Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imine and imine-derived linkages in two-dimensional covalent organic frameworks

Abstract

Covalent organic frameworks (COFs) are porous crystalline polymers that result from the formation of covalent bonds between precisely assembled organic units. Linkage chemistry is a crucial factor in the controllable synthesis and resulting physicochemical properties of COFs. Imine linkages are popular in the formation of polyfunctional two-dimensional (2D) COFs because they are formed easily with structural and functional diversity. There has been much recent interest in expanding beyond this to COFs with imine-derived linkages. This review highlights the development of chemistry to modify and prepare derivatives of imines within 2D COFs. We discuss the derivation of imine bonds via covalent and noncovalent bonding and the properties and potential applications of the resulting materials in order to provide a better understanding of the relationship between covalent linkages and overall performance for 2D COF materials.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A timeline of advances in the development imine and imine-derived linkages in COFs.
Fig. 2: Representative examples of β-ketoenamine-linked COFs obtained by de novo synthesis.
Fig. 3: De novo production of imine-derived COFs.
Fig. 4: Chemistry can be varied to direct the formation of imine-derived COFs.
Fig. 5: Examples of imine-derived COFs prepared by post-synthetic modification.
Fig. 6: Tuning the physicochemical properties of imine-linked COFs using noncovalent interactions.
Fig. 7: Typical examples of the synthesis of imine-linked COFs based on various noncovalent interactions.

References

  1. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Waller, P. J., Gandara, F. & Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  Google Scholar 

  4. Ben, T. & Qiu, S. Porous aromatic frameworks: synthesis, structure and functions. CrystEngComm 15, 17–26 (2013).

    Article  CAS  Google Scholar 

  5. Tian, Y. & Zhu, G. Porous aromatic frameworks (PAFs). Chem. Rev. 120, 8934–8986 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Y., Jin, S., Xu, H., Nagai, A. & Jiang, D. Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 42, 8012–8031 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, D., Dalgarno, S. J., Xu, Z. & Vilela, F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem. Soc. Rev. 49, 3981–4042 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J. M. & Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 120, 2171–2214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramimoghadam, D., Gray, E. M. & Webb, C. J. Review of polymers of intrinsic microporosity for hydrogen storage applications. Int. J. Hydrog. Energy 41, 16944–16965 (2016).

    Article  CAS  Google Scholar 

  10. Low, Z. X., Budd, P. M., McKeown, N. B. & Patterson, D. A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chem. Rev. 118, 5871–5911 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Tan, L. & Tan, B. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 46, 3322–3356 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Weckhuysen, B. M. & Yu, J. Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 44, 7022–7024 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Dusselier, M. & Davis, M. E. Small-pore zeolites: synthesis and catalysis. Chem. Rev. 118, 5265–5329 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Weng, Q., Wang, X., Wang, X., Bando, Y. & Golberg, D. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45, 3989–4012 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. O’Keeffe, M. Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev. 38, 1215–1217 (2009).

    Article  PubMed  Google Scholar 

  17. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, R. et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Liang, R.-R., Jiang, S.-Y., A, R.-H. & Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, L., Yi, L., Sun, Z. J. & Deng, H. Covalent organic frameworks for optical applications. Aggregate 2, e24 (2021).

    Article  Google Scholar 

  21. Banerjee, T., Podjaski, F., Kröger, J., Biswal, B. P. & Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 6, 168–190 (2021).

    Article  CAS  Google Scholar 

  22. Zhao, X., Pachfule, P. & Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50, 6871–6913 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Feng, L., Qian, C. & Zhao, Y. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications. ACS Mater. Lett. 2, 1074–1092 (2020).

    Article  CAS  Google Scholar 

  24. Zhou, T., Zhao, Y., Choi, J. W. & Coskun, A. Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries. Angew. Chem. Int. Ed. 58, 16795–16799 (2019).

    Article  CAS  Google Scholar 

  25. Wang, D.-G. et al. Covalent organic framework-based materials for energy applications. Energy Environ. Sci. 14, 688–728 (2021).

    Article  CAS  Google Scholar 

  26. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Lyle, S. J., Waller, P. J. & Yaghi, O. M. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem. 1, 172–184 (2019).

    Article  CAS  Google Scholar 

  28. Jiang, J., Zhao, Y. & Yaghi, O. M. Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138, 3255–3265 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Yaghi, O. M. Reticular chemistry-construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138, 15507–15509 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  31. Jin, Y., Yu, C., Denman, R. J. & Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Jin, Y., Wang, Q., Taynton, P. & Zhang, W. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. 47, 1575–1586 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Beuerle, F. & Gole, B. Covalent organic frameworks and cage compounds: design and applications of polymeric and discrete organic scaffolds. Angew. Chem. Int. Ed. 57, 4850–4878 (2018).

    Article  CAS  Google Scholar 

  34. Medina, D. D., Sick, T. & Bein, T. Photoactive and conducting covalent organic frameworks. Adv. Energy Mater. 7, 1700387 (2017).

    Article  Google Scholar 

  35. Guan, X., Chen, F., Fang, Q. & Qiu, S. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357–1384 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Uribe-Romo, F. J. et al. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Segura, J. L., Mancheno, M. J. & Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45, 5635–5671 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Yusran, Y., Li, H., Guan, X., Fang, Q. & Qiu, S. Covalent organic frameworks for catalysis. EnergyChem 2, 100035 (2020).

    Article  Google Scholar 

  39. Hu, J., Gupta, S. K., Ozdemir, J. & Beyzavi, M. H. Applications of dynamic covalent chemistry concept towards tailored covalent organic framework nanomaterials: a review. ACS Appl. Nano Mater. 3, 6239–6269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hunt, J. R., Doonan, C. J., LeVangie, J. D., Côté, A. P. & Yaghi, O. M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 130, 11872–11873 (2018).

    Article  Google Scholar 

  41. Du, Y. et al. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016).

    Article  CAS  Google Scholar 

  42. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K. & Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133, 11478–11481 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Dalapati, S. et al. An azine-linked covalent organic framework. J. Am. Chem. Soc. 135, 17310–17313 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Cui, F.-Z. et al. A gaseous hydrogen chloride chemosensor based on a 2D covalent organic framework. Chem. Commun. 55, 4550–4553 (2019).

    Article  CAS  Google Scholar 

  45. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  46. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).

    Article  PubMed  Google Scholar 

  47. Pyles, D. A., Crowe, J. W., Baldwin, L. A. & McGrier, P. L. Synthesis of benzobisoxazole-linked two-dimensional covalent organic frameworks and their carbon dioxide capture properties. ACS Macro Lett. 5, 1055–1058 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Li, X. et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 9, 2998 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang, P. L., Ding, S. Y., Zhang, Z. C., Wang, Z. P. & Wang, W. Constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc. 141, 18004–18008 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, J. et al. Pyrimidazole-based covalent organic frameworks: integrating functionality and ultrastability via isocyanide chemistry. J. Am. Chem. Soc. 142, 20956–20961 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Peng, Y. et al. Intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 13162–13169 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y. et al. Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. J. Am. Chem. Soc. 142, 5958–5963 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, Y. et al. Catalyst- and solvent-free synthesis of a chemically stable aza-bridged bis(phenanthroline) macrocycle-linked covalent organic framework. Angew. Chem. Int. Ed. 60, 17191–17197 (2021).

    Article  CAS  Google Scholar 

  54. Ren, X. R. et al. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular Povarov reaction. J. Am. Chem. Soc. 144, 2488–2494 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Li, X. et al. Constructing ambivalent imidazopyridinium-linked covalent organic frameworks. Nat. Synth. 1, 382–392 (2022).

    Article  Google Scholar 

  56. Yang, Y. et al. Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration. Nat. Commun. 13, 2615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Nagai, A. et al. A Squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed. 52, 3770–3774 (2013).

    Article  CAS  Google Scholar 

  59. Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).

    Article  PubMed  Google Scholar 

  60. Waller, P. J. et al. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 138, 15519–15522 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Das, G. et al. Viologen-based conjugated covalent organic networks via Zincke reaction. J. Am. Chem. Soc. 139, 9558–9565 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, C. et al. Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140, 16438–16441 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, H. et al. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4, 1696–1709 (2018).

    Article  CAS  Google Scholar 

  64. Jiang, S.-Y. et al. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 141, 14981–14986 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Li, X. T. et al. Construction of covalent organic frameworks via three-component one-pot Strecker and Povarov reactions. J. Am. Chem. Soc. 142, 6521–6526 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Li, C. et al. Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chin. J. Catal. 41, 1288–1297 (2020).

    Article  CAS  Google Scholar 

  67. Wang, J. C., Kan, X., Shang, J. Y., Qiao, H. & Dong, Y. B. Catalytic asymmetric synthesis of chiral covalent organic frameworks from prochiral monomers for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 142, 16915–16920 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, Z. et al. Arylamine‐linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew. Chem. Int. Ed. 60, 20754–20759 (2021).

    Article  CAS  Google Scholar 

  69. Kuehl, V. A. et al. Synthesis, postsynthetic modifications, and applications of the first quinoxaline-based covalent organic framework. ACS Appl. Mater. Interfaces 13, 37494–37499 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Lu, Z. et al. Asymmetric hydrophosphonylation of imines to construct highly stable covalent organic frameworks with efficient intrinsic proton conductivity. J. Am. Chem. Soc. 144, 9624–9633 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Nguyen, H. L. et al. Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting. ACS Cent. Sci. 8, 926–932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhuang, X. et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 7, 4176–4181 (2016).

    Article  CAS  Google Scholar 

  73. Lyu, H., Diercks, C. S., Zhu, C. & Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 6848–6852 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Su, Y. et al. Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions. J. Am. Chem. Soc. 142, 13316–13321 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, B. et al. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. J. Am. Chem. Soc. 140, 12715–12719 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Lyle, S. J. et al. Multistep solid-state organic synthesis of carbamate-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 11253–11258 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, C., Lyu, H., Ji, Z., Zhu, C. & Yaghi, O. M. Ester-linked crystalline covalent organic frameworks. J. Am. Chem. Soc. 142, 14450–14454 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Jackson, K. T., Reich, T. E. & El-Kaderi, H. M. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 48, 8823–8825 (2012).

    Article  CAS  Google Scholar 

  79. Beaudoin, D., Maris, T. & Wuest, J. D. Constructing monocrystalline covalent organic networks by polymerization. Nat. Chem. 5, 830–834 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Yahiaoui, O. et al. 3D anionic silicate covalent organic framework with srs topology. J. Am. Chem. Soc. 140, 5330–5333 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Zhou, D., Tan, X., Wu, H., Tian, L. & Li, M. Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid–liquid interface. Angew. Chem. Int. Ed. 58, 1376–1381 (2019).

    Article  CAS  Google Scholar 

  82. Gropp, C., Ma, T., Hanikel, N. & Yaghi, O. M. Design of higher valency in covalent organic frameworks. Science 370, eabd6406 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, Z. B. et al. Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nat. Commun. 13, 2180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fang, Q. et al. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 53, 2878–2882 (2014).

    Article  CAS  Google Scholar 

  85. Das, G. et al. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 6, 3931–3939 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun, Q., Aguila, B., Perman, J., Nguyen, N. & Ma, S. Q. Flexibility matters: cooperative active sites in covalent organic framework and threaded ionic polymer. J. Am. Chem. Soc. 138, 15790–15796 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, H. et al. Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis. J. Am. Chem. Soc. 142, 4862–4871 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, X. et al. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141, 6623–6630 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Ning, G. H. et al. Salicylideneanilines-based covalent organic frameworks as chemoselective molecular sieves. J. Am. Chem. Soc. 139, 8897–8904 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Haldar, S. et al. Anthracene-resorcinol derived covalent organic framework as flexible white light emitter. J. Am. Chem. Soc. 140, 13367–13374 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Jhulki, S. et al. Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 142, 783–791 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Wang et al. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem. Int. Ed. 56, 14149–14153 (2017).

    Article  CAS  Google Scholar 

  94. Zhang, S. et al. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 6007–6014 (2020).

    Article  CAS  Google Scholar 

  95. Wei, P. F. et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 140, 4623–4631 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Ranjeesh, K. C. et al. Imidazole-linked crystalline two-dimensional polymer with ultrahigh proton-conductivity. J. Am. Chem. Soc. 141, 14950–14954 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, K. et al. Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction. J. Am. Chem. Soc. 142, 11131–11138 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Grunenberg, L. et al. Amine-linked covalent organic frameworks as a platform for postsynthetic structure interconversion and pore-wall modification. J. Am. Chem. Soc. 143, 3430–3438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, M. et al. Construction of flexible amine-linked covalent organic frameworks by catalysis and reduction of formic acid via the Eschweiler–Clarke reaction. Angew. Chem. Int. Ed. 60, 12396–12405 (2021).

    Article  CAS  Google Scholar 

  100. Meyer, C. D., Joiner, C. S. & Stoddart, J. F. Template-directed synthesis employing reversible imine bond formation. Chem. Soc. Rev. 36, 1705–1723 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Han, X., Huang, J., Yuan, C., Liu, Y. & Cui, Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140, 892–895 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Qian, H. L., Meng, F. L., Yang, C. X. & Yan, X. P. Irreversible amide-linked covalent organic framework for selective and ultrafast gold recovery. Angew. Chem. Int. Ed. 59, 17607–17613 (2020).

    Article  CAS  Google Scholar 

  103. Zhou, Z. B. et al. A facile, efficient, and general synthetic method to amide-linked covalent organic frameworks. J. Am. Chem. Soc. 144, 1138–1143 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Hu, J. et al. Catalyst-enabled in situ linkage reduction in imine covalent organic frameworks. ACS Appl. Mater. Interfaces 13, 21740–21747 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Kulkarni, R. et al. Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nat. Commun. 10, 3228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Waller, P. J., AlFaraj, Y. S., Diercks, C. S., Jarenwattananon, N. N. & Yaghi, O. M. Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 140, 9099–9103 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Seo, J. M., Noh, H. J., Jeong, H. Y. & Baek, J. B. Converting unstable imine-linked network into stable aromatic benzoxazole-linked one via post-oxidative cyclization. J. Am. Chem. Soc. 141, 11786–11790 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Haase, F. et al. Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis. Nat. Commun. 9, 2600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Feng, J. et al. Fused-ring-linked covalent organic frameworks. J. Am. Chem. Soc. 144, 6594–6603 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Frath, D., Azizi, S., Ulrich, G., Retailleau, P. & Ziessel, R. Facile synthesis of highly fluorescent boranil complexes. Org. Lett. 13, 3414–3417 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Qian, C. et al. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange. J. Am. Chem. Soc. 139, 6736–6743 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Liang, L. et al. Non-interpenetrated single-crystal covalent organic frameworks. Angew. Chem. Int. Ed. 59, 17991–17995 (2020).

    Article  CAS  Google Scholar 

  114. Zhang, G. et al. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach. J. Am. Chem. Soc. 140, 2602–2609 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Qian, H.-L., Li, Y. & Yan, X.-P. A building block exchange strategy for the rational fabrication of de novo unreachable amino-functionalized imine-linked covalent organic frameworks. J. Mater. Chem. A 6, 17307–17311 (2018).

    Article  CAS  Google Scholar 

  116. Daugherty, M. C. et al. Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. Chem. Commun. 55, 2680–2683 (2019).

    Article  CAS  Google Scholar 

  117. Li, Z., Ding, X., Feng, Y., Feng, W. & Han, B.-H. Structural and dimensional transformations between covalent organic frameworks via linker exchange. Macromolecules 52, 1257–1265 (2019).

    Article  Google Scholar 

  118. Miao, Z. et al. A novel strategy for the construction of covalent organic frameworks from nonporous covalent organic polymers. Angew. Chem. Int. Ed. 58, 4906–4910 (2019).

    Article  CAS  Google Scholar 

  119. Zhai, Y. et al. Construction of covalent-organic frameworks (COFs) from amorphous covalent organic polymers via linkage replacement. Angew. Chem. Int. Ed. 58, 17679–17683 (2019).

    Article  CAS  Google Scholar 

  120. Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Leng, W. G. et al. Sophisticated design of covalent organic frameworks with controllable bimetallic docking for a cascade reaction. Chem. Eur. J. 22, 9087–9091 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Li, H. et al. Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications. J. Mater. Chem. A 7, 5482–5492 (2019).

    Article  CAS  Google Scholar 

  123. Qian, C. et al. Linkage engineering by harnessing supramolecular interactions to fabricate 2D hydrazone-linked covalent organic framework platforms toward advanced catalysis. J. Am. Chem. Soc. 142, 18138–18149 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, H. et al. A visible-light-harvesting covalent organic framework bearing single nickel sites as a highly efficient sulfur–carbon cross-coupling dual catalyst. Angew. Chem. Int. Ed. 60, 10820–10827 (2021).

    Article  CAS  Google Scholar 

  125. Mu, M. et al. Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins. ACS Appl. Mater. Interfaces 9, 22856–22863 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Yang, J. et al. An N-heterocyclic carbene-functionalised covalent organic framework with atomically dispersed palladium for coupling reactions under mild conditions. Green Chem. 21, 5267–5273 (2019).

    Article  CAS  Google Scholar 

  127. Yan, Q. et al. Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application. RSC Adv. 10, 17396–17403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kandambeth, S. et al. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. Angew. Chem. Int. Ed. 52, 13052–13056 (2013).

    Article  CAS  Google Scholar 

  129. Halder, A. et al. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding. Angew. Chem. Int. Ed. 57, 5797–5802 (2018).

    Article  CAS  Google Scholar 

  130. Alahakoon, S. B. et al. 2D-covalent organic frameworks with interlayer hydrogen bonding oriented through designed nonplanarity. J. Am. Chem. Soc. 142, 12987–12994 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Diwakara, S. D. et al. Supramolecular reinforcement of a large-pore 2D covalent organic framework. J. Am. Chem. Soc. 144, 2468–2473 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, H., Gao, J. & Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Huang, N., Zhai, L. P., Xu, H. & Jiang, D. L. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 139, 2428–2434 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Tao, S. et al. Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nat. Commun. 11, 1981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Han, X. et al. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 139, 8693–8697 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, X., Han, X., Liu, Y., Liu, Y. & Cui, Y. Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 140, 16124–16133 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the Ministry of Education Singapore under its Academic Research Funds (RG3/21 and MOET2EP10120-0003), the Singapore Agency for Science, Technology and Research (A*STAR) under the Manufacturing, Trade and Connectivity Individual Research Grant (M21K2c0105), the Shanghai Pujiang Program (21PJ1400300), the National Natural Science Foundation of China (52203006), and the Fundamental Research Funds for the Central Universities (2232022D-06). We thank H. Wu for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.Q. researched data for the article and contributed to writing, preparation of figures, and reviewing and editing the manuscript. L.F. and W.L.T. revised the manuscript. J.L., W.Z. and D.W. contributed to the discussion of content. Y.Z. revised the manuscript, designed figures and conceived the overall direction of the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yanli Zhao.

Ethics declarations

Competing interest

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks A. Coskun, W. Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Feng, L., Teo, W.L. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat Rev Chem 6, 881–898 (2022). https://doi.org/10.1038/s41570-022-00437-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00437-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing