Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts

An Author Correction to this article was published on 24 February 2023

This article has been updated

Abstract

The Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases. Specific emphasis is placed on systems for which there is unequivocal evidence that dinitrogen reduction has taken place. By establishing the cross-cutting themes and synergies between these systems, we identify viable avenues for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A comparison of nitrogen reduction over molecular catalysts, nitrogenase and a metal surface.
Fig. 2: The various reduction pathways through which nitrogen can be reduced to ammonia.
Fig. 3: A summary of the nitrogenase reduction scheme and proton delivery mechanism.
Fig. 4: Homogeneous nitrogen reduction.
Fig. 5: The limitations of metal electrodes in aqueous electrolytes.
Fig. 6: Lithium-mediated nitrogen reduction.

Similar content being viewed by others

Change history

References

  1. Morlanés, N. et al. A technological roadmap to the ammonia energy economy: current state and missing technologies. Chem. Eng. J. 408, 127310 (2021).

    Article  Google Scholar 

  2. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  4. Gallucci, M. The ammonia solution: ammonia engines and fuel cells in cargo ships could slash their carbon emissions. IEEE Spectr. 58, 44–50 (2021).

    Article  Google Scholar 

  5. Valera-Medina, A. et al. Review on ammonia as a potential fuel: from synthesis to economics. Energy Fuels 35, 6964–7029 (2021).

    Article  CAS  Google Scholar 

  6. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Env. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  7. Guo, W., Zhang, K., Liang, Z., Zou, R. & Xu, Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem. Soc. Rev. 48, 5658–5716 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Capdevila-Cortada, M. Electrifying the Haber–Bosch. Nat. Catal. 2, 1055 (2019).

    Article  Google Scholar 

  9. Cheng, J.-P. in CRC Handbook of Chemistry and Physics (ed. Rumble, J. R.) (CRC, 2022).

  10. van der Ham, C. J. M., Koper, M. T. M. & Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014).

    Article  PubMed  Google Scholar 

  11. Rivera Ortiz, J. M. & Burris, R. H. Interactions among substrates and inhibitors of nitrogenase. J. Bacteriol. 123, 537–545 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nilsson, A. & Stephens, I. E. L. Research Needs Towards Sustainable Production of Fuels and Chemicals (eds Nørskov, J. K. et al.) 49–57 (Energy-X, 2019); https://www.uu.nl/sites/default/files/geo-sd-reports-Energy_X_Research-needs-report_final_24.02.2020.pdf

  13. McPherson, I. J., Sudmeier, T., Fellowes, J. & Tsang, S. C. E. Materials for electrochemical ammonia synthesis. Dalton Trans. 48, 1562–1568 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Singh, A. R. et al. Electrochemical ammonia synthesis — the selectivity challenge. ACS Catal. 7, 706–709 (2017). This paper is the first to provide a unified kinetic model to understand N2 reduction and selectivity in homogeneous catalysts, nitrogenase and solid electrocatalysts.

    Article  CAS  Google Scholar 

  15. Kibsgaard, J., Nørskov, J. K. & Chorkendorff, I. The difficulty of proving electrochemical ammonia synthesis. ACS Energy Lett. 4, 2986–2988 (2019).

    Article  CAS  Google Scholar 

  16. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Prim. 1, 56 (2021).

    Article  CAS  Google Scholar 

  18. Field, L. D., Hazari, N. & Li, H. L. Nitrogen fixation revisited on iron(0) dinitrogen phosphine complexes. Inorg. Chem. 54, 4768–4776 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum centre. Science 301, 76–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Dabundo, R. et al. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE 9, e110335 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tsuneto, A., Kudo, A. & Sakata, T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem. Lett. 22, 851–854 (1993). This paper is the original work to discover the lithium-mediated ammonia synthesis paradigm, the only method tested by Andersen et al. (2019) that passed their rigorous protocol.

    Article  Google Scholar 

  23. Tsuneto, A., Kudo, A. & Sakata, T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. J. Electroanal. Chem. 367, 183–188 (1994).

    Article  CAS  Google Scholar 

  24. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  25. Varley, J. B., Wang, Y., Chan, K., Studt, F. & Nørskov, J. K. Mechanistic insights into nitrogen fixation by nitrogenase enzymes. Phys. Chem. Chem. Phys. 17, 29541–29547 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Duval, S. et al. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis. Proc. Natl Acad. Sci. USA 110, 16414–16419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lazouski, N., Chung, M., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    Article  CAS  Google Scholar 

  29. Andersen, S. Z. et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy Environ. Sci. 13, 4291–4300 (2020).

    Article  CAS  Google Scholar 

  30. Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Tsuprun, V. L. et al. Electron microscopy of the Mo-Fe-protein from Azotobacter vinelandii nitrogenase. Eur. J. Biochem. 149, 389–392 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Morrison, C. N., Hoy, J. A., Zhang, L., Einsle, O. & Rees, D. C. Substrate pathways in the nitrogenase MoFe protein by experimental identification of small molecule binding sites. Biochemistry 54, 2052–2060 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Spatzal, T. et al. Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat. Commun. 7, 10902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burgess, B. K. & Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983–3012 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Jackson, M. N., Kaminsky, C. J., Oh, S., Melville, J. F. & Surendranath, Y. Graphite conjugation eliminates redox intermediates in molecular electrocatalysis. J. Am. Chem. Soc. 141, 14160–14167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chalkley, M. J., Drover, M. W. & Peters, J. C. Catalytic N2-to-NH3 (or -N2H4) conversion by well-defined molecular coordination complexes. Chem. Rev. 120, 5582–5636 (2020). This comprehensive review is a useful introduction to the state of the art for homogeneous nitrogen reduction to ammonia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koper, M. T. M. & Heering, H. A. in Fuel Cell Science: Theory, Fundamentals and Biocatalysis 71–110 (Wiley, 2010).

  39. Einsle, O. & Rees, D. C. Structural enzymology of nitrogenase enzymes. Chem. Rev. 120, 4969–5004 (2020). This comprehensive review covers the latest understanding in the structure of the FeMo-co, as well as considering comparisons with iron and vanadium-based nitrogenases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bukas, V. J. & Nørskov, J. K. A molecular-level mechanism of the biological N2 fixation. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.10029224.v1 (2019).

    Article  Google Scholar 

  41. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  42. Pfisterer, J. H. K., Liang, Y., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Varela, A. S. et al. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J. Phys. Chem. C 117, 20500–20508 (2013).

    Article  CAS  Google Scholar 

  44. Simon, G. H., Kley, C. S. & Roldan Cuenya, B. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60, 2561–2568 (2021).

    Article  CAS  Google Scholar 

  45. Geri, J. B., Shanahan, J. P. & Szymczak, N. K. Testing the push–pull hypothesis: Lewis acid augmented N2 activation at iron. J. Am. Chem. Soc. 139, 5952–5956 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dance, I. The controlled relay of multiple protons required at the active site of nitrogenase. Dalton Trans. 41, 7647 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Durrant, M. C. Controlled protonation of iron–molybdenum cofactor by nitrogenase: a structural and theoretical analysis. Biochem. J. 576, 569–576 (2001).

    Article  Google Scholar 

  48. McWilliams, S. F. & Holland, P. L. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc. Chem. Res. 48, 2059–2065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Back, S. & Jung, Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 18, 9161–9166 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Skúlason, E. et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    Article  PubMed  Google Scholar 

  51. Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  53. Jasniewski, A. J., Lee, C. C., Ribbe, M. W. & Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. 120, 5107–5157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bell, J., Dunford, A. J., Hollis, E. & Henderson, R. A. The role of Mo atoms in nitrogen fixation: balancing substrate reduction and dihydrogen production. Angew. Chem. Int. Ed. 42, 1149–1152 (2003).

    Article  CAS  Google Scholar 

  55. Harris, D. F. et al. Mechanism of N2 reduction catalyzed by Fe-nitrogenase involves reductive elimination of H2. Biochemistry 57, 701–710 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Sippel, D. & Einsle, O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat. Chem. Biol. 13, 956–960 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seefeldt, L. C. et al. Energy transduction in nitrogenase. Acc. Chem. Res. 51, 2179–2186 (2018). This work provides an in-depth study into the complex mechanism of electron transfer in nitrogenase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rapson, T. D. et al. Insights into nitrogenase bioelectrocatalysis for green ammonia production. ChemSusChem 13, 4856–4865 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Lowe, D. J. & Thorneley, R. N. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of H2 formation. Biochem. J. 224, 877–886 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rutledge, H. L. & Tezcan, F. A. Electron transfer in nitrogenase. Chem. Rev. 120, 5158–5193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thorneley, R. N. F., Lowe, D. J., Eday, R. R. & Miller, R. W. The coupling of electron transfer in nitrogenase to the hydrolysis of magnesium adenosine triphosphate. Biochem. Soc. Trans. 7, 633–636 (1979).

    Article  CAS  PubMed  Google Scholar 

  62. Seefeldt, L. C. et al. Control of electron transfer in nitrogenase. Curr. Opin. Chem. Biol. 47, 54–59 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, Z. Y. et al. Evidence that the Pi release event is the rate-limiting step in the nitrogenase catalytic cycle. Biochemistry 55, 3625–3635 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Harris, D. F., Yang, Z.-Y., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Kinetic understanding of N2 reduction versus H2 evolution at the E4(4H) Janus state in the three nitrogenases. Biochemistry 57, 5706–5714 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Barney, B. M., Yurth, M. G., dos Santos, P. C., Dean, D. R. & Seefeldt, L. C. A substrate channel in the nitrogenase MoFe protein. JBIC J. Biol. Inorg. Chem. 14, 1015–1022 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Smith, D., Danyal, K., Raugei, S. & Seefeldt, L. C. Substrate channel in nitrogenase revealed by a molecular dynamics approach. Biochemistry 53, 2278–2285 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Dance, I. The pathway for serial proton supply to the active site of nitrogenase: enhanced density functional modeling of the Grotthuss mechanism. Dalton Trans. 44, 18167–18186 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Dance, I. Computational investigations of the chemical mechanism of the enzyme nitrogenase. Chembiochem 21, 1671–1709 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Imlay, J. A. Iron–sulphur clusters and the problem with oxygen. Mol. Microbiol. 59, 1073–1082 (2006).

    Article  PubMed  Google Scholar 

  70. Mackellar, D. et al. Streptomyces thermoautotrophicus does not fix nitrogen. Sci. Rep. 6, 1–12 (2016).

    Article  Google Scholar 

  71. Milton, R. D. et al. The in vivo potential-regulated protective protein of nitrogenase in Azotobacter vinelandii supports aerobic bioelectrochemical dinitrogen reduction in vitro. J. Am. Chem. Soc. 139, 9044–9052 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Raugei, S., Seefeldt, L. C. & Hoffman, B. M. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction. Proc. Natl Acad. Sci. USA 115, E10521–E10530 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simpson, F. B. & Burris, R. H. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224, 1095–1098 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Lukoyanov, D., Yang, Z. Y., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? J. Am. Chem. Soc. 132, 2526–2527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoeke, V. et al. High-resolution ENDOR spectroscopy combined with quantum chemical calculations reveals the structure of nitrogenase Janus intermediate E4(4H). J. Am. Chem. Soc. 141, 11984–11996 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Buscagan, T. M. & Rees, D. C. Rethinking the nitrogenase mechanism: activating the active site. Joule 3, 2662–2678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schrock, R. R. Reduction of dinitrogen. Proc. Natl Acad. Sci. USA 103, 17087–17087 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Allen, A. D. & Senoff, C. V. Nitrogenopentammineruthenium(II) complexes. Chem. Commun. https://doi.org/10.1039/c19650000621 (1965).

    Article  Google Scholar 

  79. Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3, 120–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Kuriyama, S. et al. Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J. Am. Chem. Soc. 136, 9719–9731 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Kuriyama, S. et al. Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum–dinitrogen complexes: unique behavior of ferrocene moiety as redox active site. Chem. Sci. 6, 3940–3951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sekiguchi, Y. et al. Synthesis and reactivity of iron–dinitrogen complexes bearing anionic methyl- and phenyl-substituted pyrrole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Chem. Commun. 53, 12040–12043 (2017).

    Article  CAS  Google Scholar 

  83. Eizawa, A. et al. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. Nat. Commun. 8, 14874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eizawa, A. et al. Catalytic reactivity of molybdenum–trihalide complexes bearing PCP‐type pincer ligands. Chem. Asian J. 14, 2091–2096 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chalkley, M. J., del Castillo, T. J., Matson, B. D., Roddy, J. P. & Peters, J. C. Catalytic N2-to-NH3 conversion by Fe at lower driving force: a proposed role for metallocene-mediated PCET. ACS Cent. Sci. 3, 217–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuriyama, S. et al. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron–dinitrogen complexes bearing pincer ligand. Nat. Commun. 7, 4–6 (2016).

    Article  Google Scholar 

  88. del Castillo, T. J., Thompson, N. B., Suess, D. L. M., Ung, G. & Peters, J. C. Evaluating molecular cobalt complexes for the conversion of N2 to NH3. Inorg. Chem. 54, 9256–9262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nishibayashi, Y. Development of catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Dalton Trans. 47, 11290–11297 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Fajardo, J. & Peters, J. C. Catalytic nitrogen-to-ammonia conversion by osmium and ruthenium complexes. J. Am. Chem. Soc. 139, 16105–16108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chalkley, M. J. & Peters, J. C. Relating N–H bond strengths to the overpotential for catalytic nitrogen fixation. Eur. J. Inorg. Chem. 2020, 1353–1357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Studt, F. & Tuczek, F. Energetics and mechanism of a room-temperature catalytic process for ammonia synthesis (Schrock cycle): comparison with biological nitrogen fixation. Angew. Chem. Int. Ed. 44, 5639–5642 (2005).

    Article  CAS  Google Scholar 

  93. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, L. et al. A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 20, 4982–4989 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Chalkley, M. J., Castillo, T. J., del, Matson, B. D. & Peters, J. C. Fe-Mediated nitrogen fixation with a metallocene mediator: exploring pKa effects and demonstrating electrocatalysis. J. Am. Chem. Soc. 140, 6122–6129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hill, P. J., Doyle, L. R., Crawford, A. D., Myers, W. K. & Ashley, A. E. Selective catalytic reduction of N2 to N2H4 by a simple Fe complex. J. Am. Chem. Soc. 138, 13521–13524 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Doyle, L. R., Hill, P. J., Wildgoose, G. G. & Ashley, A. E. Teaching old compounds new tricks: efficient N2 fixation by simple Fe(N2)(diphosphine)2 complexes. Dalton Trans. 45, 7550–7554 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Arashiba, K. et al. Catalytic nitrogen fixation via direct cleavage of nitrogen–nitrogen triple bond of molecular dinitrogen under ambient reaction conditions. Bull. Chem. Soc. Jpn. 90, 1111–1118 (2017).

    Article  CAS  Google Scholar 

  99. Kolmar, S. S. & Mayer, J. M. SmI2(H2O)n reduction of electron rich enamines by proton-coupled electron transfer. J. Am. Chem. Soc. 139, 10687–10692 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roux, Y., Duboc, C. & Gennari, M. Molecular catalysts for N2 reduction: state of the art, mechanism, and challenges. ChemPhysChem 18, 2606–2617 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Hinnemann, B. & Nørskov, J. K. Catalysis by enzymes: the biological ammonia synthesis. Top. Catal. 37, 55–70 (2006).

    Article  CAS  Google Scholar 

  102. Ashida, Y. & Nishibayashi, Y. Catalytic conversion of nitrogen molecule into ammonia using molybdenum complexes under ambient reaction conditions. Chem. Commun. 57, 1176–1189 (2021). This work comprehensively discusses the various mechanisms by which molybdenum-based homogeneous catalysts carry out nitrogen reduction to ammonia.

    Article  CAS  Google Scholar 

  103. Burford, R. J. & Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 1, 26 (2017).

    Article  CAS  Google Scholar 

  104. Jia, H. P. & Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Weare, W. W., Schrock, R. R., Hock, A. S. & Müller, P. Synthesis of molybdenum complexes that contain “hybrid” triamidoamine ligands, [(hexaisopropylterphenyl-NCH2 CH2)2 NCH2 CH2 N-aryl]3-, and studies relevant to catalytic reduction of dinitrogen. Inorg. Chem. 45, 9185–9196 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Asay, M. & Morales-Morales, D. Non-symmetric pincer ligands: complexes and applications in catalysis. Dalton Trans. 44, 17432–17447 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Rakowski DuBois, M. & DuBois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Wilson, A. D. et al. Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J. Am. Chem. Soc. 128, 358–366 (2005).

    Article  Google Scholar 

  109. Raebiger, J. W. et al. Using ligand bite angles to control the hydricity of palladium diphosphine complexes. J. Am. Chem. Soc. 126, 5502–5514 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. MacLeod, K. C. & Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 5, 559–565 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Ung, G. & Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2 and NH3 generation. Angew. Chem. Int. Ed. 54, 532–535 (2014).

    Google Scholar 

  112. Broda, H., Hinrichsen, S. & Tuczek, F. Molybdenum(0) dinitrogen complexes with polydentate phosphine ligands for synthetic nitrogen fixation: geometric and electronic structure contributions to reactivity. Coord. Chem. Rev. 257, 587–598 (2013).

    Article  CAS  Google Scholar 

  113. Askevold, B. et al. Ammonia formation by metal–ligand cooperative hydrogenolysis of a nitrido ligand. Nat. Chem. 3, 532–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Bagger, A., Wan, H., Stephens, I. E. L. & Rossmeisl, J. Role of catalyst in controlling N2 reduction selectivity: a unified view of nitrogenase and solid electrodes. ACS Catal. 11, 6596–6601 (2021).

    Article  CAS  Google Scholar 

  115. Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Titirici, M. et al. The sustainable materials roadmap. J. Phys. Mater. 5, 032001 (2022).

    Article  Google Scholar 

  117. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  CAS  Google Scholar 

  118. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  119. Montoya, J. H., Tsai, C., Vojvodic, A. & Nørskov, J. K. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8, 2180–2186 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Abghoui, Y. & Skúlason, E. Electrochemical synthesis of ammonia via Mars–van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catal. Today 286, 78–84 (2017).

    Article  CAS  Google Scholar 

  121. Abghoui, Y. & Skúlason, E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal. Today 286, 69–77 (2017).

    Article  CAS  Google Scholar 

  122. Abghoui, Y., Garden, A. L., Howalt, J. G., Vegge, T. & Skúlason, E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catal. 6, 635–646 (2016).

    Article  CAS  Google Scholar 

  123. Abghoui, Y. & Skúlasson, E. Transition metal nitride catalysts for electrochemical reduction of nitrogen to ammonia at ambient conditions. Procedia Comput. Sci. 51, 1897–1906 (2015).

    Article  Google Scholar 

  124. Abghoui, Y. & Skúlason, E. Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis. J. Phys. Chem. C 121, 6141–6151 (2017).

    Article  CAS  Google Scholar 

  125. Abghoui, Y. et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 17, 4909–4918 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Pedersen, A. et al. Dual-metal atom electrocatalysts: theory, synthesis, characterization, and applications. Adv. Energy Mater. 12, 2102715 (2022).

    Article  CAS  Google Scholar 

  127. Singh, A. R. et al. Computational design of active site structures with improved transition-state scaling for ammonia synthesis. ACS Catal. 8, 4017–4024 (2018).

    Article  CAS  Google Scholar 

  128. Lv, X., Wei, W., Huang, B., Dai, Y. & Frauenheim, T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett. 21, 1871–1878 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, J. et al. Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin. J. Catal. 41, 783–798 (2020).

    Article  CAS  Google Scholar 

  130. Sun, C. N., Wang, Z. L., Lang, X., Wen, Z. & Jiang, Q. Synergistic effect of active sites of double‐atom catalysts for nitrogen reduction reaction. ChemSusChem 14, 4593–4600 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Kreider, M. E. et al. Nitride or oxynitride? Elucidating the composition–activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 32, 2946–2960 (2020).

    Article  CAS  Google Scholar 

  132. Luo, J. et al. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 6, 6165–6174 (2016).

    Article  CAS  Google Scholar 

  133. Moltved, K. A. & Kepp, K. P. The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal–oxygen interactions. J. Phys. Chem. C 123, 18432–18444 (2019).

    Article  CAS  Google Scholar 

  134. Karapinar, D. et al. Electroreduction of CO2 on single‐site copper‐nitrogen‐doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019).

    Article  CAS  Google Scholar 

  135. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Greenlee, L. F., Renner, J. N. & Foster, S. L. The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal. 8, 7820–7827 (2018).

    Article  CAS  Google Scholar 

  137. Hu, B., Hu, M., Seefeldt, L. & Liu, T. L. Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition? ACS Energy Lett. 4, 1053–1054 (2019).

    Article  CAS  Google Scholar 

  138. Du, H. L., Gengenbach, T. R., Hodgetts, R., Macfarlane, D. R. & Simonov, A. N. Critical assessment of the electrocatalytic activity of vanadium and niobium nitrides toward dinitrogen reduction to ammonia. ACS Sustain. Chem. Eng. 7, 6839–6850 (2019).

    Article  CAS  Google Scholar 

  139. Singh, A. R. et al. Strategies toward selective electrochemical ammonia synthesis. ACS Catal. 9, 8316–8324 (2019).

    Article  CAS  Google Scholar 

  140. Rod, T. H. & Nørskov, J. K. Modeling the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 122, 12751–12763 (2000).

    Article  CAS  Google Scholar 

  141. Westhead, O., Jervis, R. & Stephens, I. E. L. Is lithium the key for nitrogen electroreduction? Science 372, 1149–1150 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 3, 1127–1139 (2019).

    Article  CAS  Google Scholar 

  143. Schwalbe, J. A. et al. A combined theory–experiment analysis of the surface species in lithium‐mediated NH3 electrosynthesis. ChemElectroChem 7, 1542–1549 (2020).

    Article  CAS  Google Scholar 

  144. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  145. Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11, 2306–2309 (2018).

    Article  CAS  Google Scholar 

  148. Zhou, Y. et al. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15, 224–230 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047 (1979).

    Article  CAS  Google Scholar 

  150. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  CAS  Google Scholar 

  151. Heiskanen, S. K., Kim, J. & Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3, 2322–2333 (2019).

    Article  CAS  Google Scholar 

  152. Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017). This review is a useful introduction to the SEI for those new to battery science.

    Article  CAS  Google Scholar 

  153. Gauthier, M. et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Xiong, R., Pan, Y., Shen, W., Li, H. & Sun, F. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives. Renew. Sustain. Energy Rev. 131, 110048 (2020).

    Article  CAS  Google Scholar 

  155. Zhang, Z. et al. Operando electrochemical atomic force microscopy of solid–electrolyte interphase formation on graphite anodes: the evolution of SEI morphology and mechanical properties. ACS Appl. Mater. Interfaces 12, 35132–35141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article  CAS  Google Scholar 

  157. Meda, U. S., Lal, L., M, S. & Garg, P. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent advances. J. Energy Storage 47, 103564 (2022).

    Article  Google Scholar 

  158. Li, S. et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase. Joule 6, 2083–2101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mogensen, R., Brandell, D. & Younesi, R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Lett. 1, 1173–1178 (2016).

    Article  CAS  Google Scholar 

  160. Du, H.-L. et al. Electroreduction of nitrogen at almost 100% current-to-ammonia efficiency. Nature 609, 722–727(2022).

    Article  CAS  PubMed  Google Scholar 

  161. Yao, Y. et al. Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angew. Chem. 133, 4136–4143 (2021).

    Article  Google Scholar 

  162. Castelli, I. E. et al. The role of an interface in stabilizing reaction intermediates for hydrogen evolution in aprotic electrolytes. Chem. Sci. 11, 3914–3922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Strmcnik, D. et al. Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. Nat. Catal. 1, 255–262 (2018).

    Article  Google Scholar 

  164. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 1597, 1593–1597 (2021).

    Article  Google Scholar 

  165. Lazouski, N. et al. Proton donors induce a differential transport effect for selectivity toward ammonia in lithium-mediated nitrogen reduction. ACS Catal. 12, 5197–5208 (2022).

    Article  CAS  Google Scholar 

  166. Fears, T. M. et al. Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of: ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. Phys. Chem. Chem. Phys. 18, 13927–13940 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Hashimoto, S., Tanaka, A., Murata, A. & Sakurada, T. Formulation for XPS spectral change of oxides by ion bombardment as a function of sputtering time. Surf. Sci. 556, 22–32 (2004).

    Article  CAS  Google Scholar 

  168. Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022).

    Article  CAS  Google Scholar 

  169. Ninomiya, S. et al. Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. Rapid Commun. Mass Spectrom. 23, 1601–1606 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Mei, H., Laws, T. S., Terlier, T., Verduzco, R. & Stein, G. E. Characterization of polymeric surfaces and interfaces using time-of-flight secondary ion mass spectrometry. J. Polym. Sci. 60, 1174–1198 (2022).

    Article  CAS  Google Scholar 

  171. Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).

    Article  CAS  Google Scholar 

  172. Otto, S. K. et al. In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: toward better understanding of the passivation layer. Chem. Mater. 33, 859–867 (2021).

    Article  CAS  Google Scholar 

  173. Zhang, Y. et al. Revealing electrolyte oxidation: via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Env. Sci. 13, 183–199 (2020).

    Article  Google Scholar 

  174. Hy, S. et al. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 256, 324–328 (2014).

    Article  CAS  Google Scholar 

  175. Dong, J. C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  CAS  Google Scholar 

  176. Katayama, Y. et al. An in situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C 123, 5951–5963 (2019).

    Article  CAS  Google Scholar 

  177. Katayama, Y. et al. Direct observation of surface-bound intermediates during methanol oxidation on platinum under alkaline conditions. J. Phys. Chem. C 125, 26321–26331 (2021).

    Article  CAS  Google Scholar 

  178. Rao, R. R. et al. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 144, 7622–7633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Krishnamurthy, D., Lazouski, N., Gala, M. L., Manthiram, K. & Viswanathan, V. Closed-loop electrolyte design for lithium-mediated ammonia synthesis. ACS Cent. Sci. 7, 2073–2082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, K. et al. Increasing current density of Li-mediated ammonia synthesis with high surface area copper electrodes. ACS Energy Lett. 7, 36–41 (2022).

    Article  CAS  Google Scholar 

  182. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    Article  CAS  Google Scholar 

  183. Kim, K. et al. Electrochemical synthesis of ammonia from water and nitrogen: a lithium-mediated approach using lithium-ion conducting glass ceramics. ChemSusChem 11, 120–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Kim, K., Chen, Y., Han, J. I., Yoon, H. C. & Li, W. Lithium-mediated ammonia synthesis from water and nitrogen: a membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system. Green Chem. 21, 3839–3845 (2019).

    Article  CAS  Google Scholar 

  185. del Castillo, T. J., Thompson, N. B. & Peters, J. C. A synthetic single-site Fe nitrogenase: high turnover, freeze-quench 57Fe Mössbauer data, and a hydride resting state. J. Am. Chem. Soc. 138, 5341–5350 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Tanaka, H. et al. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nat. Commun. 5, 3737 (2014).

    Article  PubMed  Google Scholar 

  187. Kuriyama, S. et al. Direct transformation of molecular dinitrogen into ammonia catalyzed by cobalt dinitrogen complexes bearing anionic PNP pincer ligands. Angew. Chem. Int. Ed. 55, 14291–14295 (2016).

    Article  CAS  Google Scholar 

  188. Tanaka, H., Nishibayashi, Y. & Yoshizawa, K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 49, 987–995 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Higuchi, J. et al. Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Trans. 47, 1117–1121 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Milton, R. D. & Minteer, S. D. Nitrogenase bioelectrochemistry for synthesis applications. Acc. Chem. Res. 52, 3351–3360 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Varghese, F. et al. A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium Azotobacter vinelandii. J. Biol. Chem. 294, 9367–9376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Simon, H. M., Gosink, M. M., Roberts, G. P., Al, S. E. T. & Acteriol, J. B. Importance of cis determinants and nitrogenase activity in regulated stability of the Klebsiella pneumoniae nitrogenase structural gene mRNA. J. Bacteriol. 181, 3751–3760 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wolfschmidt, H. et al. STM, SECPM, AFM and electrochemistry on single crystalline surfaces. Materials 3, 4196–4213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lukoyanov, D., Barney, B. M., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state. Proc. Natl Acad. Sci. USA 104, 1451–1455 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Barney, B. M. et al. Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction. Biochemistry 46, 6784–6794 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Krempl, K., Pedersen, J. B., Kibsgaard, J., Vesborg, P. C. K. & Chorkendorff, I. Electrolyte acidification from anode reactions during lithium mediated ammonia synthesis. Electrochem. Commun. 134, 107186 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O.W. acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) and SFI Centre for Doctoral Training in Advanced Characterization of Materials Grant Ref: EP/S023259/1. J.B., I.E.L.S. and M.-M.T acknowledge funding from the National Research Council Canada through the Materials for Clean Fuels Challenge Program. I.E.L.S. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 866402). A.B. and J.R. thank the Danish National Research Foundation DNRF-149 and the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors co-conceived the concept and constructed the structure for the article. O.W., J.B. and I.E.L.S. researched data for the article and wrote the initial draft. A.A., A.F., A.B. and J.R. contributed substantially to discussion of content. A.A., A.B., J.W.M., J.R., A.F., M.-M.T. and R.J. reviewed the manuscript before submission. O.W., J.B. and I.E.L.S. edited the final version for submission.

Corresponding authors

Correspondence to Andrea Fantuzzi, Andrew Ashley or Ifan E. L. Stephens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Chuan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Faradaic efficiency

The proportion of electrons which go towards making the desired product.

Limiting potential

(UL). The minimum potential applied to make all elementary electron transfer steps downhill in free energy.

Ohmic loss

The loss of energy efficiency due to electrolyte resistance.

Overpotential

Any excess applied voltage due to kinetic factors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westhead, O., Barrio, J., Bagger, A. et al. Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat Rev Chem 7, 184–201 (2023). https://doi.org/10.1038/s41570-023-00462-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00462-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing