Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations

Abstract

Having served as a playground for fundamental studies on the physics of d and f electrons for almost a century, magnetic molecules are now becoming increasingly important for technological applications, such as magnetic resonance, data storage, spintronics and quantum information. All of these applications require the preservation and control of spins in time, an ability hampered by the interaction with the environment, namely with other spins, conduction electrons, molecular vibrations and electromagnetic fields. Thus, the design of a novel magnetic molecule with tailored properties is a formidable task, which does not only concern its electronic structures but also calls for a deep understanding of the interaction among all the degrees of freedom at play. This Review describes how state-of-the-art ab initio computational methods, combined with data-driven approaches to materials modelling, can be integrated into a fully multiscale strategy capable of defining design rules for magnetic molecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Example of magnetic molecules and their solid-state environments.
Fig. 2: Multiscale computational modelling of magnetic molecules.
Fig. 3: Ab initio spin-dynamics results.
Fig. 4: Different phenomena driven by spin–electron interaction in molecules.

References

  1. Heisenberg, W. Zur theorie des ferromagnetismus. Z. Phys. 49, 619 (1928).

    Article  CAS  Google Scholar 

  2. Stoner, E. C. Magnetism and Matter (Methuen, 1934).

  3. Cambi, L. & Cagnasso, A. Iron dithiocarbamates and nitrosodithiocarbamates. Atti Accad. Naz. Lincei 13, 809–813 (1931).

    CAS  Google Scholar 

  4. Cambi, L., Szegö, L. & Cagnasso, A. The magnetic susceptibility of complexes. IV. Ferric N,N-dipropyldithiocarbamates. Atti Accad. Naz. Lincei 15, 266–271 (1932).

    CAS  Google Scholar 

  5. Cambi, L., Szegö, L. & Cagnasso, A. The magnetic susceptibility of complexes. V. Iron dibutyldithio-carbamates. Atti Accad. Naz. Lincei 15, 329–335 (1932).

    CAS  Google Scholar 

  6. Kahn, O. Molecular Magnetism (Dover, 2021).

  7. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets Vol. 5 (Oxford Univ. Press, 2006).

  8. Bencini, A. & Gatteschi, D. EPR of Exchange Coupled Systems (Courier Corporation, 2012).

  9. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993). A mixed-valence manganese cluster is reported to show magnetic hysteresis at low temperature, marking the birth of single-molecule magnets.

    Article  CAS  Google Scholar 

  10. Giansiracusa, M. J., Kostopoulos, A. K., Collison, D., Winpenny, R. E. & Chilton, N. F. Correlating blocking temperatures with relaxation mechanisms in monometallic single-molecule magnets with high energy barriers (Ueff > 600 K). Chem. Commun. 55, 7025–7028 (2019).

    Article  CAS  Google Scholar 

  11. Castro-Alvarez, A., Gil, Y., Llanos, L. & Aravena, D. High performance single-molecule magnets, Orbach or Raman relaxation suppression? Inorg. Chem. Front. 7, 2478–2486 (2020).

    Article  CAS  Google Scholar 

  12. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, 864–871 (1964).

    Article  Google Scholar 

  13. Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

  14. Jensen, F. Introduction to Computational Chemistry (Wiley, 2016).

  15. Waldmann, O. A criterion for the anisotropy barrier in single-molecule magnets. Inorg. Chem. 46, 10035–10037 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Cirera, J., Ruiz, E., Alvarez, S., Neese, F. & Kortus, J. How to build molecules with large magnetic anisotropy. Chem. Eur. J. 15, 4078–4087 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Fataftah, M. S., Zadrozny, J. M., Rogers, D. M. & Freedman, D. E. A mononuclear transition metal single-molecule magnet in a nuclear spin-free ligand environment. Inorg. Chem. 53, 10716–10721 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Zadrozny, J. M., Telser, J. & Long, J. R. Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2− (E=O, S, Se). Polyhedron 64, 209–217 (2013).

    Article  CAS  Google Scholar 

  19. Pedersen, K. S. et al. Design of single-molecule magnets: insufficiency of the anisotropy barrier as the sole criterion. Inorg. Chem. 54, 7600–7606 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Rechkemmer, Y. et al. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun. 7, 10467 (2016). A Co(II) single-ion complex is synthesized and shown to possess very slow magnetic relaxation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Atzori, M. & Sessoli, R. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020).

    Article  CAS  Google Scholar 

  23. Moreno-Pineda, E. & Wernsdorfer, W. Measuring molecular magnets for quantum technologies. Nat. Rev. Phys. 3, 645–659 (2021).

    Article  CAS  Google Scholar 

  24. Gaita-Ariño, A., Luis, F., Hill, S. & Coronado, E. Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019).

    Article  PubMed  Google Scholar 

  25. Yu, C.-J., Von Kugelgen, S., Laorenza, D. W. & Freedman, D. E. A molecular approach to quantum sensing. ACS Cent. Sci. 7, 712–723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015). A V(IV) complex with nuclear spin-free ligands is shown to possess a coherence time approaching milliseconds at low temperature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  28. Breuer, H.-P. et al. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  29. Li, Z., Li, B., Yang, J. & Hou, J. G. Single-molecule chemistry of metal phthalocyanine on noble metal surfaces. Acc. Chem. Res. 43, 954–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 70, 259–379 (2015).

    Article  CAS  Google Scholar 

  31. Kuch, W. & Bernien, M. Controlling the magnetism of adsorbed metal–organic molecules. J. Phys. Condens. Matter 29, 023001 (2016).

    Article  PubMed  Google Scholar 

  32. Andreoni, W. & Yip, S. (eds) Handbook of Materials Modeling, Methods: Theory and Modeling (Springer, 2020).

  33. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge structural database. Acta Cryst. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  34. Angeli, C., Cimiraglia, R., Evangelisti, S., Leininger, T. & Malrieu, J.-P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114, 10252–10264 (2001).

    Article  CAS  Google Scholar 

  35. Neese, F., Atanasov, M., Bistoni, G., Maganas, D. & Ye, S. Chemistry and quantum mechanics in 2019: give us insight and numbers. J. Am. Chem. Soc. 141, 2814–2824 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Aquilante, F. et al. Modern quantum chemistry with [Open] Molcas. J. Chem. Phys. 152, 214117 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Goedecker, S. Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085 (1999).

    Article  CAS  Google Scholar 

  39. Prentice, J. C. et al. The ONETEP linear-scaling density functional theory program. J. Chem. Phys. 152, 174111 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  PubMed  Google Scholar 

  41. Ratcliff, L. E. et al. Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations. J. Chem. Phys. 152, 194110 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Ozaki, T. & Kino, H. Efficient projector expansion for the ab initio LCAO method. Phys. Rev. B 72, 045121 (2005).

    Article  Google Scholar 

  43. Nakata, A. et al. Large scale and linear scaling DFT with the CONQUEST code. J. Chem. Phys. 152, 164112 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Garcia, A. et al. Siesta: recent developments and applications. J. Chem. Phys. 152, 204108 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Garlatti, E. et al. Unveiling phonons in a molecular qubit with four-dimensional inelastic neutron scattering and density functional theory. Nat. Commun. 11, 1751 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sherrill, C. D., Manolopoulos, D. E., Martnez, T. J. & Michaelides, A. Electronic structure software. J. Chem. Phys. 153, 070401 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  48. Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993).

    Article  CAS  Google Scholar 

  49. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  50. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  51. Zein, S., Borshch, S. A., Fleurat-Lessard, P., Casida, M. E. & Chermette, H. Assessment of the exchange-correlation functionals for the physical description of spin transition phenomena by density functional theory methods: All the same? J. Chem. Phys. 126, 014105 (2007).

    Article  PubMed  Google Scholar 

  52. Droghetti, A., Alfè, D. & Sanvito, S. Assessment of density functional theory for iron(II) molecules across the spin-crossover transition. J. Chem. Phys. 137, 124303 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Eftimie, E.-L. A., Avram, C., Brik, M. & Avram, N. Optical absorption spectra and g factor of MgO: Mn2+ explored by ab initio and semi empirical methods. J. Phys. Chem. Solids 113, 194–200 (2018).

    Article  Google Scholar 

  54. Eftimie, E.-L. A., Avram, C. N., Brik, M. G., Chernyshev, V. A. & Avram, N. M. Ab initio analysis of the optical spectra and EPR parameters of Ni2+ ions in CaF2 and CdF2 crystals. J. Lumin. 214, 116577 (2019).

    Article  Google Scholar 

  55. Frenkel, D. & Smit, B. Understanding Molecular Simulation (Academic, 2002).

  56. Jia, W. et al. in Proceedings of SC20: International Conference for High Performance Computing, Networking, Storage and Analysis 1–14 (IEEE, 2020).

  57. Salomon-Ferrer, R., Case, D. A. & Walker, R. C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 198–210 (2013).

    Article  CAS  Google Scholar 

  58. Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  59. Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007). Neural networks are shown to be able to accurately represent the potential energy surface of chemical systems.

    Article  PubMed  Google Scholar 

  61. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article  Google Scholar 

  62. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    Article  CAS  Google Scholar 

  63. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  PubMed  Google Scholar 

  64. Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bartók, A. P. et al. Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3, e1701816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lunghi, A. & Sanvito, S. A unified picture of the covalent bond within quantum-accurate force fields: from organic molecules to metallic complexes’ reactivity. Sci. Adv. 5, eaaw2210 (2019). Machine-learning force fields based on a simple linear model are shown to accurately capture the potential energy surface of coordination compounds, including magnetic ones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lunghi, A. & Sanvito, S. Surfing multiple conformation-property landscapes via machine learning: Designing single-ion magnetic anisotropy. J. Phys. Chem. C 124, 5802–5806 (2020).

    Article  CAS  Google Scholar 

  68. Tancogne-Dejean, N. et al. Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. J. Chem. Phys. 152, 124119 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Simoni, J., Stamenova, M. & Sanvito, S. Ab initio dynamical exchange interactions in frustrated antiferromagnets. Phys. Rev. B 96, 054411 (2017).

    Article  Google Scholar 

  70. Simoni, J., Stamenova, M. & Sanvito, S. Ultrafast demagnetizing fields from first principles. Phys. Rev. B 95, 024412 (2017).

    Article  Google Scholar 

  71. Stamenova, M., Simoni, J. & Sanvito, S. Role of spin-orbit interaction in the ultrafast demagnetization of small iron clusters. Phys. Rev. B 94, 014423 (2016).

    Article  Google Scholar 

  72. Elliott, P., Müller, T., Dewhurst, J., Sharma, S. & Gross, E. Ultrafast laser induced local magnetization dynamics in Heusler compounds. Sci. Rep. 6, 38911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krieger, K. et al. Ultrafast demagnetization in bulk versus thin films: an ab initio study. J. Phys. Condens. Matter 29, 224001 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Redfield, A. G. On the theory of relaxation processes. IBM J. Res. Dev. 1, 19–31 (1957).

    Article  Google Scholar 

  75. Tesi, L. et al. Giant spin–phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence. Dalton Trans. 45, 16635–16643 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Lunghi, A., Totti, F., Sessoli, R. & Sanvito, S. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nat. Commun. 8, 14620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Neese, F. & Solomon, E. I. Calculation of zero-field splittings, g-values, and the relativistic nephelauxetic effect in transition metal complexes. application to high-spin ferric complexes. Inorg. Chem. 37, 6568–6582 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Kortus, J., Pederson, M. R., Baruah, T., Bernstein, N. & Hellberg, C. Density functional studies of single molecule magnets. Polyhedron 22, 1871–1876 (2003).

    Article  CAS  Google Scholar 

  79. Ganyushin, D. & Neese, F. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 125, 024103 (2006).

    Article  Google Scholar 

  80. Neese, F. Importance of direct spin–spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: A case study. J. Am. Chem. Soc. 128, 10213–10222 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Neese, F. Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory. J. Chem. Phys. 127, 164112 (2007).

    Article  PubMed  Google Scholar 

  82. Neese, F. & Pantazis, D. A. What is not required to make a single molecule magnet. Faraday Discuss. 148, 229–238 (2011). Ab initio simulations show that single-ion coordination complexes with quasi-degenerate ground state can outperform the magnetic anisotropy of polynuclear single-molecule magnets.

    Article  CAS  PubMed  Google Scholar 

  83. Zein, S., Duboc, C., Lubitz, W. & Neese, F. A systematic density functional study of the zero-field splitting in Mn(II) coordination compounds. Inorg. Chem. 47, 134–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Lunghi, A. & Totti, F. DFT magnetic characterization of a Fe4 SMMs series: from isotropic exchange interactions to multi-spin zero field splitting. J. Mater. Chem. C 2, 8333–8343 (2014).

    Article  CAS  Google Scholar 

  85. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S.-Y. & Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003). A Tb single-ion complex is shown to possess a very large magnetic anisotropy, opening the way to lanthanide-based molecular magnetism.

    Article  CAS  PubMed  Google Scholar 

  86. Freedman, D. E. et al. Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 132, 1224–1225 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Harman, W. H. et al. Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. J. Am. Chem. Soc. 132, 18115–18126 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Duboc, C., Ganyushin, D., Sivalingam, K., Collomb, M.-N. & Neese, F. Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. J. Phys. Chem. A 114, 10750–10758 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Kubica, A., Kowalewski, J., Kruk, D. & Odelius, M. Zero-field splitting in nickel(II) complexes: A comparison of DFT and multi-configurational wavefunction calculations. J. Chem. Phys. 138, 064304 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Khan, S., Kubica-Misztal, A., Kruk, D., Kowalewski, J. & Odelius, M. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches. J. Chem. Phys. 142, 034304 (2015).

    Article  PubMed  Google Scholar 

  91. Singh, S. K., Atanasov, M. & Neese, F. Challenges in multireference perturbation theory for the calculations of the g-tensor of first-row transition-metal complexes. J. Chem. Theory Comput. 14, 4662–4677 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Maurice, R. et al. Universal theoretical approach to extract anisotropic spin Hamiltonians. J. Chem. Theory Comput. 5, 2977–2984 (2009). A computational strategy to predict the spin-Hamiltonian parameters from ab initio simulations is provided.

    Article  CAS  PubMed  Google Scholar 

  93. Chibotaru, L. F. & Ungur, L. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys. 137, 064112 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Finley, J., Malmqvist, P.-Å., Roos, B. O. & Serrano-Andrés, L. The multi-state CASPT2 method. Chem. Phys. Lett. 288, 299–306 (1998).

    Article  CAS  Google Scholar 

  95. Ungur, L. & Chibotaru, L. F. Ab initio crystal field for lanthanides. Chem. Eur. J. 23, 3708–3718 (2017). A computational strategy for the prediction of the crystal-field parameters of lanthanide complexes with ab initio methods is illustrated.

    Article  CAS  PubMed  Google Scholar 

  96. Atanasov, M., Daul, C., Güdel, H. U., Wesolowski, T. A. & Zbiri, M. Ground states, excited states, and metal–ligand bonding in rare earth hexachloro complexes: A DFT-based ligand field study. Inorg. Chem. 44, 2954–2963 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Pradipto, A.-M., Broer, R. & Picozzi, S. Ab initio modelling of magnetic anisotropy in Sr3NiPtO6. Phys. Chem. Chem. Phys. 18, 4078–4085 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Ferbinteanu, M. et al. On the density functional theory treatment of lanthanide coordination compounds: a comparative study in a series of Cu–Ln (Ln = Gd, Tb, Lu) binuclear complexes. Inorg. Chem. 56, 9474–9485 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Atanasov, M., Ganyushin, D., Pantazis, D. A., Sivalingam, K. & Neese, F. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes. Inorg. Chem. 50, 7460–7477 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Atanasov, M., Zadrozny, J. M., Long, J. R. & Neese, F. A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior. Chem. Sci. 4, 139–156 (2013).

    Article  CAS  Google Scholar 

  101. Zadrozny, J. M. et al. Magnetic blocking in a linear iron(I) complex. Nat. Chem. 5, 577–581 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Bunting, P. C. et al. A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state. Science 362, eaat7319 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Rinehart, J. D. & Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078–2085 (2011). A general trend in the magnetic anisotropy of lanthanide complex is provided on the basis of electrostatic considerations.

    Article  CAS  Google Scholar 

  104. Ungur, L. & Chibotaru, L. F. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 13, 20086–20090 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Ungur, L., Le Roy, J. J., Korobkov, I., Murugesu, M. & Chibotaru, L. F. Fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet. Angew. Chem. Int. Ed. 53, 4413–4417 (2014).

    Article  CAS  Google Scholar 

  106. Chilton, N. F., Goodwin, C. A., Mills, D. P. & Winpenny, R. E. The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. Chem. Commun. 51, 101–103 (2015).

    Article  CAS  Google Scholar 

  107. Chilton, N. F. Design criteria for high-temperature single-molecule magnets. Inorg. Chem. 54, 2097–2099 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Ungur, L. & Chibotaru, L. F. Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg. Chem. 55, 10043–10056 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Ding, Y.-S., Chilton, N. F., Winpenny, R. E. & Zheng, Y.-Z. On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew. Chem. Int. Ed. 55, 16071–16074 (2016).

    Article  CAS  Google Scholar 

  110. Goodwin, C. A., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548, 439–442 (2017). The first Dy compound with reversal anisotropy barrier approaching the boiling temperature of nitrogen is synthesized.

    Article  CAS  PubMed  Google Scholar 

  111. Canaj, A. B. et al. Insight into D6h symmetry: targeting strong axiality in stable dysprosium(III) hexagonal bipyramidal single-ion magnets. Angew. Chem. Int. Ed. 58, 14146–14151 (2019).

    Article  CAS  Google Scholar 

  112. Jung, J., Atanasov, M. & Neese, F. Ab initio ligand-field theory analysis and covalency trends in actinide and lanthanide free ions and octahedral complexes. Inorg. Chem. 56, 8802–8816 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Singh, S. K., Eng, J., Atanasov, M. & Neese, F. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coord. Chem. Rev. 344, 2–25 (2017).

    Article  CAS  Google Scholar 

  114. Briganti, M. et al. Covalency and magnetic anisotropy in lanthanide single molecule magnets: the DyDOTA archetype. Chem. Sci. 10, 7233–7245 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Norre, M. S. et al. High-pressure crystallographic and magnetic studies of pseudo-D5h symmetric Dy(III) and Ho(III) single-molecule magnets. Inorg. Chem. 59, 717–729 (2019).

    Article  PubMed  Google Scholar 

  116. Briganti, M. & Totti, F. Magnetic anisotropy on demand exploiting high-pressure as remote control: an ab initio proof of concept. Dalton Trans. 50, 10621–10628 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Gonidec, M. et al. Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. J. Am. Chem. Soc. 133, 6603–6612 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Dreiser, J. et al. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces. ACS Nano 8, 4662–4671 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Lunghi, A., Iannuzzi, M., Sessoli, R. & Totti, F. Single molecule magnets grafted on gold: magnetic properties from ab initio molecular dynamics. J. Mater. Chem. C 3, 7294–7304 (2015).

    Article  CAS  Google Scholar 

  120. Caneschi, A., Gatteschi, D. & Totti, F. Molecular magnets and surfaces: a promising marriage. A DFT insight. Coord. Chem. Rev. 289, 357–378 (2015).

    Article  Google Scholar 

  121. Avdoshenko, S. M. Fullerene faraday cage keeps magnetic properties of inner cluster pristine. J. Comput. Chem. 39, 1594–1598 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Cini, A. et al. Mössbauer spectroscopy of a monolayer of single molecule magnets. Nat. Commun. 9, 480 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fernandez Garcia, G., Lunghi, A., Totti, F. & Sessoli, R. Toward mesoscale properties of self-assembled monolayers of SMM on Au(111): An integrated ad hoc FF and DFT study. J. Phys. Chem. C 120, 14774–14781 (2016).

    Article  CAS  Google Scholar 

  124. Garcia, G. F., Lunghi, A., Totti, F. & Sessoli, R. The disclosure of mesoscale behaviour of a 3d-SMM monolayer on Au(111) through a multilevel approach. Nanoscale 10, 4096–4104 (2018).

    Article  Google Scholar 

  125. Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 74, 5737–5743 (1981).

    Article  CAS  Google Scholar 

  126. Soda, T. et al. Ab initio computations of effective exchange integrals for H–H, H–He–H and Mn2O2 complex: comparison of broken-symmetry approaches. Chem. Phys. Lett. 319, 223–230 (2000).

    Article  CAS  Google Scholar 

  127. Bencini, A. & Totti, F. A few comments on the application of density functional theory to the calculation of the magnetic structure of oligo-nuclear transition metal clusters. J. Chem. Theory Comput. 5, 144–154 (2009). A general prescription for the prediction of exchange coupling constants in polynuclear complexes with density functional theory is provided.

    Article  CAS  PubMed  Google Scholar 

  128. Schurkus, H., Chen, D.-T., Cheng, H.-P., Chan, G. & Stanton, J. Theoretical prediction of magnetic exchange coupling constants from broken-symmetry coupled cluster calculations. J. Chem. Phys. 152, 234115 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Pantazis, D. A. Assessment of double-hybrid density functional theory for magnetic exchange coupling in manganese complexes. Inorganics 7, 57 (2019).

    Article  CAS  Google Scholar 

  130. García, V., Castell, O., Caballol, R. & Malrieu, J. An iterative difference-dedicated configuration interaction. Proposal and test studies. Chem. Phys. Lett. 238, 222–229 (1995).

    Article  Google Scholar 

  131. Queralt, N. et al. On the applicability of multireference second-order perturbation theory to study weak magnetic coupling in molecular complexes. J. Comput. Chem. 29, 994–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Stein, C. J. & Reiher, M. Automated selection of active orbital spaces. J. Chem. Theory Comput. 12, 1760–1771 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Schriber, J. B. & Evangelista, F. A. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy. J. Chem. Phys. 144, 161106 (2016).

    Article  PubMed  Google Scholar 

  134. Khedkar, A. & Roemelt, M. Extending the ASS1ST active space selection scheme to large molecules and excited states. J. Chem. Theory Comput. 16, 4993–5005 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Roemelt, M., Krewald, V. & Pantazis, D. A. Exchange coupling interactions from the density matrix renormalization group and n-electron valence perturbation theory: application to a biomimetic mixed-valence manganese complex. J. Chem. Theory Comput. 14, 166–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Gagliardi, L. et al. Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems. Acc. Chem. Res. 50, 66–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Sharma, P., Truhlar, D. G. & Gagliardi, L. Magnetic coupling in a tris-hydroxo-bridged chromium dimer occurs through ligand mediated superexchange in conjunction with through-space coupling. J. Am. Chem. Soc. 142, 16644–16650 (2020). Multireference wave-function theory is demonstrated to provide a systematic way to obtain accurate exchange coupling constants for transition-metal dimers.

    Article  CAS  PubMed  Google Scholar 

  138. Gransbury, G. K. et al. Single-ion anisotropy and exchange coupling in cobalt(II)-radical complexes: insights from magnetic and ab initio studies. Chem. Sci. 10, 8855–8871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Albold, U., Bamberger, H., Hallmen, P. P., van Slageren, J. & Sarkar, B. Strong exchange couplings drastically slow down magnetization relaxation in an air-stable cobalt(II)-radical single-molecule magnet (SMM). Angew. Chem. Int. Ed. 58, 9802–9806 (2019).

    Article  CAS  Google Scholar 

  140. Kozimor, S. A., Bartlett, B. M., Rinehart, J. D. & Long, J. R. Magnetic exchange coupling in chloride-bridged 5f–3d heterometallic complexes generated via insertion into a uranium(IV) dimethylpyrazolate dimer. J. Am. Chem. Soc. 129, 10672–10674 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Peng, Y. & Powell, A. K. What do 3d-4f butterflies tell us? Coord. Chem. Rev. 426, 213490 (2021).

    Article  CAS  Google Scholar 

  142. Briganti, M., Totti, F. & Andruh, M. Hetero-tri-spin systems: an alternative stairway to the single molecule magnet heaven? Dalton Trans. 50, 15961–15972 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Meng, Y.-S. et al. Weak exchange coupling effects leading to fast magnetic relaxations in a trinuclear dysprosium single-molecule magnet. Inorg. Chem. Front. 7, 447–454 (2020).

    Article  CAS  Google Scholar 

  144. Demir, S., Jeon, I.-R., Long, J. R. & Harris, T. D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 289, 149–176 (2015).

    Article  Google Scholar 

  145. Rinehart, J. D., Fang, M., Evans, W. J. & Long, J. R. Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes. Nat. Chem. 3, 538–542 (2011). Large exchange coupling among lanthanide ions is obtained using radical ligand bridges.

    Article  CAS  PubMed  Google Scholar 

  146. Rinehart, J. D., Fang, M., Evans, W. J. & Long, J. R. A N23− radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J. Am. Chem. Soc. 133, 14236–14239 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Osa, S. et al. A tetranuclear 3d–4f single molecule magnet: [CuIILTbIII(hfac)2]2. J. Am. Chem. Soc. 126, 420–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Langley, S. K. et al. A {CrIII2DyIII2} single-molecule magnet: Enhancing the blocking temperature through 3d magnetic exchange. Angew. Chem. Int. Ed. 52, 12014–12019 (2013).

    Article  CAS  Google Scholar 

  149. Langley, S. K., Wielechowski, D. P., Chilton, N. F., Moubaraki, B. & Murray, K. S. A family of {CrIII2LnIII2} butterfly complexes: effect of the lanthanide ion on the single-molecule magnet properties. Inorg. Chem. 54, 10497–10503 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Langley, S. K. et al. The first 4d/4f single-molecule magnet containing a {RuIII2DyIII2} core. Chem. Commun. 51, 2044–2047 (2015).

    Article  CAS  Google Scholar 

  151. Vignesh, K. R., Langley, S. K., Murray, K. S. & Rajaraman, G. Quenching the quantum tunneling of magnetization in heterometallic octanuclear {TMIII4DyIII4} (TM=Co and Cr) single-molecule magnets by modification of the bridging ligands and enhancing the magnetic exchange coupling. Chem. Eur. J. 23, 1654–1666 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Dey, A., Acharya, J. & Chandrasekhar, V. Heterometallic 3d–4f complexes as single-molecule magnets. Chem. Asian J. 14, 4433–4453 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Dey, S. & Rajaraman, G. Attaining record-high magnetic exchange, magnetic anisotropy and blocking barriers in dilanthanofullerenes. Chem. Sci. 12, 14207–14216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, F. et al. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 8, 16098 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Velkos, G. et al. High blocking temperature of magnetization and giant coercivity in the azafullerene Tb2@C79N with a single-electron terbium–terbium bond. Angew. Chem. Int. Ed. 58, 5891–5896 (2019).

    Article  CAS  Google Scholar 

  156. Singh, M. K., Yadav, N. & Rajaraman, G. Record high magnetic exchange and magnetization blockade in Ln2@C79N (Ln = Gd(III) and Dy(III)) molecules: a theoretical perspective. Chem. Commun. 51, 17732–17735 (2015).

    Article  CAS  Google Scholar 

  157. Burns, C. P. et al. Structure and magnetization dynamics of Dy–Fe and Dy–Ru bonded complexes. Angew. Chem. Int. Ed. 57, 8144–8148 (2018).

    Article  CAS  Google Scholar 

  158. Swain, A., Sen, A. & Rajaraman, G. Are lanthanide-transition metal direct bonds a route to achieving new generation {3d–4f} SMMs? Dalton Trans. 50, 16099–16109 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Gould, C. A. et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 375, 198–202 (2022). A mixed-valence Dy dimer is synthesized and shown to possess the largest coercive field and exchange coupling ever measured.

    Article  CAS  PubMed  Google Scholar 

  160. Patrascu, A. A. et al. A chimeric design of heterospin 2p–3d, 2p–4f, and 2p–3d–4f complexes using a novel family of paramagnetic dissymmetric compartmental ligands. Chem. Commun. 53, 6504–6507 (2017).

    Article  CAS  Google Scholar 

  161. Huang, H., Heuvel, W. V. D. & Soncini, A. Lanthanide-radical magnetic coupling in [LnPc2]0: Competing exchange mechanisms captured via ab initio multi-reference calculations. Quantum Mater. Res. 1, e200003 (2021).

    Google Scholar 

  162. Vieru, V., Iwahara, N., Ungur, L. & Chibotaru, L. F. Giant exchange interaction in mixed lanthanides. Sci. Rep. 6, 24046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Giansiracusa, M. J. et al. Measurement of magnetic exchange in asymmetric lanthanide dimetallics: toward a transferable theoretical framework. J. Am. Chem. Soc. 140, 2504–2513 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Maurice, R. et al. Theoretical determination of the zero-field splitting in copper acetate monohydrate. Inorg. Chem. 50, 6229–6236 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Bouammali, M.-A., Suaud, N., Martins, C., Maurice, R. & Guihéry, N. How to create giant Dzyaloshinskii–Moriya interactions? Analytical derivation and ab initio calculations on model dicopper(II) complexes. J. Chem. Phys. 154, 134301 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Witzel, W. & Sarma, S. D. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    Article  Google Scholar 

  167. Yao, W., Liu, R.-B. & Sham, L. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006). A general theory of spin decoherence due to the coupling to a spin bath is provided, enabling numerical predictions for realistic compounds.

    Article  Google Scholar 

  168. Kuprov, I., Wagner-Rundell, N. & Hore, P. Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction. J. Magn. Reson. 189, 241–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Lunghi, A. & Sanvito, S. Electronic spin-spin decoherence contribution in molecular qubits by quantum unitary spin dynamics. J. Magn. Magn. Mater. 487, 165325 (2019).

    Article  CAS  Google Scholar 

  170. Schnack, J., Richter, J. & Steinigeweg, R. Accuracy of the finite-temperature Lanczos method compared to simple typicality-based estimates. Phys. Rev. Res. 2, 013186 (2020).

    Article  CAS  Google Scholar 

  171. Kuprov, I. Polynomially scaling spin dynamics II: further state-space compression using Krylov subspace techniques and zero track elimination. J. Magn. Reson. 195, 45–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Brenes, M., Varma, V. K., Scardicchio, A. & Girotto, I. Massively parallel implementation and approaches to simulate quantum dynamics using Krylov subspace techniques. Comput. Phys. Commun. 235, 477–488 (2019).

    Article  CAS  Google Scholar 

  173. Bader, K., Winkler, M. & van Slageren, J. Tuning of molecular qubits: very long coherence and spin–lattice relaxation times. Chem. Commun. 52, 3623–3626 (2016).

    Article  CAS  Google Scholar 

  174. Escalera-Moreno, L., Baldov, J. J., Gaita-Ariño, A. & Coronado, E. Exploring the high-temperature frontier in molecular nanomagnets: from lanthanides to actinides. Inorg. Chem. 58, 11883–11892 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Chen, J. et al. Decoherence in molecular electron spin qubits: Insights from quantum many-body simulations. J. Phys. Chem. Lett. 11, 2074–2078 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Daley, A. J., Kollath, C., Schollwöck, U. & Vidal, G. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. Theory Exp. 2004, P04005 (2004).

    Article  Google Scholar 

  177. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Orbach, R. Spin-lattice relaxation in rare-earth salts. Proc. R. Soc. Lond. A Math. Phys. Sci. 264, 458–484 (1961).

    CAS  Google Scholar 

  179. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, 2012).

  180. Lunghi, A. Spin-phonon relaxation in magnetic molecules: theory, predictions and insights. Preprint at https://arxiv.org/abs/2202.03776 (2022).

  181. Lunghi, A., Totti, F., Sanvito, S. & Sessoli, R. Intra-molecular origin of the spin-phonon coupling in slow-relaxing molecular magnets. Chem. Sci. 8, 6051–6059 (2017). The first analysis of the spin–phonon coupling in a single-molecule magnet is provided, demonstrating the important role of intramolecular vibrations localized on the metal ion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Escalera-Moreno, L., Suaud, N., Gaita-Arino, A. & Coronado, E. Determining key local vibrations in the relaxation of molecular spin qubits and single-molecule magnets. J. Phys. Chem. Lett. 8, 1695–1700 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Moseley, D. H. et al. Spin–phonon couplings in transition metal complexes with slow magnetic relaxation. Nat. Commun. 9, 2572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lunghi, A. & Sanvito, S. How do phonons relax molecular spins? Sci. Adv. 5, eaax7163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kearley, G., Johnson, M. & Tomkinson, J. Intermolecular interactions in solid benzene. J. Chem. Phys. 124, 044514 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Moellmann, J. & Grimme, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).

    Article  CAS  Google Scholar 

  187. Brown-Altvater, F., Rangel, T. & Neaton, J. B. Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals. Phys. Rev. B 93, 195206 (2016).

    Article  Google Scholar 

  188. Hoja, J., Reilly, A. M. & Tkatchenko, A. First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1294 (2017).

    Article  Google Scholar 

  189. Albino, A. et al. First-principles investigation of spin–phonon coupling in vanadium-based molecular spin quantum bits. Inorg. Chem. 58, 10260–10268 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Mirzoyan, R. & Hadt, R. G. The dynamic ligand field of a molecular qubit: decoherence through spin–phonon coupling. Phys. Chem. Chem. Phys. 22, 11249–11265 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Mirzoyan, R., Kazmierczak, N. P. & Hadt, R. G. Deconvolving contributions to decoherence in molecular electron spin qubits: a dynamic ligand field approach. Chem. Eur. J. 27, 9482–9494 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Chakarawet, K. et al. Effect of spin–orbit coupling on phonon-mediated magnetic relaxation in a series of zero-valent vanadium, niobium, and tantalum isocyanide complexes. Inorg. Chem. 60, 18553–18560 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Santanni, F. et al. Probing vibrational symmetry effects and nuclear spin economy principles in molecular spin qubits. Inorg. Chem. 60, 140–151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Kazmierczak, N. P., Mirzoyan, R. & Hadt, R. G. The impact of ligand field symmetry on molecular qubit coherence. J. Am. Chem. Soc. 143, 17305–17315 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Ullah, A. et al. In silico molecular engineering of dysprosocenium-based complexes to decouple spin energy levels from molecular vibrations. J. Phys. Chem. Lett. 10, 7678–7683 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Lunghi, A. & Sanvito, S. Multiple spin–phonon relaxation pathways in a Kramer single-ion magnet. J. Chem. Phys. 153, 174113 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Escalera-Moreno, L., Baldov, J. J., Gaita-Arino, A. & Coronado, E. Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation. Chem. Sci. 11, 1593–1598 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Yu, K.-X. et al. Enhancing magnetic hysteresis in single-molecule magnets by ligand functionalization. Chem 6, 1777–1793 (2020).

    Article  CAS  Google Scholar 

  199. Reta, D., Kragskow, J. G. & Chilton, N. F. Ab initio prediction of high-temperature magnetic relaxation rates in single-molecule magnets. J. Am. Chem. Soc. 143, 5943–5950 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Hu, Z. et al. Binding sites, vibrations and spin-lattice relaxation times in europium(II)-based metallofullerene spin qubits. Chem. Eur. J. 27, 13242–13248 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Blockmon, A. L. et al. Spectroscopic analysis of vibronic relaxation pathways in molecular spin qubit [Ho(W5O18)2]9−: sparse spectra are key. Inorg. Chem. 60, 14096–14104 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Briganti, M. et al. A complete ab initio view of Orbach and Raman spin–lattice relaxation in a dysprosium coordination compound. J. Am. Chem. Soc. 143, 13633–13645 (2021). The first ab initio simulation of both Orbach and Raman relaxation is provided, demonstrating the nature of low-temperature spin relaxation in lanthanide single-molecule magnets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Pointillart, F. et al. Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. Angew. Chem. Int. Ed. 54, 1504–1507 (2015).

    Article  CAS  Google Scholar 

  204. Stavretis, S. E. et al. Spectroscopic studies of the magnetic excitation and spin-phonon couplings in a single-molecule magnet. Chem. Eur. J. 25, 15846–15857 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Moseley, D. H. et al. Inter-Kramers transitions and spin–phonon couplings in a lanthanide-based single-molecule magnet. Inorg. Chem. 59, 5218–5230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kragskow, J. G. C. et al. Analysis of vibronic coupling in a 4f molecular magnet with FIRMS. Nat. Commun. 13, 825 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gómez-Coca, S. et al. Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy. Nat. Commun. 5, 4300 (2014).

    Article  PubMed  Google Scholar 

  208. Liu, Y. et al. Magnetization dynamics on isotope-isomorphic holmium single-molecule magnets. Angew. Chem. Int. Ed. 60, 27282–27287 (2021).

    Article  CAS  Google Scholar 

  209. Wu, S.-G. et al. Field-induced oscillation of magnetization blocking barrier in a holmium metallacrown single-molecule magnet. Chem 7, 982–992 (2021).

    Article  CAS  Google Scholar 

  210. Lunghi, A. & Sanvito, S. The limit of spin lifetime in solid-state electronic spins. J. Phys. Chem. Lett. 11, 6273–6278 (2020). The two-phonon Raman mechanism for a S = 1/2 complex is simulated for the first time, explaining general trends in experiments.

    Article  CAS  PubMed  Google Scholar 

  211. Chiesa, A. et al. Understanding magnetic relaxation in single-ion magnets with high blocking temperature. Phys. Rev. B 101, 174402 (2020).

    Article  CAS  Google Scholar 

  212. Gu, L. & Wu, R. Origins of slow magnetic relaxation in single-molecule magnets. Phys. Rev. Lett. 125, 117203 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Lunghi, A. Insights into the spin-lattice dynamics of organic radicals beyond molecular tumbling: A combined molecular dynamics and machine-learning approach. Appl. Magn. Reson. 51, 1343–1356 (2020).

    Article  CAS  Google Scholar 

  214. Irländer, K. & Schnack, J. Spin-phonon interaction induces tunnel splitting in single-molecule magnets. Phys. Rev. B 102, 054407 (2020).

    Article  Google Scholar 

  215. Gu, L. & Wu, R. Origin of the anomalously low Raman exponents in single molecule magnets. Phys. Rev. B 103, 014401 (2021).

    Article  CAS  Google Scholar 

  216. Irländer, K., Schmidt, H.-J. & Schnack, J. Supersymmetric spin–phonon coupling prevents odd integer spins from quantum tunneling. Eur. Phys. J. B 94, 68 (2021).

    Article  Google Scholar 

  217. Garlatti, E. et al. A cost-effective semi-ab initio approach to model relaxation in rare-earth single-molecule magnets. J. Phys. Chem. Lett. 12, 8826–8832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lunghi, A. Towards exact predictions of spin-phonon relaxation times: An ab initio implementation of open quantum systems theory. Sci. Adv. 8, eabn7880 (2021).

    Article  Google Scholar 

  219. Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441 (1965).

    Article  Google Scholar 

  220. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1997).

  221. Rocha, A. R. et al. Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006). A complete algorithm for the first-principles simulation of the charge and spin current through nanoscale junctions is presented. This uses density functional theory and the non-equilibrium Green’s function method.

    Article  Google Scholar 

  222. Rungger, I. & Sanvito, S. Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008).

    Article  Google Scholar 

  223. Papior, N., Lorente, N., Frederiksen, T., García, A. & Brandbyge, M. Improvements on non-equilibrium and transport Green function techniques: The next-generation transiesta. Comput. Phys. Commun. 212, 8–24 (2017).

    Article  CAS  Google Scholar 

  224. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  Google Scholar 

  225. Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985).

    Article  Google Scholar 

  226. Koentopp, M., Burke, K. & Evers, F. Zero-bias molecular electronics: Exchange-correlation corrections to Landauer’s formula. Phys. Rev. B 73, 121403 (2006).

    Article  Google Scholar 

  227. Sai, N., Zwolak, M., Vignale, G. & Di Ventra, M. Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems. Phys. Rev. Lett. 94, 186810 (2005).

    Article  PubMed  Google Scholar 

  228. Toher, C., Filippetti, A., Sanvito, S. & Burke, K. Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005). The problems arising from the self-interaction error in local and semi-local density functional theory on the calculation of transport properties are discussed.

    Article  CAS  PubMed  Google Scholar 

  229. Toher, C. & Sanvito, S. Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport. Phys. Rev. Lett. 99, 056801 (2007).

    Article  CAS  PubMed  Google Scholar 

  230. Barraza-Lopez, S., Park, K., García-Suárez, V. & Ferrer, J. Spin-filtering effect in the transport through a single-molecule magnet Mn12 bridged between metallic electrodes. J. Appl. Phys. 105, 07E309 (2009).

    Article  Google Scholar 

  231. Pemmaraju, C., Rungger, I. & Sanvito, S. Ab initio calculation of the bias-dependent transport properties of Mn12 molecules. Phys. Rev. B 80, 104422 (2009).

    Article  Google Scholar 

  232. Canali, C. et al. Theory of tunneling spectroscopy in a Mn12 single-electron transistor by density-functional theory methods. Phys. Rev. Lett. 104, 017202 (2010).

    Article  PubMed  Google Scholar 

  233. Shen, X. et al. Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. J. Chem. Phys. 132, 054703 (2010).

    Article  PubMed  Google Scholar 

  234. Renani, F. R. & Kirczenow, G. Ligand-based transport resonances of single-molecule-magnet spin filters: Suppression of Coulomb blockade and determination of easy-axis orientation. Phys. Rev. B 84, 180408 (2011).

    Article  Google Scholar 

  235. Nossa, J., Islam, M. F., Canali, C. M. & Pederson, M. Electric control of a Fe4 single-molecule magnet in a single-electron transistor. Phys. Rev. B 88, 224423 (2013).

    Article  Google Scholar 

  236. Cremades, E., Pemmaraju, C., Sanvito, S. & Ruiz, E. Spin-polarized transport through single-molecule magnet Mn6 complexes. Nanoscale 5, 4751–4757 (2013).

    Article  CAS  PubMed  Google Scholar 

  237. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    Article  CAS  PubMed  Google Scholar 

  238. Cardona-Serra, S., Gaita-Ariño, A., Navarro-Moratalla, E. & Sanvito, S. Proposal for a dual spin filter based on [VO(C3S4O)2]2−. J. Phys. Chem. C 122, 6417–6421 (2018).

    Article  CAS  Google Scholar 

  239. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495 (2009).

    Article  CAS  Google Scholar 

  240. Huang, J. et al. Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. J. Chem. Phys. 136, 064707 (2012).

    Article  PubMed  Google Scholar 

  241. Baadji, N. & Sanvito, S. Giant resistance change across the phase transition in spin-crossover molecules. Phys. Rev. Lett. 108, 217201 (2012).

    Article  CAS  PubMed  Google Scholar 

  242. Aragonès, A. C. et al. Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett. 16, 218–226 (2016).

    Article  PubMed  Google Scholar 

  243. Ślusarski, T., Kostyrko, T. & García-Suárez, V. M. Effects of acceptor doping on a metalorganic switch: DFT vs. model analysis. Phys. Chem. Chem. Phys. 20, 13588–13597 (2018).

    Article  PubMed  Google Scholar 

  244. Baadji, N. et al. Electrostatic spin crossover effect in polar magnetic molecules. Nat. Mater. 8, 813–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  245. Shukla, S. K. & Sanvito, S. Electron transport across electrically switchable magnetic molecules. Phys. Rev. B 80, 184429 (2009).

    Article  Google Scholar 

  246. Droghetti, A. & Sanvito, S. Electric field control of valence tautomeric interconversion in cobalt dioxolene. Phys. Rev. Lett. 107, 047201 (2011).

    Article  CAS  PubMed  Google Scholar 

  247. Miyamachi, T. et al. Robust spin crossover and memristance across a single molecule. Nat. Commun. 3, 938 (2012).

    Article  PubMed  Google Scholar 

  248. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004). The elemental magnetic excitations of various atomic structures are detected via spin-flip inelastic spectroscopy from a scanning tunnelling microscope setup.

    Article  CAS  PubMed  Google Scholar 

  249. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  PubMed  Google Scholar 

  250. Hurley, A., Baadji, N. & Sanvito, S. Spin-flip inelastic electron tunneling spectroscopy in atomic chains. Phys. Rev. B 84, 035427 (2011).

    Article  Google Scholar 

  251. Hurley, A., Baadji, N. & Sanvito, S. Perturbative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates. Phys. Rev. B 84, 115435 (2011).

    Article  Google Scholar 

  252. Hurley, A., Baadji, N. & Sanvito, S. Bias asymmetry in the conductance profile of magnetic ions on surfaces probed by scanning tunneling microscopy. Phys. Rev. B 86, 125411 (2012).

    Article  Google Scholar 

  253. Fernández-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).

    Article  PubMed  Google Scholar 

  254. Fransson, J., Eriksson, O. & Balatsky, A. Theory of spin-polarized scanning tunneling microscopy applied to local spins. Phys. Rev. B 81, 115454 (2010).

    Article  Google Scholar 

  255. Lorente, N. & Gauyacq, J.-P. Efficient spin transitions in inelastic electron tunneling spectroscopy. Phys. Rev. Lett. 103, 176601 (2009).

    Article  PubMed  Google Scholar 

  256. Persson, M. Theory of inelastic electron tunneling from a localized spin in the impulsive approximation. Phys. Rev. Lett. 103, 050801 (2009).

    Article  PubMed  Google Scholar 

  257. Sothmann, B. & König, J. Nonequilibrium current and noise in inelastic tunneling through a magnetic atom. New J. Phys. 12, 083028 (2010).

    Article  Google Scholar 

  258. Delgado, F., Palacios, J. & Fernández-Rossier, J. Spin-transfer torque on a single magnetic adatom. Phys. Rev. Lett. 104, 026601 (2010).

    Article  CAS  PubMed  Google Scholar 

  259. Schweflinghaus, B., dos Santos Dias, M., Costa, A. T. & Lounis, S. Renormalization of electron self-energies via their interaction with spin excitations: a first-principles investigation. Phys. Rev. B 89, 235439 (2014).

    Article  Google Scholar 

  260. Ibañez-Azpiroz, J., dos Santos Dias, M., Blügel, S. & Lounis, S. Spin-fluctuation and spin-relaxation effects of single adatoms from first principles. J. Phys. Condens. Matter 30, 343002 (2018).

    Article  PubMed  Google Scholar 

  261. Grabert, H. & Devoret, M. H. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures Vol. 294 (Springer, 2013).

  262. Leijnse, M. & Wegewijs, M. Kinetic equations for transport through single-molecule transistors. Phys. Rev. B 78, 235424 (2008). A master equation is set to describe strongly correlated transport through a magnetic molecule.

    Article  Google Scholar 

  263. Heersche, H. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  PubMed  Google Scholar 

  264. Zyazin, A. S. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 10, 3307–3311 (2010).

    Article  CAS  PubMed  Google Scholar 

  265. Hymas, K. & Soncini, A. Mechanisms of spin-charge conversion for the electrical readout of 4f quantum states in a TbPc2 single-molecule magnet spin transistor. Phys. Rev. B 102, 045313 (2020).

    Article  CAS  Google Scholar 

  266. Hymas, K. & Soncini, A. Origin of the hysteresis of magnetoconductance in a supramolecular spin-valve based on a TbPc2 single-molecule magnet. Phys. Rev. B 102, 125310 (2020).

    Article  CAS  Google Scholar 

  267. Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    Article  CAS  PubMed  Google Scholar 

  268. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  CAS  Google Scholar 

  269. Korytár, R. & Lorente, N. Multi-orbital non-crossing approximation from maximally localized Wannier functions: the Kondo signature of copper phthalocyanine on Ag(100). J. Phys. Condens. Matter 23, 355009 (2011).

    Article  PubMed  Google Scholar 

  270. Lucignano, P., Mazzarello, R., Smogunov, A., Fabrizio, M. & Tosatti, E. Kondo conductance in an atomic nanocontact from first principles. Nat. Mater. 8, 563–567 (2009). A combination of many-body solvers and density functional theory is used to compute the Kondo conductance across magnetic atoms.

    Article  CAS  PubMed  Google Scholar 

  271. Wehling, T., Balatsky, A., Katsnelson, M., Lichtenstein, A. & Rosch, A. Orbitally controlled Kondo effect of Co adatoms on graphene. Phys. Rev. B 81, 115427 (2010).

    Article  Google Scholar 

  272. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 84, 1419 (2012).

    Article  CAS  Google Scholar 

  273. Jacob, D. Towards a full ab initio theory of strong electronic correlations in nanoscale devices. J. Phys. Condens. Matter 27, 245606 (2015).

    Article  PubMed  Google Scholar 

  274. Droghetti, A. & Rungger, I. Quantum transport simulation scheme including strong correlations and its application to organic radicals adsorbed on gold. Phys. Rev. B 95, 085131 (2017).

    Article  Google Scholar 

  275. Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975).

    Article  Google Scholar 

  276. Requist, R. et al. Kondo conductance across the smallest spin 1/2 radical molecule. Proc. Natl Acad. Sci. USA 111, 69–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  277. Gull, E. et al. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349 (2011).

    Article  CAS  Google Scholar 

  278. Peters, L., Jacob, D., Karolak, M., Lichtenstein, A. & Katsnelson, M. Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces. Phys. Rev. B 96, 245137 (2017).

    Article  Google Scholar 

  279. Néel, N. et al. Single-Co Kondo effect in atomic Cu wires on Cu(111). Phys. Rev. Res. 2, 023309 (2020).

    Article  Google Scholar 

  280. Appelt, W. H. et al. Predicting the conductance of strongly correlated molecules: the Kondo effect in perchlorotriphenylmethyl/Au junctions. Nanoscale 10, 17738–17750 (2018).

    Article  CAS  PubMed  Google Scholar 

  281. Dirks, A., Werner, P., Jarrell, M. & Pruschke, T. Continuous-time quantum Monte Carlo and maximum entropy approach to an imaginary-time formulation of strongly correlated steady-state transport. Phys. Rev. E 82, 026701 (2010).

    Article  Google Scholar 

  282. DiLullo, A. et al. Molecular Kondo chain. Nano Lett. 12, 3174–3179 (2012).

    Article  CAS  PubMed  Google Scholar 

  283. Zhou, L. et al. Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale. Nat. Phys. 6, 187–191 (2010).

    Article  CAS  Google Scholar 

  284. Oberg, J. C. et al. Control of single-spin magnetic anisotropy by exchange coupling. Nat. Nanotechnol. 9, 64–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  285. Mukherjee, S., Fedorov, D. A. & Varganov, S. A. Modeling spin-crossover dynamics. Annu. Rev. Phys. Chem. 72, 515–540 (2021).

    Article  CAS  PubMed  Google Scholar 

  286. Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    Article  CAS  Google Scholar 

  287. Eaton, S. S. & Eaton, G. R. in Distance Measurements in Biological Systems by EPR (eds Berliner, L. J., Eaton, G. R. & Eaton, S. S.) 29–154 (Springer, 2002).

  288. Kowalewski, J., Nordenskiöld, L., Benetis, N. & Westlund, P.-O. Theory of nuclear spin relaxation in paramagnetic systems in solution. Prog. Nucl. Magn. Reson. Spectrosc. 17, 141–185 (1985).

    Article  CAS  Google Scholar 

  289. Slota, M. et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557, 691–695 (2018).

    Article  CAS  PubMed  Google Scholar 

  290. Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020).

    Article  CAS  PubMed  Google Scholar 

  291. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  292. Bernales, V., Ortuño, M. A., Truhlar, D. G., Cramer, C. J. & Gagliardi, L. Computational design of functionalized metal–organic framework nodes for catalysis. ACS Cent. Sci. 4, 5–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  293. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  294. Schmidt, J., Marques, M. R., Botti, S. & Marques, M. A. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019).

    Article  Google Scholar 

  295. Ramakrishna, S. et al. Materials informatics. J. Intell. Manuf. 30, 2307–2326 (2019).

    Article  Google Scholar 

  296. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

    Article  CAS  Google Scholar 

  297. Duan, Y. et al. Data mining, dashboard and statistical analysis: a powerful framework for the chemical design of molecular nanomagnets. Preprint at https://arxiv.org/abs/2103.03199 (2021).

  298. Nandy, A. et al. Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 121, 9927–10000 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. Janet, J. P. & Kulik, H. J. Predicting electronic structure properties of transition metal complexes with neural networks. Chem. Sci. 8, 5137–5152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Janet, J. P., Chan, L. & Kulik, H. J. Accelerating chemical discovery with machine learning: simulated evolution of spin crossover complexes with an artificial neural network. J. Phys. Chem. Lett. 9, 1064–1071 (2018). High-throughput simulations are used to discover new spin-crossover compounds.

    Article  CAS  PubMed  Google Scholar 

  301. Paruzzo, F. M. et al. Chemical shifts in molecular solids by machine learning. Nat. Commun. 9, 138 (2018).

    Article  Google Scholar 

  302. Zaverkin, V., Netz, J., Zills, F., Köhn, A. & Kästner, J. Thermally averaged magnetic anisotropy tensors via machine learning based on Gaussian moments. J. Chem. Theory Comput. 18, 1–12 (2021).

    Article  PubMed  Google Scholar 

  303. Nguyen, V. H. A. & Lunghi, A. Predicting tensorial molecular properties with equivariant machine learning models. Phys. Rev. B 105, 165131 (2022).

    Article  CAS  Google Scholar 

  304. Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, 1902765 (2019).

    Article  CAS  Google Scholar 

  305. Noé, F., Tkatchenko, A., Müller, K.-R. & Clementi, C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020).

    Article  PubMed  Google Scholar 

  306. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018). A machine-learning method is proposed for the generation of new molecules with target properties based on a continuous interpolation of the chemical space.

    Article  CAS  PubMed  Google Scholar 

  307. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  308. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  309. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012). Machine learning is used to construct a kinetic energy functional to be used in orbital-free density functional theory.

    Article  PubMed  Google Scholar 

  311. Brockherde, F. et al. Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Seino, J., Kageyama, R., Fujinami, M., Ikabata, Y. & Nakai, H. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density. J. Chem. Phys. 148, 241705 (2018).

    Article  PubMed  Google Scholar 

  313. Ryczko, K., Wetzel, S. J., Melko, R. G. & Tamblyn, I. Toward orbital-free density functional theory with small data sets and deep learning. J. Chem. Theory Comput. 18, 1122–1128 (2022).

    Article  CAS  PubMed  Google Scholar 

  314. Chandrasekaran, A. et al. Solving the electronic structure problem with machine learning. npj Comput. Mater. 5, 22 (2019).

    Article  Google Scholar 

  315. Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K.-R. & Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Nagai, R., Akashi, R. & Sugino, O. Completing density functional theory by machine learning hidden messages from molecules. npj Comput. Mater. 6, 43 (2020).

    Article  CAS  Google Scholar 

  317. Kasim, M. F. & Vinko, S. M. Learning the exchange-correlation functional from nature with fully differentiable density functional theory. Phys. Rev. Lett. 127, 126403 (2021).

    Article  CAS  PubMed  Google Scholar 

  318. Dick, S. & Fernandez-Serra, M. Machine learning accurate exchange and correlation functionals of the electronic density. Nat. Commun. 11, 3509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Nandi, A., Qu, C., Houston, P. L., Conte, R. & Bowman, J. M. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory. J. Chem. Phys. 154, 051102 (2021).

    Article  CAS  PubMed  Google Scholar 

  320. King, D. S., Truhlar, D. G. & Gagliardi, L. Machine-learned energy functionals for multiconfigurational wave functions. J. Phys. Chem. Lett. 12, 7761–7767 (2021).

    Article  CAS  PubMed  Google Scholar 

  321. Han, R., Rodríguez-Mayorga, M. & Luber, S. A machine learning approach for MP2 correlation energies and its application to organic compounds. J. Chem. Theory Comput. 17, 777–790 (2021).

    Article  CAS  PubMed  Google Scholar 

  322. Moreno, J. R., Flick, J. & Georges, A. Machine learning band gaps from the electron density. Phys. Rev. Mater. 5, 083802 (2021).

    Article  CAS  Google Scholar 

  323. Coe, J. P. Machine learning configuration interaction. J. Chem. Theory Comput. 14, 5739–5749 (2018).

    Article  CAS  PubMed  Google Scholar 

  324. Jeong, W., Gaggioli, C. A. & Gagliardi, L. Active learning configuration interaction for excited-state calculations of polycyclic aromatic hydrocarbons. J. Chem. Theory Comput. 17, 7518–7530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Pineda Flores, S. D. Chembot: a machine learning approach to selective configuration interaction. J. Chem. Theory Comput. 17, 4028–4038 (2021).

    Article  CAS  PubMed  Google Scholar 

  326. Goings, J. J., Hu, H., Yang, C. & Li, X. Reinforcement learning configuration interaction. J. Chem. Theory Comput. 17, 5482–5491 (2021).

    Article  CAS  PubMed  Google Scholar 

  327. Ghosh, S. K., Rano, M. & Ghosh, D. Configuration interaction trained by neural networks: application to model polyaromatic hydrocarbons. J. Chem. Phys. 154, 094117 (2021).

    Article  CAS  PubMed  Google Scholar 

  328. Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). Machine learning is used to represent the fermionic wave function in quantum Monte Carlo simulations and shown to provide an advantage with respect to traditional methods.

    Article  CAS  PubMed  Google Scholar 

  329. Crippa, L. et al. Simulating static and dynamic properties of magnetic molecules with prototype quantum computers. Magnetochemistry 7, 117 (2021).

    Article  Google Scholar 

  330. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  331. Smith, A., Kim, M., Pollmann, F. & Knolle, J. Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf. 5, 106 (2019).

    Article  Google Scholar 

  332. Devitt, S. J., Munro, W. J. & Nemoto, K. Quantum error correction for beginners. Rep. Prog. Phys. 76, 076001 (2013).

    Article  PubMed  Google Scholar 

  333. Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  334. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    Article  CAS  PubMed  Google Scholar 

  335. Tacchino, F., Chiesa, A., Carretta, S. & Gerace, D. Quantum computers as universal quantum simulators: state-of-the-art and perspectives. Adv. Quantum Technol. 3, 1900052 (2020).

    Article  Google Scholar 

  336. McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

    Article  CAS  Google Scholar 

  337. Tilly, J. et al. The variational quantum eigensolver: a review of methods and best practices. Preprint at https://arxiv.org/abs/2111.05176 (2021).

  338. Hauru, M. et al. Simulation of quantum physics with Tensor Processing Units: brute-force computation of ground states and time evolution. Preprint at https://arxiv.org/abs/2111.10466 (2021).

  339. Pederson, R. et al. Tensor processing units as quantum chemistry supercomputers. Preprint at https://arxiv.org/abs/2202.01255 (2022).

  340. Cimatti, I. et al. Vanadyl phthalocyanines on graphene/SiC(0001): toward a hybrid architecture for molecular spin qubits. Nanoscale Horiz. 4, 1202–1210 (2019).

    Article  CAS  Google Scholar 

  341. Ding, X.-L. et al. A local D4h symmetric dysprosium(III) single-molecule magnet with an energy barrier exceeding 2000 K. Chem. Eur. J. 27, 2623–2627 (2021).

    Article  CAS  PubMed  Google Scholar 

  342. Warner, M. et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature 503, 504–508 (2013).

    Article  CAS  PubMed  Google Scholar 

  343. Atzori, M. et al. Quantum coherence times enhancement in vanadium(IV)-based potential molecular qubits: the key role of the vanadyl moiety. J. Am. Chem. Soc. 138, 11234–11244 (2016).

    Article  CAS  PubMed  Google Scholar 

  344. de Camargo, L. C. et al. Exploring the organometallic route to molecular spin qubits: The [CpTi(cot)] case. Angew. Chem. Int. Ed. 60, 2588–2593 (2021).

    Article  Google Scholar 

  345. Lenz, S. et al. Chromium(III)-based potential molecular quantum bits with long coherence times. Phys. Chem. Chem. Phys. 21, 6976–6983 (2019).

    Article  CAS  PubMed  Google Scholar 

  346. Pedersen, K. S. et al. Toward molecular 4f single-ion magnet qubits. J. Am. Chem. Soc. 138, 5801–5804 (2016). A lanthanide single-molecule magnet is shown to possess long coherence time at low temperature, suggesting the integration of this class of systems in quantum devices.

    Article  CAS  PubMed  Google Scholar 

  347. Handzlik, G. et al. Magnetization dynamics and coherent spin manipulation of a propeller Gd(III) complex with the smallest helicene ligand. J. Phys. Chem. Lett. 11, 1508–1515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016). Clock transitions are identified in a Ho compound and shown to screen the spin from magnetic noise, increasing the coherence time by orders of magnitude.

    Article  CAS  PubMed  Google Scholar 

  349. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).

    Article  CAS  PubMed  Google Scholar 

  350. de Guillebon, T., Vindolet, B., Roch, J.-F., Jacques, V. & Rondin, L. Temperature dependence of the longitudinal spin relaxation time T1 of single nitrogen-vacancy centers in nanodiamonds. Phys. Rev. B 102, 165427 (2020).

    Article  Google Scholar 

  351. Cornia, A. et al. Energy-barrier enhancement by ligand substitution in tetrairon(III) single-molecule magnets. Angew. Chem. Int. Ed. 43, 1136–1139 (2004).

    Article  CAS  Google Scholar 

  352. Tennant, W., Walsby, C., Claridge, R. & McGavin, D. Rotation matrix elements and further decomposition functions of two-vector tesseral spherical tensor operators; their uses in electron paramagnetic resonance spectroscopy. J. Phys. Condens. Matter 12, 9481 (2000).

    Article  CAS  Google Scholar 

  353. Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coord. Chem. Rev. 253, 526–563 (2009).

    Article  CAS  Google Scholar 

  354. Feng, M. & Tong, M.-L. Single ion magnets from 3d to 5f: developments and strategies. Chem. Eur. J. 24, 7574–7594 (2018).

    Article  CAS  PubMed  Google Scholar 

  355. McAdams, S. G., Ariciu, A.-M., Kostopoulos, A. K., Walsh, J. P. & Tuna, F. Molecular single-ion magnets based on lanthanides and actinides: Design considerations and new advances in the context of quantum technologies. Coord. Chem. Rev. 346, 216–239 (2017).

    Article  CAS  Google Scholar 

  356. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  357. Li, Z., Kermode, J. R. & De Vita, A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).

    Article  PubMed  Google Scholar 

  358. Poltavsky, I. & Tkatchenko, A. Machine learning force fields: recent advances and remaining challenges. J. Phys. Chem. Lett. 12, 6551–6564 (2021).

    Article  CAS  PubMed  Google Scholar 

  359. Scherer, C., Scheid, R., Andrienko, D. & Bereau, T. Kernel-based machine learning for efficient simulations of molecular liquids. J. Chem. Theory Comput. 16, 3194–3204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Meuwly, M. Machine learning for chemical reactions. Chem. Rev. 121, 10218–10239 (2021).

    Article  CAS  PubMed  Google Scholar 

  361. Schlexer Lamoureux, P. et al. Machine learning for computational heterogeneous catalysis. ChemCatChem 11, 3581–3601 (2019).

    Article  CAS  Google Scholar 

  362. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Briganti, A. Droghetti, J. Fernández-Rossier and M. Stamenova for useful discussion. A.L. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 948493). S.S. acknowledges the Irish Research Council (Advanced Laureate Award IRCLA/2019/127) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Lunghi or Stefano Sanvito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks A. Rocha, M.-L. Tong and L. Gagliardi for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nuclear magnetic resonance

Nuclear magnetic resonance is an experimental technique in which radiofrequencies are used to induce nuclear spin transitions, providing insights on the chemical structure of a compound.

Electron paramagnetic resonance

Electron paramagnetic resonance is an experimental technique in which microwave radiation is used to induce electron’s spin transitions and provides insights on the magnetic properties and electronic structures of the systems.

Eigenstates

Physical quantities, such as energy, are represented by matrices in quantum mechanics. To capture the state of a system, such matrices are diagonalized to obtain eigenvectors and eigenvalues. The latter describe a set of possible states for the systems, hence the name eigenstates.

Perturbative methods

Quantum-chemistry algorithms based on perturbation theory make it possible to obtain an accurate description of the electronic structure of molecules by considering electronic correlation as a correction to mean-field-value inter-electronic interactions.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lunghi, A., Sanvito, S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat Rev Chem 6, 761–781 (2022). https://doi.org/10.1038/s41570-022-00424-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00424-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing