongiovanni, G., Drabbels, M. & Lorenz, U. J. Atomic-resolution imaging of fast nanoscale dynamics with bright microsecond electron pulses. Nano Lett. 21, 612–618 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, L., Hoogenboom, J. P. & Kruit, P. Photoemission sources and beam blankers for ultrafast electron microscopy. Struct. Dyn. 6, 051501 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. LaGrange, T. et al. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscopy (DTEM). Ultramicroscopy 108, 1441–1449 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Piazza, L. et al. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology. Chem. Phys. 423, 79–84 (2013).

    Article  CAS  Google Scholar 

  95. Bucker, K. et al. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode. Ultramicroscopy 171, 8–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, Y. M., Kim, Y. J., Kim, Y.-J. & Kwon, O.-H. Ultrafast electron microscopy integrated with a direct electron detection camera. Struct. Dyn. 4, 044023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Plemmons, D. A. & Flannigan, D. J. Ultrafast electron microscopy: instrument response from the single-electron to high bunch-charge regimes. Chem. Phys. Lett. 683, 186–192 (2017).

    Article  CAS  Google Scholar 

  98. Ji, S. et al. Influence of cathode geometry on electron dynamics in an ultrafast electron microscope. Struct. Dyn. 4, 054303 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a coherence electron beam. Ultramicroscopy 176, 63–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Olshin, P. K., Drabbels, M. & Lorenz, U. J. Characterization of a time-resolved electron microscope with a Schottky field emission gun. Struct. Dyn. 7, 054304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu, C. et al. Development of analytical ultrafast transmission electron microscopy based on laser-driven Schottky field emission. Ultramicroscopy 209, 112887 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Sinha, S. K. et al. Nanosecond electron pulses in the analytical electron microscopy of a fast irreversible chemical reaction. Nat. Commun. 10, 3648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Denham, P. & Musumeci, P. Space-charge aberrations in single-shot time-resolved transmission electron microscopy. Phys. Rev. Appl. 15, 024050 (2021).

    Article  CAS  Google Scholar 

  104. Berger, J. A. et al. DC photoelectron gun parameters for ultrafast electron microscopy. Microsc. Microanal. 15, 298–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Picher, M., Bucker, K., LaGrange, T. & Banhart, F. Imaging and electron energy-loss spectroscopy using single nanosecond electron pulses. Ultramicroscopy 188, 41–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Reed, B. W. et al. Solving the accelerator–condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum. 81, 053706 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Ji, F. et al. Ultrafast relativistic electron nanoprobes. Commun. Phys. 2, 54 (2019).

    Article  Google Scholar 

  108. Yang, J. & Yoshida, Y. Relativistic ultrafast electron microscopy: single-shot diffraction imaging with femtosecond electron pulses. Adv. Condens. Matter Phys. 2019, 9739241 (2019).

    Google Scholar 

  109. Yang, J., Yoshida, Y. & Yasuda, H. Ultrafast electron microscopy with relativistic femtosecond electron pulses. Microscopy 67, 291–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Li, R. K. & Musumeci, P. Single-shot MeV transmission electron microscopy with picosecond temporal resolution. Phys. Rev. Appl. 2, 024003 (2014).

    Article  CAS  Google Scholar 

  111. Xiang, D. et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution. Nucl. Instrum. 759, 74–82 (2014).

    Article  CAS  Google Scholar 

  112. Wan, W., Chen, F.-R. & Zhu, Y. Design of compact ultrafast microscopes for single- and multi-shot imaging with MeV electrons. Ultramicroscopy 194, 143–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Musumeci, P., Moody, J. T. & Scoby, C. M. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory. Ultramicroscopy 108, 1450–1453 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. van Oudheusden, T. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

    Article  PubMed  Google Scholar 

  115. Weathersby, S. P. et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86, 073702 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Manz, S. et al. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space–time resolution. Faraday Discuss. 177, 467–491 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, J., Tang, M., Zhao, L. & Zhang, J. Ultrafast atomic view of laser-induced melting and breathing motion of metallic liquid clusters with MeV ultrafast electron diffraction. Proc. Natl Acad. Sci. USA 119, e2111949119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Domer, H. & Bostanjoglo, O. High-speed transmission electron microscope. Rev. Sci. Inst. 74, 4369 (2003).

    Article  CAS  Google Scholar 

  119. LaGrange, T., Reed, B. W. & Masiel, D. J. Movie-mode dynamic electron microscopy. MRS Bull. 40, 22–28 (2015).

    Article  CAS  Google Scholar 

  120. Roehling, J. D. et al. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy. Acta Mater. 131, 22–30 (2017).

    Article  CAS  Google Scholar 

  121. Egan, G. C., LaGrange, T. & Zachariah, M. R. Time-resolved imaging of nanoscale condensed phase reaction. J. Phys. Chem. C 119, 2792–2797 (2015).

    Article  CAS  Google Scholar 

  122. Santala, M. K. et al. Irreversible reactions studied with nanosecond transmission electron microscopy movies: laser crystallization of phase change materials. Appl. Phys. Lett. 102, 174105 (2013).

    Article  Google Scholar 

  123. Yoo, B.-K., Kwon, O.-H., Liu, H., Tang, J. & Zewail, A. H. Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions. Nat. Commun. 6, 8639 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Reisbick, S. A. et al. Stroboscopic ultrafast imaging using RF strip-lines in a commercial transmission electron microscope. Ultramicroscopy 235, 113497 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Barwick, B., Park, H. S., Kwon, O.-H., Baskin, J. S. & Zewail, A. H. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322, 1227–1231 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Cao, G. et al. Clocking the anisotropic lattice dynamics of multi-walled carbon nanotubes by four-dimensional ultrafast transmission electron microscopy. Sci. Rep. 5, 8404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Flannigan, D. J., Curtis, W. A., VandenBussche, E. J. & Zhang, Y. Low repetition-rate high-resolution femtosecond transmission electron microscopy. J. Chem. Phys. 157, 180903 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Valley, D. T., Ferry, V. E. & Flannigan, D. J. Imaging intra- and interparticle acousto-plasmonic vibrational dynamics with ultrafast electron microscopy. Nano Lett. 16, 7302–7308 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Kim, Y.-J., Jung, H., Han, S. W. & Kwon, O.-H. Ultrafast electron microscopy visualizes acoustic vibrations of plasmonic nanorods at the interfaces. Matter 1, 481–495 (2019).

    Article  Google Scholar 

  130. Otto, M. R., Rene de Cotret, L. P., Stern, M. J. & Siwick, B. J. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: robust sub-50 fs cavity-laser phase stabilization. Struct. Dyn. 4, 051101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Snively, E. C. et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor. Phys. Rev. Lett. 124, 054801 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Williams, J. et al. Active control of bright electron beams with RF optics for femtosecond microscopy. Struct. Dyn. 4, 044035 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rozenzweig, J. B. et al. Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources. Phys. Rev. Accel. Beams 22, 023403 (2019).

    Article  Google Scholar 

  135. Hassan, M. T., Liu, H., Basking, J. S. & Zewail, A. H. Photon gating in four-dimensional ultrafast electron micrscopy. Proc. Natl Acad. Sci. USA 112, 12944–12949 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fu, X. et al. Nanoscale-femtosecond dielectric response of Mott insulators captured by two-color near-field ultrafast electron microscopy. Nat. Commun. 11, 5770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, H., Kwon, O.-H., Tang, J. & Zewail, A. H. 4D imaging and diffraction dynamics of single-particle phase transition in heterogeneous ensembles. Nano Lett. 14, 946–954 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Voss, J. M., Harder, O. F., Olshin, P. K., Drabbels, M. & Lorenz, U. J. Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy. Chem. Phys. Lett. 778, 138812 (2021).

    Article  CAS  Google Scholar 

  139. Danz, T., Domrose, T. & Ropers, C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 371, 371–374 (2021). Nanoscale mapping of excited-state domains with picosecond scale lifetimes following optical excitation.

    Article  CAS  PubMed  Google Scholar 

  140. Fu, X., Chen, B., Tang, J. & Zewail, A. H. Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Sci. Adv. 3, e1701160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Fu, X., Chen, B., Tang, J., Hassan, M. T. & Zewail, A. H. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science 355, 494–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Lorenz, U. J. & Zewail, A. H. Observing liquid flow in nanotubes by 4D electron microscopy. Science 344, 1496–1500 (2014). Imaging of fluid behaviour at the nanoscale via laser melting of lead within ZnO nanotubes.

    Article  CAS  PubMed  Google Scholar 

  143. Barwick, B., Flannigan, D. H. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, H. et al. Visualization of plasmonic couplings using ultrafast electron microscopy. Nano Lett. 21, 5842–5849 (2021). Imaging ultrafast coupling of electromagnetic fields between nanostructures.

    Article  CAS  PubMed  Google Scholar 

  145. Yurtsever, A., van der Veen, R. M. & Zewail, A. H. Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335, 59–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Kaplan, M. et al. Photon-induced near-field electron microscopy of eukaryotic cells. Angew. Chem. Int. Ed. 56, 11498–11501 (2017).

    Article  CAS  Google Scholar 

  147. Pomarico, E. et al. meV resolution in laser-assisted energy filtered transmission electron microscopy. ACS Photon. 5, 759–764 (2018).

    Article  CAS  Google Scholar 

  148. Kurman, T. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Sun, S. et al. Direct imaging of plasma waves using ultrafast electron microscopy. Struct. Dyn. 7, 064301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Spivak, G. V., Dyukov, V. G., Sedov, N. N. & Nevzorov, A. N. A stroboscopic secondary-emission electron microscope. Bull. Acad. Sci. USSR Phys. Ser. 30, 769–775 (1966).

    Google Scholar 

  151. Bostanjoglo, O. & Rosin, T. Ultrasonically induced magnetic reversals observed by stroboscopic electron microscopy. Int. J. Opt. 24, 657–664 (1977).

    CAS  Google Scholar 

  152. Plows, G. S. & Nixon, W. C. Stroboscopic scanning electron microscopy. J. Phys. E Sci. Instrum. 1, 595–600 (1968).

    Article  Google Scholar 

  153. Ura, K., Fujioka, H. & Hosokawa, T. Picosecond pulse stroboscopic scanning electron microscope. J. Electron. Microsc. 27, 247–252 (1978).

    Google Scholar 

  154. Jing, C. et al. Tunable electron beam pulser for picoseconds stroboscopic microscopy in transmission electron microscopes. Ultramicroscopy 207, 112829 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Weppelman, I. G. C., Moerland, R. J., Hoogenboom, J. P. & Kruit, P. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy. Ultramicroscopy 184, 8–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Lassise, A., Mutsaers, P. H. A. & Luiten, O. J. Compact, low power radio frequency cavity for femtosecond electron microscopy. Rev. Sci. Instrum. 83, 043705 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. VandenBussche, E. J. & Flannigan, D. J. Reducing radiation damage in soft matter with femtosecond-timed single-electron packets. Nano Lett. 19, 6687–6694 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. VandenBussche, E. J., Clark, C. P., Holmes, R. J. & Flannigan, D. J. Mitigating damage to hybrid perovskites using pulsed-beam TEM. ACS Omega 5, 31867–31871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kisielowski, C. et al. Discovering hidden material properties of MgCl2 at atomic resolution with structured temporal electron illumination of picosecond time resolution. Adv. Funct. Mater. 29, 1807818 (2019).

    Article  Google Scholar 

  160. Mariette, C. et al. Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nat. Commun. 12, 1239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bertoni, R. et al. Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat. Mater. 15, 606–610 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Paterson, G. W. et al. Sub-100 nanosecond temporally resolved imaging with the Medipix3 direct electron detector. Ultramicroscopy 210, 112917 (2020).

    Article  CAS  Google Scholar 

  163. Ali, H. et al. An electron energy loss spectrometer based streak camera for time resolved TEM measurements. Ultramicroscopy 176, 112917 (2017).

    Article  Google Scholar 

  164. Verhoeven, W. et al. Time-of-flight electron energy loss spectroscopy by longitudinal phase space manipulation with microwave cavities. Struct. Dyn. 5, 051101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bloom, R., Park, S. T., Reed, B. & Masiel, D. High framerate and high dynamic range electron microscopy. Patent application. https://patents.justia.com/patent/20210082661 (2020).

  166. Yuan, W. et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 367, 428–430 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Yang, J. et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater. 18, 970–976 (2019). Imaging the growth of nanostructures starting from nucleation, taking advantage of the high temporal resolution of a direct-electron camera.

    Article  CAS  PubMed  Google Scholar 

  168. Sytwu, K. et al. Driving energetically unfavorable dehydrogenation dynamics with plasmonics. Science 371, 280–283 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Bai, S., Gao, C., Low, J. & Xiong, Y. Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res. 12, 2031–2054 (2019).

    Article  CAS  Google Scholar 

  170. Gavhane, D. S. et al. In situ electron microscopy study of structural transformations in 2D CoSe2. npj 2D Mater. Appl. 5, 24 (2021).

    Article  CAS  Google Scholar 

  171. Li, J., Wang, Z. & Deepak, F. L. Direct atomic-scale observation of intermediate pathways of melting and crystallization in supported Bi nanoparticles. J. Phys. Chem. Lett. 9, 961–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Zou, L., Li, J., Zakharov, D., Stach, E. A. & Zhou, G. In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ghosh, C. et al. Phase evolution and structural modulation during in situ lithiation of MoS2, WS2 and graphite in TEM. Sci. Rep. 11, 9014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. McDowell, M. T. et al. In situ observation of divergent phase transformations in individual sulfide nanocrystals. Nano Lett. 15, 1264–1271 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, 1490 (2015).

    Article  CAS  Google Scholar 

  176. Sarkar, R., Rentenberger, C. & Rajagopalan, J. Electron beam induced artifacts during in situ TEM deformation of nanostructured metals. Sci. Rep. 5, 16345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yao, L. et al. Electron-beam-induced perovskite–Brownmillerite–perovskite structural phase transitions in epitaxial La2/3Sr1/3MnO3 films. Adv. Mater. 26, 2789–2793 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Han, S. et al. Gas-assisted transformation of gold from fcc to the metastable 4H phase. Nat. Commun. 11, 552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Funk, H. et al. In situ TEM monitoring of phase-segregation in inorganic mixed halide perovskite. J. Phys. Chem. Lett. 11, 4945–4950 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Nakamuro, T., Sakakibara, M., Nada, H., Harano, K. & Nakamura, E. Capturing the moment of emergence of crystal nucleus from disorder. J. Am. Chem. Soc. 143, 1763–1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Egan, G. C., Sullivan, K. T., LaGrange, T., Reed, B. W. & Zachariah, M. R. In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates. J. Appl. Phys. 115, 084903 (2014).

    Article  Google Scholar 

  182. Xiang, B. et al. In situ TEM near-field optical probing of nanoscale silicon crystallization. Nano Lett. 12, 2524–2529 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Park, S. T., Flannigan, D. J. & Zewail, A. H. Irreversible chemical reactions visualized in space and time with 4D electron microscopy. J. Am. Chem. Soc. 133, 1730–1733 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Voss, J. M., Olshin, P. K., Charbonnier, R., Drabbels, M. & Lorenz, U. J. In situ observation of Coulomb fission of individual plasmonic nanoparticles. ACS Nano 13, 12445–12451 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Grapes, M. D. et al. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Rev. Sci. Instrum. 85, 084902 (2014).

    Article  PubMed  Google Scholar 

  186. Hada, M. et al. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5. Sci. Rep. 5, 13530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Grinolds, M. S., Lobastov, V. A., Weissenrieder, J. & Zewail, A. H. Four-dimensional ultrafast electron microscopy of phase transitions. Proc. Natl Acad. Sci. USA 103, 18427–18431 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Park, S. T. & van der Veen, R. M. Modeling nonequilibrium dynamics of phase transitions at the nanoscale: application to spin-crossover. Struct. Dyn. 4, 044028 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Liang, J. et al. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 3, 956–991 (2019).

    Article  CAS  Google Scholar 

  190. Han, S. et al. Interrogation of the reaction mechanism in a Na-O2 battery using in situ transmission electron microscopy. ACS Nano 14, 3669–3677 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Lutz, L. et al. Operando monitoring of the solution-mediated discharge and charge processes in a Na-O2 battery using liquid-electrochemical transmission electron microscopy. Nano Lett. 18, 1280–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Liu, Q. et al. In-situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode. Energy Stor. Mater. 19, 48–55 (2019).

    Google Scholar 

  193. Zhu, Y. et al. Probing the electrochemical evolution of Na-CO2 nanobatteries on Pt@NCNT cathodes using in-situ environmental TEM. Energy Stor. Mater. 33, 88–94 (2020).

    Google Scholar 

  194. Yang, T. et al. In situ imaging electrocatalytic CO2 reduction and evolution reactions in all-solid-state Li-CO2 nanobatteries. Nanoscale 12, 23967–23974 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Liu, Q. et al. In situ electrochemical study of Na-O2/CO2 batteries in an environmental transmission electron microscopy. ACS Nano 14, 13232–13245 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Gutiérrez-Kolar, J. S. et al. Interpreting electrochemical and chemical sodiation mechanisms and kinetics in tin antimony battery anodes using in situ transmission electron microscopy and computational methods. ACS Appl. Energy Mater. 2, 3578–3586 (2019).

    Article  Google Scholar 

  198. Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Cremons, D. R., Plemmons, D. A. & Flannigan, D. J. Femtosecond electron imaging of defect-modulated phonon dynamics. Nat. Commun. 7, 11230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. McKenna, A. J., Eliason, J. K. & Flannigan, D. J. Spatiotemporal evolution of coherent elastic strain waves in a single MoS2 flake. Nano Lett. 17, 3952–3958 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Zhang, Y. & Flannigan, D. J. Observation of anisotropic strain-wave dynamics and few-layer dephasing in MoS2 with ultrafast electron microscopy. Nano Lett. 19, 8216–8224 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Gnabasik, R. A., Suri, P. K., Chen, J. & Flannigan, D. J. Imaging coherent phononics and precursor dynamics in LaFeAsO with 4D ultrafast electron microscopy. Phys. Rev. Mater. 6, 024802 (2022).

    Article  CAS  Google Scholar 

  203. Zhang, Y. & Flannigan, D. J. Imaging nanometer phonon softening at crystal surface steps with 4D ultrafast electron microscopy. Nano Lett. 21, 7332–7338 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Reisbick, S. A., Zhang, Y., Chen, J., Engen, P. E. & Flannigan, D. J. Coherent phonon disruption and lock-in during photoinduced charge-density-wave phase transition. J. Phys. Chem. Lett. 12, 6439–6447 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Reisbick, S. A., Zhang, Y. & Flannigan, D. J. Influence of discrete defects on observed acoustic-phonon dynamics in layered materials probed with ultrafast electron microscopy. J. Phys. Chem. A 124, 1877–1884 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Kwak, W.-J., Luo, L., Jung, H.-G., Wang, C. & Sun, Y.-K. Revealing the reaction mechanism of Na-O2 batteries using environmental transmission electron microscopy. ACS Energy Lett. 3, 393–399 (2018).

    Article  CAS  Google Scholar 

  207. McDowell, M. T. The role of nanoscale science for advancing batteries. Nano Lett. 21, 6353–6355 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Li, Y. & Lu, J. Metal–air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2, 1370–1377 (2017).

    Article  CAS  Google Scholar 

  209. Harvey, T. R. et al. Probing chirality with inelastic electron-light scattering. Nano Lett. 20, 4377–4383 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Garcia de Abajo, F. J. & Kociak, M. Electron energy-gain spectroscopy. New J. Phys. 10, 073035 (2008).

    Article  Google Scholar 

  211. Konecna, A., Di Giulio, V., Mkhitaryan, V., Ropers, C. & Garcia de Abajo, F. J. Nanoscale nonlinear spectroscopy with electron beams. ACS Photonics 7, 1290–1296 (2020).

    Article  CAS  Google Scholar 

  212. Di Giulio, V., Kfir, O., Ropers, C. & Garcia de Abajo, F. J. Modulation of cathodoluminescence emission by interference with external light. ACS Nano 15, 7290–7304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Yu, S., Wilson, A. J., Kumari, G., Zhang, X. & Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysis. ACS Energy Lett. 2, 2058–2070 (2017).

    Article  CAS  Google Scholar 

  214. Wilson, A. J., Devasia, D. & Jain, P. K. Nanoscale optical imaging in chemistry. Chem. Soc. Rev. 49, 6087–6112 (2020).

    Article  CAS  Google Scholar 

  215. Yang, L., Zhou, Z., Song, J. & Chen, X. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 19, 5140–5176 (2019).

    Article  Google Scholar 

  216. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).

    Article  Google Scholar 

  217. Ghai, S. S. & Kim, W. T. A novel heat transfer model and its application to information storage systems. J. Appl. Phys. 97, 10P703 (2005).

    Article  Google Scholar 

  218. Kandasamy, R., Wang, X.-Q. & Mujumdar, A. S. Application of phase change materials in thermal management of electronics. Appl. Therm. Eng. 27, 2822–2832 (2007).

    Article  Google Scholar 

  219. Kumar, L., Hasanuzzaman, M. & Rahim, N. A. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: a review. Energy Convers. Manag. 195, 885–908 (2019).

    Article  Google Scholar 

  220. Park, S. T., Flannigan, D. J. & Zewail, A. H. 4D electron microscopy visualization of anisotropic atomic motions in carbon nanotubes. J. Am. Chem. Soc. 134, 9146–9149 (2012).

    Article  CAS  PubMed  Google Scholar 

  221. Hu, J., Vanacore, G. M., Yang, Z., Miao, X. & Zewail, A. H. Transient structures and possible limits of data recording in phase-change materials. ACS Nano 9, 6728–6737 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Liu, L. & Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5, 256–276 (2021).

    Article  CAS  Google Scholar 

  223. He, B., Zhang, Y., Liu, X. & Chen, L. In-situ transmission electron microscope techniques for heterogeneous catalysis. ChemCatChem 12, 1853 (2020).

    Article  CAS  Google Scholar 

  224. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article  CAS  Google Scholar 

  225. Ramade, J. et al. Tracking the restructuring of oxidized silver-indium nanoparticles under a reducing atmosphere by environmental TEM. Nanoscale 9, 13563–13574 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Tan, S. F. et al. Real-time imaging of nanoscale redox reactions over bimetallic nanoparticles. Adv. Funct. Mater. 29, 1903242 (2019).

    Article  Google Scholar 

  227. Xin, H. L. et al. Revealing the atomic restructuring of Pt–Co nanoparticles. Nano Lett. 14, 3203–3207 (2014).

    Article  CAS  PubMed  Google Scholar 

  228. Chee, S. W., Tan, S. F., Baraissov, Z., Bosman, M. & Mirsaidov, U. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat. Commun. 8, 1224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Chee, S. W. et al. Interface-mediated Kirkendall effect and nanoscale void migration in bimetallic nanoparticles during interdiffusion. Nat. Commun. 10, 2831 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Vincent, J. L. & Crozier, P. A. Atomic level fluxional behavior and activity of CeO2-supported Pt catalysts for CO oxidation. Nat. Commun. 12, 5789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Simonsen, S. B., Chorkendorff, I., Dahl, S., Skoglundh, M. & Helveg, S. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM. Surf. Sci. 648, 278–283 (2016).

    Article  CAS  Google Scholar 

  232. Peña, N. O. et al. Morphological and structural evolution of Co3O4 nanoparticles revealed by in situ electrochemical transmission electron microscopy during electrocatalytic water oxidation. ACS Nano 13, 11372–11381 (2019).

    Article  Google Scholar 

  233. Liao, H.-G. & Zheng, H. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 67, 719–747 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Mirsaidov, U., Patterson, J. P. & Zheng, H. Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution. MRS Bull. 45, 704–712 (2020).

    Article  Google Scholar 

  235. Ou, Z., Liu, C., Yao, L. & Chen, Q. Nanoscale cinematography of soft matter system under liquid-phase TEM. Acc. Mater. Res. 1, 41–52 (2020).

    Article  CAS  Google Scholar 

  236. Niu, K. et al. Bubble nucleation and migration in a lead-iron hydr(oxide) core–shell nanoparticle. Proc. Natl Acad. Sci. USA 112, 12928–12932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Niu, K.-Y., Park, J., Zheng, H. & Alivisatos, A. P. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715–5719 (2013).

    Article  CAS  PubMed  Google Scholar 

  238. Wu, H. et al. Studying reaction mechanisms in solution using a distributed electron microscopy method. ACS Nano 15, 10296–10308 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Smigelskas, A. D. & Kirkendall, E. O. Transaction of AIME. Sci. Res. 171, 130–142 (1947).

    Google Scholar 

  240. Wang, J. X. et al. Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J. Am. Chem. Soc. 133, 13551–13557 (2011).

    Article  CAS  PubMed  Google Scholar 

  241. Grosse, P. et al. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 12, 6736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. LaGrow, A. P., Ward, M. R., Lloyd, D. C., Gai, P. L. & Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Avanesian, T. et al. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551–4558 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Chmielewski, A. et al. Reshaping dynamics of gold nanoparticles under H2 and O2 at atmospheric pressure. ACS Nano 13, 2024–2033 (2019).

    CAS  PubMed  Google Scholar 

  245. Altantzis, T. et al. Three-dimensional quantification of the facet evolution of Pt nanoparticles in a variable gas environment. Nano Lett. 19, 477–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  246. Sharma, V. P., Sharma, U., Chattopadhyay, M. & Shukla, V. N. Advance applications of nanomaterials: a review. Mater. Today Proc. 5, 6376–6380 (2018).

    Article  Google Scholar 

  247. Zhai, W., Srikanth, N., Kong, L. B. & Zhou, K. Carbon nanomaterials in tribology. Carbon 119, 150–171 (2017).

    Article  CAS  Google Scholar 

  248. Greeg, J. R. & De Hosson, J. T. M. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    Article  Google Scholar 

  249. Li, Y., Xu, J. & Li, D. Molecular dynamics simulation of nanoscale liquid flows. Microfluid. Nanofluid. 9, 1011–1031 (2010).

    Article  Google Scholar 

  250. Kim, J., Ou, Z., Jones, M. R., Song, X. & Chen, Q. Imaging the polymerization of multivalent nanoparticles in solution. Nat. Commun. 8, 761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Kiener, D., Hosemann, P., Maloy, S. A. & Minor, A. M. In situ nanocompression testing of irradiated copper. Nat. Mater. 10, 608–613 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Grosso, R. L. et al. In situ transmission electron micrscopy for ultrahigh temperature mechanical testing of ZrO2. Nano Lett. 20, 1041–1046 (2020).

    Article  CAS  PubMed  Google Scholar 

  253. Tian, L. et al. Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).

    Article  PubMed  Google Scholar 

  254. Minor, A. M. et al. A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  255. Jiang, L. et al. Visualization and validation of twin nucleation and early-stage growth in magnesium. Nat. Commun. 13, 20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kwon, O.-H., Barwick, B., Park, H. S., Baskin, J. S. & Zewail, A. H. Nanoscale mechanical drumming visualized by 4D electron microscopy. Nano Lett. 8, 3557–3562 (2008).

    Article  CAS  PubMed  Google Scholar 

  257. Flannigan, D. J., Samartzis, P. C., Yurtsever, A. & Zewail, A. H. Nanomechanical motions of cantilevers: direct imaging in real space and time with 4D microscopy. Nano Lett. 9, 875–881 (2009).

    Article  CAS  PubMed  Google Scholar 

  258. Baskin, J. S., Park, H. S. & Zewail, A. H. Nanomuscial systems visualized and controlled in 4D electron microscopy. Nano Lett. 11, 2183–2191 (2011).

    Article  CAS  PubMed  Google Scholar 

  259. Fitzpatrick, A. W. P., Park, S. T. & Zewail, A. H. Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc. Natl Acad. Sci. USA 110, 10976–10981 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Fitzpatrick, A. W. P., Vanacore, G. M. & Zewail, A. H. Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy. Proc. Natl Acad. Sci. USA 112, 3380–3385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kim, Y.-J., Lee, Y., Kim, K. & Kwon, O.-H. Light-induced anisotropic morphological dynamics of black phosphorus membranes visualized by dark-field ultrafast electron microscopy. ACS Nano 14, 11383–11393 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Lorenz, U. J. & Zewail, A. H. Biomechanics of DNA structures visualized by 4D electron microscopy. Proc. Natl Acad. Sci. USA 110, 2822–2827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Flannigan, D. J., Park, S. T. & Zewail, A. H. Nanofriction visualized in space and time by 4D electron microscopy. Nano Lett. 10, 4767–4773 (2010).

    Article  CAS  PubMed  Google Scholar 

  264. Dai, Z. et al. Surface buckling of black phosphorus: determination, origin, and influence on electronic structure. Phys. Rev. Mater. 1, 074003 (2017).

    Article  Google Scholar 

  265. Kavokine, N., Bocquet, M. L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).

    Article  CAS  PubMed  Google Scholar 

  266. Liao, H.-G., Niu, K. & Zheng, H. Observation of growth of metal nanoparticles. Chem. Commun. 49, 11720–11727 (2013).

    Article  CAS  Google Scholar 

  267. Tan, S. F., Chee, S. W., Lin, G. & Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 50, 1303–1312 (2017).

    Article  CAS  PubMed  Google Scholar 

  268. Luo, B., Smith, J. W., Ou, Z. & Chen, Q. Quantifying the self-assembly behavoir of anisotropic nanoparticles using liquid-phase transmission electron microscopy. Acc. Chem. Res. 50, 1125–1133 (2017).

    Article  CAS  PubMed  Google Scholar 

  269. Powers, A. S. et al. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett. 17, 15–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  270. Sutter, E. et al. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 7, 11213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Chee, S. W., Anand, U., Bisht, G., Tan, S. F. & Mirsaidov, U. Direct observation of the rotation and translation of anisotropic nanoparticles adsorbed at a liquid–solid interface. Nano Lett. 19, 2871–2878 (2019).

    Article  CAS  PubMed  Google Scholar 

  272. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  PubMed  Google Scholar 

  273. Xu, L., Mou, F., Gong, H., Luo, M. & Guan, J. Light-driven micro/nanomotors: from fundamentals to application. Chem. Soc. Rev. 46, 6905–6926 (2017).

    Article  CAS  PubMed  Google Scholar 

  274. Idrobo, J. C. A new resolution quest in electron microscopy. Nat. Rev. Mater. 6, 100–102 (2021).

    Article  CAS  Google Scholar 

  275. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångstörm resolution. Nature 559, 343–349 (2018).

    Article  CAS  PubMed  Google Scholar 

  276. Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article  CAS  PubMed  Google Scholar 

  277. Krivanek, O. L. et al. Progress in ultrahigh energy resolution EELS. Ultramicroscopy 203, 60–67 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Crozier, P. A. et al. Workshop report on enabling transformative advances in energy and quantum materials through development of novel approaches to electron microscopy. (NSF, 2021).

  279. Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 11, 7930797 (2017).

    Article  Google Scholar 

  280. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

    Article  CAS  Google Scholar 

  281. Baum, P. & Krausz, F. Capturing atomic-scale carrier dynamics with electrons. Chem. Phys. Lett. 683, 57–61 (2017).

    Article  CAS  Google Scholar 

  282. Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.M.A. was supported by the Robert C. and Carolyn J. Springborn Endowment for Student Support Program at UIUC. P.K.J. was supported by a Guggenheim Fellowship. R.M.v.d.V. was, in part, supported by a Packard Fellowship in Science and Engineering from the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding authors

Correspondence to Prashant K. Jain or Renske M. van der Veen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks David Flannigan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcorn, F.M., Jain, P.K. & van der Veen, R.M. Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 7, 256–272 (2023). https://doi.org/10.1038/s41570-023-00469-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00469-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing