Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-specificity as the sticky problem in therapeutic antibody development

Abstract

Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches — clusters of surface-exposed amino acid residues with similar physicochemical properties — as inducers of non-specific interactions. These patches collectively drive interactions including dipole–dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Definitions of mono-specificity, poly-specificity and non-specificity.
Fig. 2: Non-specific binding-associated roles of the natural amino acids.
Fig. 3: Structural connection of key protein features and their evaluation for prediction of non-specific binding.
Fig. 4: Surface patches in literature and their modes of action for non-specific binding and common mitigation strategies.
Fig. 5: Impact of surface patches on paratope–epitope recognition.
Fig. 6: Surface patch-mediated non-specific binding can nucleate large-scale assembly processes and outcomes are highly dependent on environmental factors.
Fig. 7: Affinity maturation commonly yields potent but difficult-to-develop candidates.

References

  1. Goldberg, R. J. A theory of antibody–antigen reactions. I. Theory for reactions of multivalent antigen with bivalent and univalent antibody2. J. Am. Chem. Soc. 74, 5715–5725 (1952).

    Article  CAS  Google Scholar 

  2. Goldberg, R. J. A theory of antibody–antigen reactions. II. theory for reactions of multivalent antigen with multivalent antibody. J. Am. Chem. Soc. 75, 3127–3131 (1953).

    Article  CAS  Google Scholar 

  3. Boyden, S. V. Natural antibodies and the immune response. Adv. Immunol. 5, 1–28 (1966).

    Article  CAS  PubMed  Google Scholar 

  4. Padlan, E. A. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Ehrlich, P. Die grundlagn der experimentellen chemotherapie. Angew. Chem. 23, 2–8 (1910). The first description of antibodies as ‘magic bullets’.

    Article  CAS  Google Scholar 

  6. Strebhardt, K. & Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Mian, I. S., Bradwell, A. R. & Olson, A. J. Structure, function and properties of antibody binding sites. J. Mol. Biol. 217, 133–151 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Webster, D. M., Henry, A. H. & Rees, A. R. Antibody-antigen interactions. Curr. Opin. Struct. Biol. 4, 123–129 (1994).

    Article  CAS  Google Scholar 

  9. Wilson, I. A. & Stanfield, R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. MacCallum, R. M., Martin, A. C. R. & Thornton, J. M. Antibody-antigen interactions: contact analysis and binding site topography. J. Mol. Biol. 262, 732–745 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  PubMed  Google Scholar 

  12. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Clackson, T., Hoogenboom, H. R., Griffiths, A. D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Winter, G., Griffiths, A. D., Hawkins, R. E. & Hoogenboom, H. R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994). The initial report describing the use of phage display for antibody discovery.

    Article  CAS  PubMed  Google Scholar 

  15. Alt, F. W., Keith Blackwell, T. & Yancopoulos, G. D. Immunoglobulin genes in transgenic mice. Trends Genet. 1, 231–236 (1985).

    Article  CAS  Google Scholar 

  16. Lee, E.-C. & Owen, M. In Antibody Methods and Protocols (eds. Proetzel, G. & Ebersbach, H.) 137–148 (Humana Press, 2012).

  17. Kellermann, S.-A. & Green, L. L. Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr. Opin. Biotechnol. 13, 593–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Boulianne, G. L., Hozumi, N. & Shulman, M. J. Production of functional chimaeric mouse/human antibody. Nature 312, 643–646 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Morrison, S. L., Johnson, M. J., Herzenberg, L. A. & Oi, V. T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl Acad. Sci. USA 81, 6851–6855 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 20, 491–495 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Kaplon, H., Chenoweth, A., Crescioli, S. & Reichert, J. M. Antibodies to watch in 2022. mAbs 14, 2014296 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mishkin, D. S., Van Deinse, W., Becker, J. M. & Farraye, F. A. Successful use of adalimumab (Humira) for Crohn’s disease in pregnancy. Inflamm. Bowel Dis. 12, 827–828 (2006).

    Article  PubMed  Google Scholar 

  24. Sølling, A. S. K., Harsløf, T. & Langdahl, B. The clinical potential of romosozumab for the prevention of fractures in postmenopausal women with osteoporosis. Ther. Adv. Musculoskelet. Dis. 10, 105–115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Melero, I., Hervas-Stubbs, S., Glennie, M., Pardoll, D. M. & Chen, L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer 7, 95–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Bruno, C. J. & Jacobson, J. M. Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J. Antimicrob. Chemother. 65, 1839–1841 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Kaplon, H. & Reichert, J. M. Antibodies to watch in 2019. mAbs 11, 219–238 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Mestre-Ferrandiz, J., Sussex, J. & Towse, A. The R&D Cost of a New Medicine (Office of Health Economics, 2021).

  30. Jain, T. et al. Biophysical properties of the clinical-stage antibody landscape. Proc. Natl Acad. Sci. USA 114, 944–949 (2017). Cornerstone storyline on the systematic and detailed assessment of the physicochemical properties of a large set of clinical-stage antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Starr, C. G. & Tessier, P. M. Selecting and engineering monoclonal antibodies with drug-like specificity. Curr. Opin. Biotechnol. 60, 119–127 (2019). This report highlights the significance of non-specificity to clinical success.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cunningham, O., Scott, M., Zhou, Z. S. & Finlay, W. J. J. Polyreactivity and polyspecificity in therapeutic antibody development: risk factors for failure in preclinical and clinical development campaigns. mAbs 13, 1999195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prigent, J. et al. Conformational plasticity in broadly neutralizing HIV-1 antibodies triggers polyreactivity. Cell Rep. 23, 2568–2581 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jain, D. & Salunke, D. M. Antibody specificity and promiscuity. Biochem. J. 476, 433–447 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, Z.-H. et al. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1, 51–61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mouquet, H. & Nussenzweig, M. C. Polyreactive antibodies in adaptive immune responses to viruses. Cell. Mol. Life Sci. 69, 1435–1445 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Manivel, V., Bayiroglu, F., Siddiqui, Z., Salunke, D. M. & Rao, K. V. S. The primary antibody repertoire represents a linked network of degenerate antigen specificities. J. Immunol. 169, 888–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Casali, P. & Notkins, A. L. CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol. Today 10, 364–368 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Denninger, V. et al. Microfluidic antibody affinity profiling reveals the role of memory reactivation and cross-reactivity in the defense against SARS-CoV-2. ACS Infect. Dis. 8, 790–799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Finlay, W. J. J., Coleman, J. E., Edwards, J. S. & Johnson, K. S. Anti-PD1 ‘SHR-1210ʹ aberrantly targets pro-angiogenic receptors and this polyspecificity can be ablated by paratope refinement. mAbs 11, 26–44 (2019). A key example of a poly-specific off-target binding event to a biologically relevant target.

    Article  CAS  PubMed  Google Scholar 

  41. Feyen, O. et al. Off-target activity of TNF-α inhibitors characterized by protein biochips. Anal. Bioanal. Chem. 391, 1713–1720 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Bumbaca, D. et al. Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. mAbs 3, 376–386 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Van Regenmortel, M. H. V. HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design 39–56 (Springer Cham, 2019).

  44. James, L. C., Roversi, P. & Tawfik, D. S. Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, D., Kroe-Barrett, R., Singh, S., Roberts, C. J. & Laue, T. M. IgG cooperativity - Is there allostery? Implications for antibody functions and therapeutic antibody development. mAbs 9, 1231–1252 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cornwell, O., Bond, N. J., Radford, S. E. & Ashcroft, A. E. Long-range conformational changes in monoclonal antibodies revealed using FPOP-LC-MS/MS. Anal. Chem. 91, 15163–15170 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Grossman, I., Ilani, T., Fleishman, S. J. & Fass, D. Overcoming a species-specificity barrier in development of an inhibitory antibody targeting a modulator of tumor stroma. Protein Eng. Des. Sel. 29, 135–147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Angelini, A. et al. Directed evolution of broadly crossreactive chemokine-blocking antibodies efficacious in arthritis. Nat. Commun. 9, 1461 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leivo, J., Vehniäinen, M. & Lamminmäki, U. Phage display selection of an anti-idiotype-antibody with broad-specificity to deoxynivalenol mycotoxins. Toxins 13, 18 (2021).

    Article  CAS  Google Scholar 

  50. Loberg, L. I. et al. Off-target binding of an anti-amyloid beta monoclonal antibody to platelet factor 4 causes acute and chronic toxicity in cynomolgus monkeys. mAbs 13, 1887628 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scheidt, T. et al. The binding of the small heat-shock protein αB-crystallin to fibrils of α-synuclein is driven by entropic forces. Proc. Natl Acad. Sci. USA 118, e2108790118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scheidt, T. et al. Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci. Adv. 5, eaau3112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schneider, M. M. et al. The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat. Commun. 12, 5999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, J., Sawyer, N. & Regan, L. Protein–protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci. 22, 510–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jones, S. & Thornton, J. M. Principles of protein-protein interactions. Proc. Natl Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nooren, I. M. A. & Thornton, J. M. Diversity of protein–protein interactions. EMBO J. 22, 3486–3492 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rabia, L. A., Desai, A. A., Jhajj, H. S. & Tessier, P. M. Understanding and overcoming trade-offs between antibody affinity, specificity, stability and solubility. Biochem. Eng. J. 137, 365–374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaleli, N. E., Karadag, M. & Kalyoncu, S. Phage display derived therapeutic antibodies have enriched aliphatic content: insights for developability issues. Proteins Struct. Funct. Bioinforma. 87, 607–618 (2019). Highlights the potentially negative impact of phage display and affinity maturation on specificity.

    Article  CAS  Google Scholar 

  59. Makowski, E. K. et al. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Nat. Commun. 13, 3788 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yin, J., Beuscher, A. E., Andryski, S. E., Stevens, R. C. & Schultz, P. G. Structural plasticity and the evolution of antibody affinity and specificity. J. Mol. Biol. 330, 651–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Thorpe, I. F. & Brooks, C. L. Molecular evolution of affinity and flexibility in the immune system. Proc. Natl Acad. Sci. USA 104, 8821–8826 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Avery, L. B. et al. Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics. mAbs 10, 244–255 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Datta-Mannan, A. et al. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. mAbs 7, 483–493 (2015). Demonstrates that the formation of charge patches leads to impaired specificity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dighiero, G. et al. Murine hybridomas secreting natural monoclonal antibodies reacting with self antigens. J. Immunol. 131, 2267–2272 (1983).

    CAS  PubMed  Google Scholar 

  66. Dobson, C. L. et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci. Rep. 6, 38644 (2016). Shows that surface grouping of individual hydrophobic residues is sufficient to form hydrophobic patches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schaefer, Z. P., Bailey, L. J. & Kossiakoff, A. A. A polar ring endows improved specificity to an antibody fragment. Protein Sci. 25, 1290–1298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Campbell, S. M. et al. Combining random mutagenesis, structure-guided design and next-generation sequencing to mitigate polyreactivity of an anti-IL-21R antibody. mAbs 13, 1883239 (2021). Study on limiting the genetic variability to generate specific antibodies even against complex targets.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wu, H. et al. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J. Mol. Biol. 368, 652–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Sigounas, G., Harindranath, N., Donadel, G. & Notkins, A. L. Half-life of polyreactive antibodies. J. Clin. Immunol. 14, 134–140 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Kohli, N. et al. A novel screening method to assess developability of antibody-like molecules. mAbs 7, 752–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haverick, M., Mengisen, S., Shameem, M. & Ambrogelly, A. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications. mAbs 6, 852–858 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bethea, D. et al. Mechanisms of self-association of a human monoclonal antibody CNTO607. Protein Eng. Des. Sel. 25, 531–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Kehoe, J. W. et al. Isolation and optimization for affinity and biophysical characteristics of anti-CCL17 antibodies from the VH1-69 germline gene. Protein Eng. Des. Sel. 27, 199–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Datta-Mannan, A. et al. Influence of physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. mAbs 12, 1770028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jacobs, S. A., Wu, S.-J., Feng, Y., Bethea, D. & O’Neil, K. T. Cross-interaction chromatography: a rapid method to identify highly soluble monoclonal antibody candidates. Pharm. Res. 27, 65 (2009).

    Article  PubMed  Google Scholar 

  77. Kelly, R. L. et al. High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. mAbs 7, 770–777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schoch, A. et al. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc. Natl Acad. Sci. USA 112, 5997–6002 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dostalek, M., Prueksaritanont, T. & Kelley, R. F. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. mAbs 9, 756–766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kelly, R. L. et al. Target-independent variable region mediated effects on antibody clearance can be FcRn independent. mAbs 8, 1269–1275 (2016). Report showing that charged patches induce problematic non-specificity not only to the FcRn receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hötzel, I. et al. A strategy for risk mitigation of antibodies with fast clearance. mAbs 4, 753–760 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wu, S.-J. et al. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng. Des. Sel. 23, 643–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Wolf Pérez, A.-M. et al. In vitro and in silico assessment of the developability of a designed monoclonal antibody library. mAbs 11, 388–400 (2019). Important effort on generating systematic libraries capable of showing the impact of surface properties on antibody behaviour.

    Article  PubMed  PubMed Central  Google Scholar 

  84. De Kosky, B. J. et al. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc. Natl Acad. Sci. USA 113, E2636–E2645 (2016).

    Google Scholar 

  85. Ewert, S., Huber, T., Honegger, A. & Plückthun, A. Biophysical properties of human antibody variable domains. J. Mol. Biol. 325, 531–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Tiller, T. et al. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. mAbs 5, 445–470 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rouet, R., Lowe, D. & Christ, D. Stability engineering of the human antibody repertoire. FEBS Lett. 588, 269–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Jespers, L., Schon, O., Famm, K. & Winter, G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat. Biotechnol. 22, 1161–1165 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Sajadi, M. M. et al. λ Light chain bias associated with enhanced binding and function of anti-HIV Env glycoprotein antibodies. J. Infect. Dis. 213, 156–164 (2016).

    Article  PubMed  Google Scholar 

  90. Christ, D., Famm, K. & Winter, G. Repertoires of aggregation-resistant human antibody domains. Protein Eng. Des. Sel. 20, 413–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Bailly, M. et al. Predicting antibody developability profiles through early stage discovery screening. mAbs 12, 1743053 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tiller, K. E. et al. Arginine mutations in antibody complementarity-determining regions display context-dependent affinity/specificity trade-offs. J. Biol. Chem. 292, 16638–16652 (2017). Crucial investigation highlighting the context-dependent nature of individual amino acids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kelly, R. L., Le, D., Zhao, J. & Wittrup, K. D. Reduction of nonspecificity motifs in synthetic antibody libraries. J. Mol. Biol. 430, 119–130 (2018). Investigation highlighting that motifs of problematic residues correlate best with non-specificity.

    Article  CAS  PubMed  Google Scholar 

  94. Tiller, K. E. et al. Facile affinity maturation of antibody variable domains using natural diversity mutagenesis. Front. Immunol. 8, 986 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Birtalan, S. et al. The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J. Mol. Biol. 377, 1518–1528 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Birtalan, S., Fisher, R. D. & Sidhu, S. S. The functional capacity of the natural amino acids for molecular recognition. Mol. Biosyst. 6, 1186–1194 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Rupakheti, C. R., Roux, B., Dehez, F. & Chipot, C. Modeling induction phenomena in amino acid cation–π interactions. Theor. Chem. Acc. 137, 174 (2018).

    Article  Google Scholar 

  98. Ma, J. C. & Dougherty, D. A. The cation−π interaction. Chem. Rev. 97, 1303–1324 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. McGaughey, G. B., Gagné, M. & Rappé, A. K. π-Stacking interactions: alive and well in proteins. J. Biol. Chem. 273, 15458–15463 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. An, Y., Bloom, J. W. G. & Wheeler, S. E. Quantifying the π-stacking interactions in nitroarene binding sites of proteins. J. Phys. Chem. B 119, 14441–14450 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Gallivan, J. P. & Dougherty, D. A. Cation-π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mason, P. E., Neilson, G. W., Dempsey, C. E., Barnes, A. C. & Cruickshank, J. M. The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution. Proc. Natl Acad. Sci. USA 100, 4557–4561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuntz, I. D. Hydration of macromolecules. III. Hydration of polypeptides. J. Am. Chem. Soc. 93, 514–516 (1971).

    Article  CAS  Google Scholar 

  104. Mason, P. E. et al. The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc. 126, 11462–11470 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Ghosh, S., Badruddoza, A. Z. M., Uddin, M. S. & Hidajat, K. Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles. J. Colloid Interface Sci. 354, 483–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Popp, A., Wu, L., Keiderling, T. A. & Hauser, K. Effect of hydrophobic interactions on the folding mechanism of β-Hairpins. J. Phys. Chem. B 118, 14234–14242 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Luan, C.-H., Parker, T. M., Gowda, D. C. & Urry, D. W. Hydrophobicity of amino acid residues: differential scanning calorimetry and synthesis of the aromatic analogues of the polypentapeptide of elastin. Biopolymers 32, 1251–1261 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Som, A., Reuter, A. & Tew, G. N. Protein transduction domain mimics: the role of aromatic functionality. Angew. Chem. Int. Ed. 51, 980–983 (2012).

    Article  CAS  Google Scholar 

  109. Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M. H. Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838 (1985).

    Article  CAS  PubMed  Google Scholar 

  110. Austerberry, J. I. et al. The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment. Eur. J. Pharm. Biopharm. 115, 18–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Austerberry, J. I. et al. Arginine to lysine mutations increase the aggregation stability of a single-chain variable fragment through unfolded-state interactions. Biochemistry 58, 3413–3421 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Mecozzi, S., West, A. P. & Dougherty, D. A. Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl Acad. Sci. USA 93, 10566–10571 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dougherty, D. A. Cation-π interactions involving aromatic amino acids. J. Nutr. 137, 1504S–1508S (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Igawa, T. et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng. Des. Sel. 23, 385–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Sharma, V. K. et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc. Natl Acad. Sci. USA 111, 18601–18606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kip, D. et al. General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc. Natl Acad. Sci. USA 109, 10879–10884 (2012).

    Article  Google Scholar 

  117. Boswell, C. A. et al. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug. Chem. 21, 2153–2163 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Rabia, L. A., Zhang, Y., Ludwig, S. D., Julian, M. C. & Tessier, P. M. Net charge of antibody complementarity-determining regions is a key predictor of specificity. Protein Eng. Des. Sel. 31, 409–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Boughter, C. T. et al. Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops. eLlife 9, e61393 (2020).

    Article  CAS  Google Scholar 

  120. Zhang, Y. et al. Physicochemical rules for identifying monoclonal antibodies with drug-like specificity. Mol. Pharm. 17, 2555–2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lehermayr, C., Mahler, H.-C., Mäder, K. & Fischer, S. Assessment of net charge and protein-protein interactions of different monoclonal antibodies. J. Pharm. Sci. 100, 2551–2562 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Crowell, S. R. et al. Influence of charge, hydrophobicity, and size on vitreous pharmacokinetics of large molecules. Transl. Vis. Sci. Technol. 8, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sampei, Z. et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One 8, e57479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  125. Raybould, M. I. J. et al. Five computational developability guidelines for therapeutic antibody profiling. Proc. Natl Acad. Sci. USA 116, 4025–4030 (2019). Analysis of antibody properties highlighting surface patches as critical features for overall antibody behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu, H. et al. Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J. Mol. Biol. 350, 126–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Ebo, J. S. et al. An in vivo platform to select and evolve aggregation-resistant proteins. Nat. Commun. 11, 1816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pepinsky, R. B. et al. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Sci. 19, 954–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Courtois, F., Agrawal, N. J., Lauer, T. M. & Trout, B. L. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. mAbs 8, 99–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Lecerf, M., Kanyavuz, A., Lacroix-Desmazes, S. & Dimitrov, J. D. Sequence features of variable region determining physicochemical properties and polyreactivity of therapeutic antibodies. Mol. Immunol. 112, 338–346 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Yadav, S., Laue, T. M., Kalonia, D. S., Singh, S. N. & Shire, S. J. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Mol. Pharm. 9, 791–802 (2012). Mechanistically highlights that charged patches can manifest in macroscopic development issues.

    Article  CAS  PubMed  Google Scholar 

  132. Emmenegger, M. et al. LAG3 is not expressed in human and murine neurons and does not modulate synucleinopathies. EMBO Mol. Med. 13, e14745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gan, S. D. & Patel, K. R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Dermatol. 133, e12 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Engvall, E. In Methods in Enzymology 419–439 (Academic Press, 1980).

  135. Engvall, E. & Perlmann, P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109, 129–135 (1972).

    CAS  PubMed  Google Scholar 

  136. Engvall, E., Jonsson, K. & Perlmann, P. Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin g, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim. Biophys. Acta Protein Struct. 251, 427–434 (1971).

    Article  CAS  Google Scholar 

  137. Hedda, W. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  Google Scholar 

  138. Vugmeyster, Y. et al. In vitro potency, pharmacokinetic profiles and pharmacological activity of optimized anti-IL-21R antibodies in a mouse model of lupus. mAbs 2, 335–346 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Vugmeyster, Y. et al. Correlation of pharmacodynamic activity, pharmacokinetics, and anti-product antibody responses to anti-IL-21R antibody therapeutics following IV administration to cynomolgus monkeys. J. Transl. Med. 8, 41 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Piche-Nicholas, N. M. et al. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. mAbs 10, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Ausserwöger, H. et al. Surface interaction patches link non-specific binding and phase separation of antibodies. Preprint at bioRxiv https://doi.org/10.1101/2022.03.07.483238 (2022).

    Article  Google Scholar 

  143. Yang, D. et al. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn. mAbs 9, 1105–1117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chow, C.-K., Allan, B. W., Chai, Q., Atwell, S. & Lu, J. Therapeutic antibody engineering to improve viscosity and phase separation guided by crystal structure. Mol. Pharm. 13, 915–923 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Du, Q. et al. Process optimization and protein engineering mitigated manufacturing challenges of a monoclonal antibody with liquid-liquid phase separation issue by disrupting inter-molecule electrostatic interactions. mAbs 11, 789–802 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kingsbury, J. S. et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci. Adv. 6, eabb0372 (2022).

    Article  Google Scholar 

  147. Casaz, P. et al. Resolving self-association of a therapeutic antibody by formulation optimization and molecular approaches. mAbs 6, 1533–1539 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hondele, M. et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wartchow, C. A. et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J. Comput. Aided Mol. Des. 25, 669 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ruff, K. M., Dar, F. & Pappu, R. V. Ligand effects on phase separation of multivalent macromolecules. Proc. Natl Acad. Sci. USA 118, e2017184118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Yadav, S., Shire, S. J. & Kalonia, D. S. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J. Pharm. Sci. 101, 998–1011 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Yadav, S. et al. Establishing a link between amino acid sequences and self-associating and viscoelastic behavior of two closely related monoclonal antibodies. Pharm. Res. 28, 1750–1764 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Yadav, S., Scherer, T. M., Shire, S. J. & Kalonia, D. S. Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime. Anal. Biochem. 411, 292–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Apgar, J. R. et al. Modeling and mitigation of high-concentration antibody viscosity through structure-based computer-aided protein design. PLoS One 15, e0232713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yadav, S., Liu, J., Shire, S. J. & Kalonia, D. S. Specific interactions in high concentration antibody solutions resulting in high viscosity. J. Pharm. Sci. 99, 1152–1168 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, J., Nguyen, M. D. H., Andya, J. D. & Shire, S. J. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J. Pharm. Sci. 94, 1928–1940 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Kanai, S., Liu, J., Patapoff, T. W. & Shire, S. J. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab–Fab interaction that impacts solution viscosity. J. Pharm. Sci. 97, 4219–4227 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Singh, S. N., Yadav, S., Shire, S. J. & Kalonia, D. S. Dipole-dipole interaction in antibody solutions: correlation with viscosity behavior at high concentration. Pharm. Res. 31, 2549–2558 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Garripelli, V. K., Wu, Z. & Gupta, S. Developability assessment for monoclonal antibody drug candidates: a case study. Pharm. Dev. Technol. 26, 11–20 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Wälchli, R., Fanizzi, F., Massant, J. & Arosio, P. Relationship of PEG-induced precipitation with protein-protein interactions and aggregation rates of high concentration mAb formulations at 5°C. Eur. J. Pharm. Biopharm. 151, 53–60 (2020).

    Article  PubMed  Google Scholar 

  165. Matsuoka, T., Miyauchi, R., Nagaoka, N. & Hasegawa, J. Mitigation of liquid–liquid phase separation of a monoclonal antibody by mutations of negative charges on the Fab surface. PLoS One 15, e0240673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Clark, R. H. et al. Remediating agitation-induced antibody aggregation by eradicating exposed hydrophobic motifs. mAbs 6, 1540–1550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Pindrus, M. et al. Solubility challenges in high concentration monoclonal antibody formulations: relationship with amino acid sequence and intermolecular interactions. Mol. Pharm. 12, 3896–3907 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. DeLano, W. L. Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12, 14–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Chennamsetty, N., Helk, B., Voynov, V., Kayser, V. & Trout, B. L. Aggregation-prone motifs in human immunoglobulin G. J. Mol. Biol. 391, 404–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Chennamsetty, N., Voynov, V., Kayser, V., Helk, B. & Trout, B. L. Prediction of aggregation prone regions of therapeutic proteins. J. Phys. Chem. B 114, 6614–6624 (2010). Development of computational prediction of aggregation-prone antibodies.

    Article  CAS  PubMed  Google Scholar 

  171. Lauer, T. M. et al. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J. Pharm. Sci. 101, 102–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Sormanni, P., Amery, L., Ekizoglou, S., Vendruscolo, M. & Popovic, B. Rapid and accurate in silico solubility screening of a monoclonal antibody library. Sci. Rep. 7, 8200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Shan, L. et al. Developability assessment of engineered monoclonal antibody variants with a complex self-association behavior using complementary analytical and in silico tools. Mol. Pharm. 15, 5697–5710 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Chennamsetty, N., Voynov, V., Kayser, V., Helk, B. & Trout, B. L. Design of therapeutic proteins with enhanced stability. Proc. Natl Acad. Sci. USA 106, 11937–11942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sormanni, P., Aprile, F. A. & Vendruscolo, M. The CamSol method of rational design of protein mutants with enhanced solubility. J. Mol. Biol. 427, 478–490 (2015). Study developing a computational tool for prediction of antibody solubility.

    Article  CAS  PubMed  Google Scholar 

  176. Lai, P.-K. et al. Machine learning feature selection for predicting high concentration therapeutic antibody aggregation. J. Pharm. Sci. 110, 1583–1591 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Hartl, F. U. Protein misfolding diseases. Annu. Rev. Biochem. 86, 21–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Dunker, A. K., Silman, I., Uversky, V. N. & Sussman, J. L. Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol. 18, 756–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Laptoš, T. & Omersel, J. The importance of handling high-value biologicals: physico-chemical instability and immunogenicity of monoclonal antibodies (Review). Exp. Ther. Med. 15, 3161–3168 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. Wang, W., Wang, E. Q. & Balthasar, J. P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84, 548–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Kraft, T. E. et al. Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. mAbs 12, 1683432 (2020).

    Article  PubMed  Google Scholar 

  183. Hu, S., Datta-Mannan, A. & D’Argenio, D. Z. Physiologically based modeling to predict monoclonal antibody pharmacokinetics in humans from in vitro physiochemical properties. mAbs 14, 2056944 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lou, H. & Hageman, M. J. Machine learning attempts for predicting human subcutaneous bioavailability of monoclonal antibodies. Pharm. Res. 38, 451–460 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Popovic, B. et al. Engineering the expression of an anti-interleukin-13 antibody through rational design and mutagenesis. Protein Eng. Des. Sel. 30, 303–311 (2017).

    CAS  PubMed  Google Scholar 

  186. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  187. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Teng, G. & Papavasiliou, F. N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41, 107–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Wang, F. et al. Somatic hypermutation maintains antibody thermodynamic stability during affinity maturation. Proc. Natl Acad. Sci. USA 110, 4261–4266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Julian, M. C., Li, L., Garde, S., Wilen, R. & Tessier, P. M. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability. Sci. Rep. 7, 45259 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Thorsteinson, N., Gunn, J. R., Kelly, K., Long, W. & Labute, P. Structure-based charge calculations for predicting isoelectric point, viscosity, clearance, and profiling antibody therapeutics. mAbs 13, 1981805 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. 5, 600–612 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Narayanan, H. et al. Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol. Sci. 42, 151–165 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Gentiluomo, L. et al. Advancing therapeutic protein discovery and development through comprehensive computational and biophysical characterization. Mol. Pharm. 17, 426–440 (2020).

    CAS  PubMed  Google Scholar 

  196. Shehata, L. et al. Affinity maturation enhances antibody specificity but compromises conformational stability. Cell Rep. 28, 3300–3308.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Willis, J. R., Briney, B. S., DeLuca, S. L., Crowe, J. E. Jr & Meiler, J. Human germline antibody gene segments encode polyspecific antibodies. PLoS Comput. Biol. 9, e1003045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Schmidt, A. G. et al. Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc. Natl Acad. Sci. USA 110, 264–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Dyson, M. R. et al. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. mAbs 12, 1829335 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Müller, T. et al. Particle-based Monte-Carlo simulations of steady-state mass transport at intermediate Péclet numbers. Int. J. Nonlinear Sci. Numer. Simul. 17, 175–183 (2015).

    Article  Google Scholar 

  201. Arosio, P. et al. Microfluidic diffusion analysis of the sizes and interactions of proteins under native solution conditions. ACS Nano 10, 333–341 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Linse, S. et al. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol. 27, 1125–1133 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Aprile, F. A. et al. Rational design of a conformation-specific antibody for the quantification of Aβ oligomers. Proc. Natl Acad. Sci. USA 117, 13509–13518 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schneider, M. M. et al. Microfluidic antibody affinity profiling for in-solution characterisation of alloantibody - HLA interactions in human serum. Preprint at bioRxiv https://doi.org/10.1101/2020.09.14.296442 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Schneider, M. M. et al. Microfluidic characterisation reveals broad range of SARS-CoV-2 antibody affinity in human plasma. Life Sci. Alliance 5, e202101270 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Fiedler, S. et al. In vitro measurements of protein-protein interactions show that antibody affinity governs the inhibition of SARS-CoV-2 spike/ACE2 binding in convalescent serum. ACS Infect. Dis. 7, 2362–2369 (2020).

    Article  Google Scholar 

  207. Herling, T. W. et al. A microfluidic platform for real-time detection and quantification of protein-ligand interactions. Biophys. J. 110, 1957–1966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Perrett, D. Capillary electrophoresis in clinical chemistry. Ann. Clin. Biochem. 36, 133–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  209. Kopp, M. R. G., Capasso Palmiero, U. & Arosio, P. A nanoparticle-based assay to evaluate surface-induced antibody instability. Mol. Pharm. 17, 909–918 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Kopp, M. R. G., Villois, A., Capasso Palmiero, U. & Arosio, P. Microfluidic diffusion analysis of the size distribution and microrheological properties of antibody solutions at high concentrations. Ind. Eng. Chem. Res. 57, 7112–7120 (2018).

    Article  CAS  Google Scholar 

  211. Kopp, M. R. G. & Arosio, P. Microfluidic approaches for the characterization of therapeutic proteins. J. Pharm. Sci. 107, 1228–1236 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Arter, W. E. et al. High resolution and multidimensional protein condensate phase diagrams with a combinatorial microdroplet platform. Preprint at bioRxiv https://doi.org/10.1101/2020.06.04.132308 (2022).

    Article  Google Scholar 

  213. Dietlin-Auril, V., Lecerf, M., Depinay, S., Noé, R. & Dimitrov, J. D. Interaction with 2,4-dinitrophenol correlates with polyreactivity, self-binding, and stability of clinical-stage therapeutic antibodies. Mol. Immunol. 140, 233–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Xu, Y. et al. Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. Protein Eng. Des. Sel. 26, 663–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Kelly, R. L. et al. Chaperone proteins as single component reagents to assess antibody nonspecificity. mAbs 9, 1036–1040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hedberg, S. H. M., Rapley, J., Haigh, J. M. & Williams, D. R. Cross-interaction chromatography as a rapid screening technique to identify the stability of new antibody therapeutics. Eur. J. Pharm. Biopharm. 133, 131–137 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Kizhedath, A., Karlberg, M. & Glassey, J. Cross-interaction chromatography-based QSAR model for early-stage screening to facilitate enhanced developability of monoclonal antibody therapeutics. Biotechnol. J. 14, 1800696 (2019).

    Article  Google Scholar 

  218. Choi, J. R. et al. BLI-based functional assay in phage display benefits the development of a PD-L1-targeting therapeutic antibody. Viruses 12, 684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kim, D. M., Yao, X., Vanam, R. P. & Marlow, M. S. Measuring the effects of macromolecular crowding on antibody function with biolayer interferometry. mAbs 11, 1319–1330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sun, T. et al. High throughput detection of antibody self-interaction by bio-layer interferometry. mAbs 5, 838–841 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Sule, S. V., Dickinson, C. D., Lu, J., Chow, C.-K. & Tessier, P. M. Rapid analysis of antibody self-association in complex mixtures using immunogold conjugates. Mol. Pharm. 10, 1322–1331 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Liu, Y. et al. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. mAbs 6, 483–492 (2014).

    Article  PubMed  Google Scholar 

  223. Wu, J. et al. Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy. Protein Eng. Des. Sel. 28, 403–414 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Geng, S. B. et al. Facile preparation of stable antibody–gold conjugates and application to affinity-capture self-interaction nanoparticle spectroscopy. Bioconjug. Chem. 27, 2287–2300 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Estep, P. et al. An alternative assay to hydrophobic interaction chromatography for high-throughput characterization of monoclonal antibodies. mAbs 7, 553–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Queiroz, J. A., Tomaz, C. T. & Cabral, J. M. S. Hydrophobic interaction chromatography of proteins. J. Biotechnol. 87, 143–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  227. Melander, W. & Horváth, C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch. Biochem. Biophys. 183, 200–215 (1977).

    Article  CAS  PubMed  Google Scholar 

  228. Fausnaugh, J. L. & Regnier, F. E. Solute and mobile phase contributions to retention in hydrophobic interaction chromatography of proteins. J. Chromatogr. A 359, 131–146 (1986).

    Article  CAS  Google Scholar 

  229. Geng, X., Guo, L. & Chang, J. Study of the retention mechanism of proteins in hydrophobic interaction chromatography. J. Chromatogr. A 507, 1–23 (1990).

    Article  CAS  Google Scholar 

  230. Geng, X. & Wang, L. Liquid chromatography of recombinant proteins and protein drugs. J. Chromatogr. B 866, 133–153 (2008).

    Article  CAS  Google Scholar 

  231. Oscarsson, S. Influence of salts on protein interactions at interfaces of amphiphilic polymers and adsorbents. J. Chromatogr. B Biomed. Sci. Appl. 666, 21–31 (1995).

    Article  CAS  Google Scholar 

  232. Obrezanova, O. et al. Aggregation risk prediction for antibodies and its application to biotherapeutic development. mAbs 7, 352–363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sakhnini, L. I. et al. Improving the developability of an antigen binding fragment by aspartate substitutions. Biochemistry 58, 2750–2759 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Zhang, L. et al. Revealing a positive charge patch on a recombinant monoclonal antibody by chemical labeling and mass spectrometry. Anal. Chem. 83, 8501–8508 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Nichols, P. et al. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. mAbs 7, 212–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Global Research Technologies, Novo Nordisk A/S.

Author information

Authors and Affiliations

Authors

Contributions

H.A., M.M.S., T.P.J.K. and N.L.Z. conceived the structure of the manuscript. H.A. and M.M.S. wrote the initial draft of the manuscript. All authors revised and discussed the manuscript.

Corresponding authors

Correspondence to Tuomas P. J. Knowles or Nikolai Lorenzen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks David Brockwell, Leon Willis and the other anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Affinity maturation

The process of improving the binding affinity between an antibody and its target.

Antigens

Molecules recognized by antibodies via a binding event that induces complexation between antibody and antigen.

Developability

The suitability of a drug candidate for successful development into a therapeutic. Includes considerations of feasibility of bioprocesses like expression and purification, suitability of formulation (stability during storage and administration), and in vivo behaviour such as immunogenicity potential and optimal in vivo half-life.

Epitope

The specific structural and molecular feature or region that is recognized by the antibody.

Monoclonal antibodies (mAbs)

Antibodies encoded with the same genetic code, hence sharing a single defined protein sequence.

Off-target binding

The binding of the antibody to targets other than the intended one; may be sub-classified as poly-specific or non-specific binding.

Paratope

The antigen-binding site of an antibody capable of recognizing a specific epitope.

Self-association

Reversible interactions of the antibody with itself, leading to dimer, trimer, oligomer and larger network formation. Commonly manifested as, for example, poor solubility, phase separation or high solution viscosity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ausserwöger, H., Schneider, M.M., Herling, T.W. et al. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 6, 844–861 (2022). https://doi.org/10.1038/s41570-022-00438-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00438-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing