Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation

Abstract

Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C–H and C–C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C–H and C–C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Relevance of non-typical carbohydrates, principles of photoredox catalysis and the scope of this Review.
Fig. 2: Photoredox-mediated C–H bond activation in carbohydrates accompanied by radical addition reactions.
Fig. 3: Photoredox-mediated epimerization of carbohydrates.
Fig. 4: Photoredox-mediated redox isomerization of carbohydrates.
Fig. 5: Decarboxylative functionalization of carbohydrate-based carboxylic acids and redox-active esters in photoredox and related photocatalyst-free light-mediated systems.
Fig. 6: Decarboxylative functionalization of redox-active esters of uronic acids and unactivated C-glycosyl carboxylic acids in photoredox and related photocatalyst-free light-mediated systems.
Fig. 7: Photoredox-mediated functionalization of DHP-activated carbohydrates.
Fig. 8: Alkoxy radical–mediated β-C–C scission in NHPI-functionalized and non-activated carbohydrates.

References

  1. Benito-Alifonso, D. & Galan, M. C. Brønsted- and Lewis-acid-catalyzed glycosylation. In Selective Glycosylations: Synthetic Methods And Catalysts (ed. Bennett, C. S.) 155–172 (Wiley, 2017).

  2. Li, X. & Zhu, J. Glycosylation via transition-metal catalysis: challenges and opportunities. Eur. J. Org. Chem. 4724–4767 (2016).

  3. Shang, W., He, B. & Niu, D. Ligand-controlled, transition-metal catalyzed site-selective modification of glycosides. Carbohydr. Res. 474, 16–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Williams, R. & Galan, M. C. Recent advances in organocatalytic glycosylations: recent advances in organocatalytic glycosylations. Eur. J. Org. Chem. 6247–6264 (2017).

  5. Blaszczyk, S. A., Homan, T. C. & Tang, W. Recent advances in site-selective functionalization of carbohydrates mediated by organocatalysts. Carbohydr. Res. 471, 64–77 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Danby, P. M. & Withers, S. G. Advances in enzymatic glycoside synthesis. ACS Chem. Biol. 11, 1784–1794 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Schmaltz, R. M., Hanson, S. R. & Wong, C.-H. Enzymes in the synthesis of glycoconjugates. Chem. Rev. 111, 4259–4307 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Protecting Groups: Strategies and Applications in Carbohydrate Chemistry (ed. Vidal, S.) (Wiley, 2019).

  9. Dimakos, V. & Taylor, M. S. Site-selective functionalization of hydroxyl groups in carbohydrate derivatives. Chem. Rev. 118, 11457–11517 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Pérez-Martín, I. & Suárez, E. Radicals and carbohydrates. In Encyclopedia of Radicals in Chemistry, Biology and Materials (eds Chatgilialoglu, C. & Studer, A.) (John Wiley & Sons, 2012).

  11. Xu, L.-Y., Fan, N.-L. & Hu, X.-G. Recent development in the synthesis of C-glycosides involving glycosyl radicals. Org. Biomol. Chem. 18, 5095–5109 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Ghouilem, J., Robichon, M., Le Bideau, F., Ferry, A. & Messaoudi, S. Emerging organometallic methods for the synthesis of C-branched (hetero)aryl, alkenyl, and alkyl glycosides: C−H functionalization and dual photoredox approaches. Chem. Eur. J. 27, 491–511 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Frihed, T. G., Bols, M. & Pedersen, C. M. C–H functionalization on carbohydrates. Eur. J. Org. Chem. 2740–2756 (2016).

  14. Elshahawi, S. I., Shaaban, K. A., Kharel, M. K. & Thorson, J. S. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 44, 7591–7697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartlett, J. G., Sutter, V. L. & Finegold, S. M. Treatment of anaerobic infections with lincomycin and clindamycin. N. Engl. J. Med. 287, 1006–1010 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S. et al. Amipurimycin: total synthesis of the proposed structures and diastereoisomers. Angew. Chem. Int. Ed. 57, 2884–2888 (2018).

    Article  CAS  Google Scholar 

  17. Marcelo, F. et al. Stereochemical assignment and first synthesis of the core of miharamycin antibiotics. Chem. Eur. J. 14, 10066–10073 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto, K., Yakushiji, F., Matsumaru, T. & Ichikawa, S. Total synthesis of tunicamycin V. Org. Lett. 20, 256–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Sawa, R. et al. Amycolamicin: a novel broad-spectrum antibiotic inhibiting bacterial topoisomerase. Chem. Eur. J. 18, 15772–15781 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Class, Y. J. & DeShong, P. The pseudomonic acids. Chem. Rev. 95, 1843–1857 (1995).

    Article  CAS  Google Scholar 

  21. Suh, C. E., Carder, H. M. & Wendlandt, A. E. Selective transformations of carbohydrates inspired by radical-based enzymatic mechanisms. ACS Chem. Biol. 16, 1814–1828 (2021). This is an excellent mechanistically focused review on radical-based transformations of carbohydrates.

    Article  CAS  PubMed  Google Scholar 

  22. McAtee, R. C., McClain, E. J. & Stephenson, C. R. J. Illuminating photoredox catalysis. Trends Chem. 1, 111–125 (2019). This review provides a compact overview of the basic principles of photoredox catalysis and the recent trends in the field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. Chem. Rev. 120, 9790–9833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pitre, S. P. & Overman, L. E. Strategic use of visible-light photoredox catalysis in natural product synthesis. Chem. Rev. 122, 1717–1751 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Teegardin, K., Day, J. I., Chan, J. & Weaver, J. Advances in photocatalysis: a microreview of visible light mediated ruthenium and iridium catalyzed organic transformations. Org. Process. Res. Dev. 20, 1156–1163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joshi-Pangu, A. et al. Acridinium-based photocatalysts: a sustainable option in photoredox catalysis. J. Org. Chem. 81, 7244–7249 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Zilate, B., Fischer, C. & Sparr, C. Design and application of aminoacridinium organophotoredox catalysts. Chem. Commun. 56, 1767–1775 (2020).

    Article  CAS  Google Scholar 

  28. Pitre, S. P., McTiernan, C. D. & Scaiano, J. C. Library of cationic organic dyes for visible-light-driven photoredox transformations. ACS Omega 1, 66–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016). This review provides a more in-depth overview on the basic principles of photoredox catalysis and its applications.

    Article  CAS  PubMed  Google Scholar 

  30. Vega-Peñaloza, A., Mateos, J., Companyó, X., Escudero-Casao, M. & Dell’Amico, L. A rational approach to organo-photocatalysis: Novel designs and structure-property relationships. Angew. Chem. Int. Ed. 60, 1082–1097 (2021).

    Article  Google Scholar 

  31. Capaldo, L. & Ravelli, D. Hydrogen atom transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem. 2056–2071 (2017).

  32. Stateman, L., Nakafuku, K. & Nagib, D. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller, D. C., Tarantino, K. T. & Knowles, R. R. Proton-coupled electron transfer in organic synthesis: fundamentals, applications, and opportunities. Top. Curr. Chem. 374, 30 (2016).

    Article  Google Scholar 

  34. Ener, M. E., Darcy, J. W., Menges, F. S. & Mayer, J. M. Base-directed photoredox activation of C–H bonds by PCET. J. Org. Chem. 85, 7175–7180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kandoth, N., Pérez Hernández, J., Palomares, E. & Lloret-Fillol, J. Mechanisms of photoredox catalysts: the role of optical spectroscopy. Sustain. Energy Fuels 5, 638–665 (2021). This review provides a useful guide for mechanistic studies of light-mediated reactions.

    Article  CAS  Google Scholar 

  36. Roth, H., Romero, N. & Nicewicz, D. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 27, 714–723 (2015).

    Article  Google Scholar 

  37. Pelzer, K. M., Cheng, L. & Curtiss, L. A. Effects of functional groups in redox-active organic molecules: a high-throughput screening approach. J. Phys. Chem. C 121, 237–245 (2017).

    Article  CAS  Google Scholar 

  38. Xue, X.-S., Ji, P., Zhou, B. & Cheng, J.-P. The essential role of bond energetics in C–H activation/functionalization. Chem. Rev. 117, 8622–8648 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

  40. Yang, J.-D., Ji, P., Xue, X.-S. & Cheng, J.-P. Recent advances and advisable applications of bond energetics in organic chemistry. J. Am. Chem. Soc. 140, 8611–8623 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Alabugin, I. V. et al. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem. Soc. Rev. 50, 10253–10345 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Parsaee, F. et al. Radical philicity and its role in selective organic transformations. Nat. Rev. Chem. 5, 486–499 (2021).

    Article  CAS  Google Scholar 

  43. Hioe, J. & Zipse, H. Radical stability and its role in synthesis and catalysis. Org. Biomol. Chem. 8, 3609 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lam, N. Y. S., Wu, K. & Yu, J. Advancing the logic of chemical synthesis: C−H activation as strategic and tactical disconnections for C−C bond construction. Angew. Chem. Int. Ed. 60, 15767–15790 (2021).

    Article  CAS  Google Scholar 

  45. Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawamata, T., Nagatomo, M. & Inoue, M. Total synthesis of zaragozic acid C: implementation of photochemical C(sp3)–H acylation. J. Am. Chem. Soc. 139, 1814–1817 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Alvarez-Dorta, D. et al. Photochemistry of α-diketones in carbohydrates: anomalous Norrish type II photoelimination and Norrish–Yang photocyclization promoted by the internal carbonyl group. Chem. Eur. J. 20, 2663–2671 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Holmberg-Douglas, N. & Nicewicz, D. A. Photoredox-catalyzed C–H functionalization reactions. Chem. Rev. 122, 1925–2016 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Jeffrey, J. L., Terrett, J. A. & MacMillan, D. W. C. O–H hydrogen bonding promotes H-atom transfer from α C–H bonds for C-alkylation of alcohols. Science 349, 1532–1536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gant Kanegusuku, A. L. & Roizen, J. L. Recent advances in photoredox-mediated radical conjugate addition reactions: an expanding toolkit for the Giese reaction. Angew. Chem. Int. Ed. 60, 21116–21149 (2021).

    Article  CAS  Google Scholar 

  53. Wa, J. C. (S.), Witte, M. D. & Minnaard, A. J. Site-selective carbon–carbon bond formation in unprotected monosaccharides using photoredox catalysis. Chem. Commun. 53, 4926–4929 (2017). A seminal report detailing a phosphate-assisted dual HAT/photoredox system for C–H functionalization of unprotected carbohydrates.

    Article  Google Scholar 

  54. Dimakos, V., Su, H. Y., Garrett, G. E. & Taylor, M. S. Site-selective and stereoselective C–H alkylations of carbohydrates via combined diarylborinic acid and photoredox catalysis. J. Am. Chem. Soc. 141, 5149–5153 (2019). A seminal report detailing dual HAT/photoredox C–H functionalization of carbohydrates proceeding through formation of borinic esters.

    Article  CAS  PubMed  Google Scholar 

  55. Taylor, M. S. Catalysis based on reversible covalent interactions of organoboron compounds. Acc. Chem. Res. 48, 295–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. William, J. M., Kuriyama, M. & Onomura, O. Boronic acid-catalyzed selective oxidation of 1,2-diols to α-hydroxy ketones in water. Adv. Synth. Catal. 356, 934–940 (2014).

    Article  CAS  Google Scholar 

  57. Gorelik, D. J., Dimakos, V., Adrianov, T. & Taylor, M. S. Photocatalytic, site-selective oxidations of carbohydrates. Chem. Commun. 57, 12135–12138 (2021).

    Article  Google Scholar 

  58. Gorelik, D. J., Turner, J. A., Virk, T. S., Foucher, D. A. & Taylor, M. S. Site- and stereoselective C–H alkylations of carbohydrates enabled by cooperative photoredox, hydrogen atom transfer, and organotin catalysis. Org. Lett. 23, 5180–5185 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Dong, H. et al. Stereoelectronic control in regioselective carbohydrate protection. J. Org. Chem. 77, 1457–1467 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Muramatsu, W. Catalytic and regioselective oxidation of carbohydrates to synthesize keto-sugars under mild conditions. Org. Lett. 16, 4846–4849 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Ashley, M. A. et al. Photoredox-catalyzed site-selective α-C(sp3)−H alkylation of primary amine derivatives. Angew. Chem. Int. Ed. 58, 4002–4006 (2019).

    Article  CAS  Google Scholar 

  62. Nakajima, K., Miyake, Y. & Nishibayashi, Y. Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Acc. Chem. Res. 49, 1946–1956 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Kärkäs, M. D. Photochemical generation of nitrogen-centered amidyl, hydrazonyl, and imidyl radicals: methodology developments and catalytic applications. ACS Catal. 7, 4999–5022 (2017).

    Article  Google Scholar 

  64. Chen, D.-F., Chu, J. C. K. & Rovis, T. Directed γ-C(sp3)–H alkylation of carboxylic acid derivatives through visible light photoredox catalysis. J. Am. Chem. Soc. 139, 14897–14900 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, Y., Miyamoto, S., Torigoe, T. & Kuninobu, Y. Regioselective C(sp3)–H alkylation of a fructopyranose derivative by 1,6-HAT. Org. Biomol. Chem. 19, 3124–3127 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Shu, W., Zhang, H. & Huang, Y. γ-Alkylation of alcohols enabled by visible-light induced 1,6-hydrogen atom transfer. Org. Lett. 21, 6107–6111 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Ma, Z.-Y. et al. Visible light driven alkylation of C(sp3)–H bonds enabled by 1,6-hydrogen atom transfer/radical relay addition. Org. Lett. 21, 5500–5504 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, C., Yu, Y., Liu, W.-L. & Duan, W.-L. Site-tunable C(sp3)–H bonds functionalization by visible-light-induced radical translocation of N-alkoxyphthalimides. Org. Lett. 21, 9147–9152 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Capilato, J. N., Pitts, C. R., Rowshanpour, R., Dudding, T. & Lectka, T. Site-selective photochemical fluorination of ketals: unanticipated outcomes in selectivity and stability. J. Org. Chem. 85, 2855–2864 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Matsumoto, A., Yamamoto, M. & Maruoka, K. Cationic DABCO-based catalyst for site-selective C–H alkylation via photoinduced hydrogen-atom transfer. ACS Catal. 12, 2045–2051 (2022).

    Article  CAS  Google Scholar 

  71. Stütz, A. E. (ed.) Glycoscience Vol. 215 (Springer, 2001).

  72. Kudo, F., Hoshi, S., Kawashima, T., Kamachi, T. & Eguchi, T. Characterization of a radical S-adenosyl-l-methionine epimerase, NeoN, in the last step of neomycin B biosynthesis. J. Am. Chem. Soc. 136, 13909–13915 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Benjdia, A., Guillot, A., Ruffié, P., Leprince, J. & Berteau, O. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat. Chem. 9, 698–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020). A seminal report on photoredox-mediated epimerization of unprotected sugars and glycans via reversible H-atom transfer.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y.-A., Gu, X. & Wendlandt, A. E. A change from kinetic to thermodynamic control enables trans-selective stereochemical editing of vicinal diols. J. Am. Chem. Soc. 144, 599–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Oswood, C. J. & MacMillan, D. W. C. Selective isomerization via transient thermodynamic control: Dynamic epimerization of trans to cis diols. J. Am. Chem. Soc. 144, 93–98 (2022). A seminal report on contra-thermodynamic epimerization of diols through dual HAT/photoredox catalysis.

    Article  CAS  PubMed  Google Scholar 

  78. Carder, H. M., Wang, Y. & Wendlandt, A. E. Selective axial-to-equatorial epimerization of carbohydrates. J. Am. Chem. Soc. 144, 11870–11877 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Masuda, Y., Tsuda, H. & Murakami, M. C1 oxidation/C2 reduction isomerization of unprotected aldoses induced by light/ketone. Angew. Chem. Int. Ed. 59, 2755–2759 (2020).

    Article  CAS  Google Scholar 

  80. Wessig, P. & Muehling, O. Spin-center shift (SCS) — a versatile concept in biological and synthetic chemistry. Eur. J. Org. Chem. 2219–2232 (2007).

  81. Dimakos, V. et al. Site-selective redox isomerizations of furanosides using a combined arylboronic acid/photoredox catalyst system. Chem. Sci. 11, 1531–1537 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nacsa, E. D. & MacMillan, D. W. C. Spin-center shift-enabled direct enantioselective α-benzylation of aldehydes with alcohols. J. Am. Chem. Soc. 140, 3322–3330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lenz, R. & Giese, B. Studies on the mechanism of ribonucleotide reductases. J. Am. Chem. Soc. 119, 2784–2794 (1997).

    Article  CAS  Google Scholar 

  84. Carder, H. M., Suh, C. E. & Wendlandt, A. E. A unified strategy to access 2- and 4-deoxygenated sugars enabled by manganese-promoted 1,2-radical migration. J. Am. Chem. Soc. 143, 13798–13805 (2021). This paper describes an unusual redox isomerization of carbohydrates through a combination of HAT and metallaphotoredox catalysis.

    Article  CAS  PubMed  Google Scholar 

  85. Turner, J. A., Rosano, N., Gorelik, D. J. & Taylor, M. S. Synthesis of ketodeoxysugars from acylated pyranosides using photoredox catalysis and hydrogen atom transfer. ACS Catal. 11, 11171–11179 (2021).

    Article  CAS  Google Scholar 

  86. Koltzenburg, G., Matsushige, T. & Schulte-Frohlinde, D. The mechanism of decay of the radical HO–CH–CH2–OCOCH3 in aqueous solutions. A conductometric pulse radiolysis study. Z. Naturforsch. B 31, 960–964 (1976).

    Article  Google Scholar 

  87. Zhao, G., Yao, W., Mauro, J. N. & Ngai, M.-Y. Excited-state palladium-catalyzed 1,2-spin-center shift enables selective C-2 reduction, deuteration, and iodination of carbohydrates. J. Am. Chem. Soc. 143, 1728–1734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao, G. et al. Nickel-catalyzed radical migratory coupling enables C-2 arylation of carbohydrates. J. Am. Chem. Soc. 143, 8590–8596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luo, Y.-R. BDEs of C–C bonds. In Comprehensive Handbook of Chemical Bond Energies 147–210 (CRC Press, 2007).

  90. Luo, Y.-R. BDEs of C–H bonds. In Comprehensive Handbook of Chemical Bond Energies 19–145 (CRC Press, 2007).

  91. Lutz, M. D. R. & Morandi, B. Metal-catalyzed carbon–carbon bond cleavage of unstrained alcohols. Chem. Rev. 121, 300–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, P., Billett, B. A., Tsukamoto, T. & Dong, G. “Cut and sew” transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon–carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, X.-Y., Chen, J.-R. & Xiao, W.-J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis. Chem. Rev. 121, 506–561 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Morcillo, S. P. Radical-promoted C−C bond cleavage: a deconstructive approach for selective functionalization. Angew. Chem. Int. Ed. 58, 14044–14054 (2019).

    Article  CAS  Google Scholar 

  97. Shi, S.-H., Liang, Y. & Jiao, N. Electrochemical oxidation induced selective C–C bond cleavage. Chem. Rev. 121, 485–505 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Hunsdiecker, H. & Hunsdiecker, C. Über den Abbau der Salze aliphatischer Säuren durch Brom. Ber. Dtsch. Chem. Ges. 75, 291–297 (1942).

    Article  Google Scholar 

  99. Borodine, A. Ueber Bromvaleriansäure und Brombuttersäure. Ann. Chem. Pharm. 119, 121–123 (1861).

    Article  Google Scholar 

  100. Barton, D. H. R., Crich, D. & Motherwell, W. B. New and improved methods for the radical decarboxylation of acids. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39830000939 (1983).

  101. Schwarz, J. & König, B. Decarboxylative reactions with and without light — a comparison. Green. Chem. 20, 323–361 (2018).

    Article  CAS  Google Scholar 

  102. Karmakar, S., Silamkoti, A., Meanwell, N. A., Mathur, A. & Gupta, A. K. Utilization of C(sp3)-carboxylic acids and their redox-active esters in decarboxylative carbon–carbon bond formation. Adv. Synth. Catal. 363, 3693–3736 (2021).

    Article  CAS  Google Scholar 

  103. Zeng, Z., Feceu, A., Sivendran, N. & Gooßen, L. J. Decarboxylation-initiated intermolecular carbon-heteroatom bond formation. Adv. Synth. Catal. 363, 2678–2722 (2021).

    Article  CAS  Google Scholar 

  104. Ramadoss, V., Zheng, Y., Shao, X., Tian, L. & Wang, Y. Advances in electrochemical decarboxylative transformation reactions. Chem. Eur. J. 27, 3213–3228 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Chen, N., Ye, Z. & Zhang, F. Recent progress on electrochemical synthesis involving carboxylic acids. Org. Biomol. Chem. 19, 5501–5520 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Parida, S. K. et al. Single electron transfer-induced redox processes involving N-(acyloxy)phthalimides. ACS Catal. 11, 1640–1683 (2021).

    Article  CAS  Google Scholar 

  107. Masuda, K., Nagatomo, M. & Inoue, M. Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions. Nat. Chem. 9, 207–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Hronec, M., Cvengrošová, Z. & Kizlink, J. Competitive oxidation of alcohols in aqueous phase using Pd/C catalyst. J. Mol. Catal. 83, 75–82 (1993).

    Article  CAS  Google Scholar 

  109. Bragd, P. L., Besemer, A. C. & van Bekkum, H. TEMPO-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates. J. Mol. Catal. A 170, 35–42 (2001).

    Article  CAS  Google Scholar 

  110. Breton, T., Bashiardes, G., Léger, J.-M. & Kokoh, K. B. Selective oxidation of unprotected carbohydrates to aldehyde analogues by using TEMPO salts. Eur. J. Org. Chem. 1567–1570 (2007).

  111. Bragd, P. Selective oxidation of carbohydrates by 4-AcNH-TEMPO/peracid systems. Carbohydr. Polym. 49, 397–406 (2002).

    Article  CAS  Google Scholar 

  112. Zou, L.-J. et al. Cyanide-free synthesis of glycosyl carboxylic acids and application for the synthesis of scleropentaside A. Org. Lett. 22, 8302–8306 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Igarashi, Y., Shiozawa, T. & Ichikawa, Y. A concise synthesis of α-glycosyl cyanides. Bioorg. Med. Chem. Lett. 7, 613–616 (1997).

    Article  CAS  Google Scholar 

  114. López, M.-T. G., De las Heras, F. G. & Félix, A. S. Cyanosugars. IV. Synthesis of α-d-glucopyranosyl and α-d-galactopyranosyl cyanides and related 1,2-CIS C-glycosides. J. Carbohydr. Chem. 6, 273–279 (1987).

    Article  Google Scholar 

  115. Yoshimi, Y., Itou, T. & Hatanaka, M. Decarboxylative reduction of free aliphatic carboxylic acids by photogenerated cation radical. Chem. Commun. 5244–5246 (2007).

  116. Itou, T. et al. A mild deuterium exchange reaction of free carboxylic acids by photochemical decarboxylation. Chem. Commun. 46, 6177–6179 (2010).

    Article  CAS  Google Scholar 

  117. Bhattacherjee, A. et al. Picosecond to millisecond tracking of a photocatalytic decarboxylation reaction provides direct mechanistic insights. Nat. Commun. 10, 5152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yoshimi, Y. et al. Addition of alkyl radicals, generated from carboxylic acids via photochemical decarboxylation, to glyoxylic oxime ether: a mild and efficient route to α-substituted α-aminoesters. Tetrahedron Lett. 51, 2332–2334 (2010).

    Article  CAS  Google Scholar 

  119. Saito, H. et al. A strategy for generating alkyl radicals from aliphatic esters and lactones via sequential hydrolysis and photoinduced decarboxylation. Tetrahedron Lett. 56, 1645–1648 (2015).

    Article  CAS  Google Scholar 

  120. Yamawaki, M. et al. Metal-free photoinduced decarboxylative radical polymerization using carboxylic acids as benign radical initiators: introduction of complex molecules into polymer chain ends. ACS Macro Lett. 6, 381–385 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Chu, L., Ohta, C., Zuo, Z. & MacMillan, D. W. C. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-pregabalin. J. Am. Chem. Soc. 136, 10886–10889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Till, N. A., Smith, R. T. & MacMillan, D. W. C. Decarboxylative hydroalkylation of alkynes. J. Am. Chem. Soc. 140, 5701–5705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma, Y. et al. Highly stereoselective synthesis of aryl/heteroaryl-C-nucleosides via the merger of photoredox and nickel catalysis. Chem. Commun. 55, 14657–14660 (2019).

    Article  CAS  Google Scholar 

  126. Zhu, M. & Messaoudi, S. Diastereoselective decarboxylative alkynylation of anomeric carboxylic acids using Cu/photoredox dual catalysis. ACS Catal. 11, 6334–6342 (2021).

    Article  CAS  Google Scholar 

  127. Ji, P. et al. Visible-light-mediated, chemo- and stereoselective radical process for the synthesis of C-glycoamino acids. Org. Lett. 21, 3086–3092 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Crisenza, G. E. M., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor–acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, Z. et al. Synthetic reactions driven by electron-donor–acceptor (EDA) complexes. Beilstein J. Org. Chem. 17, 771–799 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zheng, L. et al. Progress in photoinduced radical reactions using electron donor-acceptor complexes. Asian J. Org. Chem. 10, 711–748 (2021).

    Article  CAS  Google Scholar 

  131. Lima, C. G. S., de M. Lima, T., Duarte, M., Jurberg, I. D. & Paixão, M. W. Organic synthesis enabled by light-irradiation of EDA Complexes: theoretical background and synthetic applications. ACS Catal. 6, 1389–1407 (2016).

    Article  CAS  Google Scholar 

  132. Shatskiy, A. & Kärkäs, M. D. Photoredox-enabled decarboxylative synthesis of unnatural α-amino acids. Synlett 33, 109–115 (2022).

    Article  CAS  Google Scholar 

  133. Garrido-Castro, A. F., Choubane, H., Daaou, M., Maestro, M. C. & Alemán, J. Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions. Chem. Commun. 53, 7764–7767 (2017).

    Article  CAS  Google Scholar 

  134. Shatskiy, A. et al. Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chem. Sci. 12, 5430–5437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ji, P. et al. Synthesis of enantioenriched α-deuterated α-amino acids enabled by an organophotocatalytic radical approach. Org. Lett. 22, 1557–1562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kammer, L. M., Badir, S. O., Hu, R.-M. & Molander, G. A. Photoactive electron donor–acceptor complex platform for Ni-mediated C(sp3)–C(sp2) bond formation. Chem. Sci. 12, 5450–5457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wan, I. C. S., Witte, M. D. & Minnaard, A. J. From d- to l-monosaccharide derivatives via photodecarboxylation–alkylation. Org. Lett. 21, 7669–7673 (2019). This paper describes a prominent method for controlling stereoselectivity during decarboxylative functionalization of uronic acids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abe, H., Shuto, S. & Matsuda, A. Highly α- and β-selective radical C-glycosylation reactions using a controlling anomeric effect based on the conformational restriction strategy. A study on the conformation−anomeric effect–stereoselectivity relationship in anomeric radical reactions. J. Am. Chem. Soc. 123, 11870–11882 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Schwarz, J. & König, B. Decarboxylative alkynylation of biomass-derived compounds by metal-free visible light photocatalysis. ChemPhotoChem 1, 237–242 (2017).

    Article  CAS  Google Scholar 

  140. Ge, D., Wang, X. & Chu, X.-Q. SOMOphilic alkynylation using acetylenic sulfones as functional reagents. Org. Chem. Front. 8, 5145–5164 (2021).

    Article  CAS  Google Scholar 

  141. Lu, K., Ma, Y., Liu, S., Guo, S. & Zhang, Y. Highly stereoselective C-glycosylation by photocatalytic decarboxylative alkynylation on anomeric position: a facile access to alkynyl C-glycosides. Chin. J. Chem. 40, 681–686 (2022).

    Article  CAS  Google Scholar 

  142. Qin, P. et al. Visible-light-induced C2 alkylation of heterocyclic N-oxides with N-hydroxyphthalimide esters under metal-free conditions. Adv. Synth. Catal. 362, 4707–4715 (2020).

    Article  CAS  Google Scholar 

  143. Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    Article  CAS  Google Scholar 

  144. Ventre, S., Petronijevic, F. R. & MacMillan, D. W. C. Decarboxylative fluorination of aliphatic carboxylic acids via photoredox catalysis. J. Am. Chem. Soc. 137, 5654–5657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Webb, E. W. et al. Nucleophilic (radio)fluorination of redox-active esters via radical-polar crossover enabled by photoredox catalysis. J. Am. Chem. Soc. 142, 9493–9500 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Ramirez, N. P., König, B. & Gonzalez-Gomez, J. C. Decarboxylative cyanation of aliphatic carboxylic acids via visible-light flavin photocatalysis. Org. Lett. 21, 1368–1373 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Ramirez, N. P., Lana-Villarreal, T. & Gonzalez-Gomez, J. C. Direct decarboxylative allylation and arylation of aliphatic carboxylic acids using flavin-mediated photoredox catalysis: direct decarboxylative allylation and arylation of aliphatic carboxylic acids using flavin-mediated photoredox catalysis. Eur. J. Org. Chem. 1539–1550 (2020).

  148. Patra, T., Bellotti, P., Strieth-Kalthoff, F. & Glorius, F. Photosensitized intermolecular carboimination of alkenes through the persistent radical effect. Angew. Chem. Int. Ed. 59, 3172–3177 (2020).

    Article  CAS  Google Scholar 

  149. Ito, Y., Tsutsui, N., Osawa, T. & Hari, Y. Synthesis of the methyl analog of 2′-O,4′-C-ethylene-bridged 5-methyluridine via intramolecular radical cyclization and properties of modified oligonucleotides. J. Org. Chem. 84, 9093–9100 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Ito, Y., Nishida, K., Tsutsui, N., Fuchi, Y. & Hari, Y. Synthesis and properties of oligonucleotides containing 2′-O,4′-C-ethylene-bridged 5-methyluridine with exocyclic methylene and methyl groups in the bridge. Eur. J. Org. Chem. 4993–5002 (2021).

  151. Rodríguez-Tzompanzi, V., Quintero, L., Tepox-Luna, D. M., Cruz-Gregorio, S. & Sartillo-Piscil, F. Blue light photoredox decarboxylation and tin-free Barton–McCombie reactions in the stereoselective synthesis of (+)-muscarine. Tetrahedron Lett. 60, 423–426 (2019).

    Article  Google Scholar 

  152. You, S.-L. Recent developments in asymmetric transfer hydrogenation with Hantzsch esters: a biomimetic approach. Chem. Asian J. 2, 820–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Ouellet, S. G., Walji, A. M. & Macmillan, D. W. C. Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. Acc. Chem. Res. 40, 1327–1339 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Rueping, M., Dufour, J. & Schoepke, F. R. Advances in catalytic metal-free reductions: from bio-inspired concepts to applications in the organocatalytic synthesis of pharmaceuticals and natural products. Green. Chem. 13, 1084 (2011).

    Article  CAS  Google Scholar 

  155. Wang, P.-Z., Chen, J.-R. & Xiao, W.-J. Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Org. Biomol. Chem. 17, 6936–6951 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Tewari, N., Dwivedi, N. & Tripathi, R. P. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett. 45, 9011–9014 (2004).

    Article  CAS  Google Scholar 

  157. Gutiérrez-Bonet, Á., Tellis, J. C., Matsui, J. K., Vara, B. A. & Molander, G. A. 1,4-Dihydropyridines as alkyl radical precursors: Introducing the aldehyde feedstock to nickel/photoredox dual catalysis. ACS Catal. 6, 8004–8008 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Dumoulin, A., Matsui, J. K., Gutiérrez-Bonet, Á. & Molander, G. A. Synthesis of non-classical arylated C-saccharides through nickel/photoredox dual catalysis. Angew. Chem. Int. Ed. 57, 6614–6618 (2018).

    Article  CAS  Google Scholar 

  159. Phelan, J. P. et al. Open-air alkylation reactions in photoredox-catalyzed DNA-encoded library synthesis. J. Am. Chem. Soc. 141, 3723–3732 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lang, S. B., Wiles, R. J., Kelly, C. B. & Molander, G. A. Photoredox generation of carbon-centered radicals enables the construction of 1,1-difluoroalkene carbonyl mimics. Angew. Chem. Int. Ed. 56, 15073–15077 (2017).

    Article  CAS  Google Scholar 

  161. Badir, S. O. et al. Photoredox-mediated hydroalkylation and hydroarylation of functionalized olefins for DNA-encoded library synthesis. Chem. Sci. 12, 12036–12045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Badir, S. O., Dumoulin, A., Matsui, J. K. & Molander, G. A. Synthesis of reversed C-acyl glycosides through Ni/photoredox dual catalysis. Angew. Chem. Int. Ed. 57, 6610–6613 (2018).

    Article  CAS  Google Scholar 

  163. Amani, J. & Molander, G. A. Direct conversion of carboxylic acids to alkyl ketones. Org. Lett. 19, 3612–3615 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bergonzini, G., Cassani, C. & Wallentin, C.-J. Acyl radicals from aromatic carboxylic acids by means of visible-light photoredox catalysis. Angew. Chem. Int. Ed. 54, 14066–14069 (2015).

    Article  CAS  Google Scholar 

  165. Matsui, J. K. et al. Photoredox/nickel-catalyzed single-electron Tsuji-Trost reaction: development and mechanistic insights. Angew. Chem. Int. Ed. 57, 15847–15851 (2018).

    Article  CAS  Google Scholar 

  166. Wang, Z.-J., Zheng, S., Romero, E., Matsui, J. K. & Molander, G. A. Regioselective single-electron Tsuji–Trost reaction of allylic alcohols: a photoredox/nickel dual catalytic approach. Org. Lett. 21, 6543–6547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, M.-M., Wang, Y.-N., Lu, L.-Q. & Xiao, W.-J. Light up the transition metal-catalyzed single-electron allylation. Trends Chem. 2, 764–775 (2020).

    Article  CAS  Google Scholar 

  168. Huang, H.-M., Bellotti, P. & Glorius, F. Transition metal-catalysed allylic functionalization reactions involving radicals. Chem. Soc. Rev. 49, 6186–6197 (2020).

    Article  PubMed  Google Scholar 

  169. Luo, Y. et al. Oxa- and azabenzonorbornadienes as electrophilic partners under photoredox/nickel dual catalysis. ACS Catal. 9, 8835–8842 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Verrier, C. et al. Direct stereoselective installation of alkyl fragments at the β-carbon of enals via excited iminium ion catalysis. ACS Catal. 8, 1062–1066 (2018).

    Article  CAS  Google Scholar 

  171. Li, J. et al. Visible-light-promoted cross-coupling reactions of 4-alkyl-1,4-dihydropyridines with thiosulfonate or selenium sulfonate: a unified approach to sulfides, selenides, and sulfoxides. Org. Lett. 22, 4908–4913 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Z.-J., Zheng, S., Matsui, J. K., Lu, Z. & Molander, G. A. Desulfonative photoredox alkylation of N-heteroaryl sulfones—an acid-free approach for substituted heteroarene synthesis. Chem. Sci. 10, 4389–4393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kamijo, S., Kamijo, K. & Murafuji, T. Synthesis of alkylated pyrimidines via photoinduced coupling using benzophenone as a mediator. J. Org. Chem. 82, 2664–2671 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Molander, G. A., Colombel, V. & Braz, V. A. Direct alkylation of heteroaryls using potassium alkyl- and alkoxymethyltrifluoroborates. Org. Lett. 13, 1852–1855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Du, H.-W. et al. Synthesis of monofluoroalkenes through visible-light-promoted defluorinative alkylation of gem-difluoroalkenes with 4-alkyl-1,4-dihydropyridines. Org. Lett. 22, 1542–1546 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Du, H.-W. et al. Synthesis of gem-difluoroalkenes via Zn-mediated decarboxylative/defluorinative cross-coupling. Org. Lett. 22, 9342–9345 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Gutiérrez-Bonet, Á., Remeur, C., Matsui, J. K. & Molander, G. A. Late-stage C–H alkylation of heterocycles and 1,4-quinones via oxidative homolysis of 1,4-dihydropyridines. J. Am. Chem. Soc. 139, 12251–12258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wang, Q., Duan, J., Tang, P., Chen, G. & He, G. Synthesis of non-classical heteroaryl C-glycosides via Minisci-type alkylation of N-heteroarenes with 4-glycosyl-dihydropyridines. Sci. China Chem. 63, 1613–1618 (2020).

    Article  CAS  Google Scholar 

  179. He, X.-K. et al. BI-OAc-accelerated C3–H alkylation of quinoxalin-2(1H)-ones under visible-light irradiation. Org. Lett. 22, 5984–5989 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Kim, I., Park, S. & Hong, S. Functionalization of pyridinium derivatives with 1,4-dihydropyridines enabled by photoinduced charge transfer. Org. Lett. 22, 8730–8734 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Lipp, A., Badir, S. O., Dykstra, R., Gutierrez, O. & Molander, G. A. Catalyst-free decarbonylative trifluoromethylthiolation enabled by electron donor-acceptor complex photoactivation. Adv. Synth. Catal. 363, 3507–3520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Luo, Y.-R. BDEs of O−X bonds. In Comprehensive Handbook of Chemical Bond Energies 255–368 (CRC Press, 2007).

  183. Chang, L., An, Q., Duan, L., Feng, K. & Zuo, Z. Alkoxy radicals see the light: new paradigms of photochemical synthesis. Chem. Rev. 122, 2429–2486 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Tsui, E., Wang, H. & Knowles, R. R. Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem. Sci. 11, 11124–11141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Guo, J.-J., Hu, A. & Zuo, Z. Photocatalytic alkoxy radical-mediated transformations. Tetrahedron Lett. 59, 2103–2111 (2018).

    Article  CAS  Google Scholar 

  186. Hartung, J., Gottwald, T. & Špehar, K. Selectivity in the chemistry of oxygen-centered radicals — the formation of carbon–oxygen bonds. Synthesis 2002, 1469–1498 (2002).

    Article  Google Scholar 

  187. de Armas, P., Francisco, C. G. & Suárez, E. Reagents with hypervalent iodine: formation of convenient chiral synthetic intermediates by fragmentation of carbohydrate anomeric alkoxy radicals. Angew. Chem. Int. Ed. 31, 772–774 (1992).

    Article  Google Scholar 

  188. Francisco, C. G., Martín, C. G. & Suárez, E. Synthesis of α-iodoalkyl esters and α-iodoalkyl carbonates from carbohydrates. Formation of convenient chiral synthetic intermediates. J. Org. Chem. 63, 8092–8093 (1998).

    Article  CAS  Google Scholar 

  189. Hernández-Guerra, D., Rodríguez, M. S. & Suárez, E. Fragmentation of carbohydrate anomeric alkoxyl radicals: synthesis of chiral polyhydroxylated β-iodo- and alkenylorganophosphorus(v) compounds. Eur. J. Org. Chem. 5033–5055 (2014).

  190. Francisco, C. G., González, C. C., Kennedy, A. R., Paz, N. R. & Suárez, E. Fragmentation of carbohydrate anomeric alkoxyl radicals: new synthesis of chiral 1-fluoro-1-halo-1-iodoalditols. Chem. Eur. J. 14, 6704–6712 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Francisco, C. G., Martín, C. G. & Suárez, E. Fragmentation of carbohydrate anomeric alkoxy radicals. A new general method for the synthesis of alduronic acid lactones. J. Org. Chem. 63, 2099–2109 (1998).

    Article  CAS  Google Scholar 

  192. Hernández-Guerra, D. et al. Synthetic approaches to phosphasugars (2-oxo-1,2-oxaphosphacyclanes) using the anomeric alkoxyl radical β-fragmentation reaction as the key step. J. Org. Chem. 85, 4861–4880 (2020).

    Article  PubMed  Google Scholar 

  193. de Armas, P., Francisco, C. G. & Suarez, E. Fragmentation of carbohydrate anomeric alkoxy radicals. Tandem β-fragmentation-cyclization of alcohols. J. Am. Chem. Soc. 115, 8865–8866 (1993).

    Article  Google Scholar 

  194. Francisco, C. G., Freire, R., González, C. C. & Suárez, E. Fragmentation of carbohydrate anomeric alkoxy radicals. Synthesis of azasugars. Tetrahedron Asymmetry 8, 1971–1974 (1997).

    Article  CAS  Google Scholar 

  195. Santana, A. G. & González, C. C. Tandem radical fragmentation/cyclization of guanidinylated monosaccharides grants access to medium-sized polyhydroxylated heterocycles. Org. Lett. 22, 8492–8495 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. André-Joyaux, E., Santana, A. G. & González, C. C. Synthesis of chiral polyhydroxylated benzimidazoles by a tandem radical fragmentation/cyclization reaction: a straight avenue to fused aromatic-carbohydrate hybrids. J. Org. Chem. 84, 506–515 (2019).

    Article  PubMed  Google Scholar 

  197. Nechab, M., Mondal, S. & Bertrand, M. P. 1,n-Hydrogen-atom transfer (HAT) reactions in which n ≠ 5: an updated inventory. Chem. Eur. J. 20, 16034–16059 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Boto, A., Hernández, D., Hernández, R. & Suárez, E. Efficient and selective removal of methoxy protecting groups in carbohydrates. Org. Lett. 6, 3785–3788 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Boto, A., Hernández, D., Hernández, R. & Suárez, E. Selective cleavage of methoxy protecting groups in carbohydrates. J. Org. Chem. 71, 1938–1948 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Boto, A., Hernández, D., Hernández, R. & Suárez, E. β-Fragmentation of primary alkoxyl radicals versus hydrogen abstraction: synthesis of polyols and α,ω-differently substituted cyclic ethers from carbohydrates. J. Org. Chem. 68, 5310–5319 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Guyenne, S., León, E. I., Martín, A., Pérez-Martín, I. & Suárez, E. Intramolecular 1,8-hydrogen atom transfer reactions in disaccharide systems containing furanose units. J. Org. Chem. 77, 7371–7391 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Alvarez-Dorta, D. et al. Radical-mediated C–H functionalization: a strategy for access to modified cyclodextrins. J. Org. Chem. 81, 11766–11787 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. León, E. I. et al. 1,5-Hydrogen atom transfer/Surzur–Tanner rearrangement: a radical cascade approach for the synthesis of 1,6-dioxaspiro[4.5]decane and 6,8-dioxabicyclo[3.2.1]octane scaffolds in carbohydrate systems. J. Org. Chem. 86, 14508–14552 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Martín, A., Rodríguez, M. S. & Suárez, E. Synthesis of alditols by reductive radical fragmentation of N-phthalimido glycosides. Preparation of chiral synthetic intermediates. Tetrahedron Lett. 40, 7525–7528 (1999).

    Article  Google Scholar 

  205. Francisco, C. G. et al. Reductive fragmentation of carbohydrate anomeric alkoxy radicals. Synthesis of alditols with potential utility as chiral synthons. J. Org. Chem. 66, 6967–6976 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Ito, Y., Kimura, A., Osawa, T. & Hari, Y. Photoredox-catalyzed deformylative 1,4-addition of 2′-deoxy-5′-O-phthalimidonucleosides for synthesis of 5′-carba analogs of nucleoside 5′-phosphates. J. Org. Chem. 83, 10701–10708 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Cong, F., Lv, X.-Y., Day, C. S. & Martin, R. Dual catalytic strategy for forging sp2–sp3 and sp3–sp3 architectures via β-scission of aliphatic alcohol derivatives. J. Am. Chem. Soc. 142, 20594–20599 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Shu, C., Madhavachary, R., Noble, A. & Aggarwal, V. K. Photoinduced fragmentation borylation of cyclic alcohols and hemiacetals. Org. Lett. 22, 7213–7218 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Matsuoka, T., Inuki, S., Miyagawa, T., Oishi, S. & Ohno, H. Total synthesis of (+)-polyoxamic acid via visible-light-mediated photocatalytic β-scission and 1,5-hydrogen atom transfer of glucose derivative. J. Org. Chem. 85, 8271–8278 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Yayla, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O–H bonds. J. Am. Chem. Soc. 138, 10794–10797 (2016). An exceptionally efficient photoredox-mediated β-C–C scission in unactivated carbohydrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Choi, G. J. & Knowles, R. R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 137, 9226–9229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yuan, W., Zhou, Z., Gong, L. & Meggers, E. Asymmetric alkylation of remote C(sp3)–H bonds by combining proton-coupled electron transfer with chiral Lewis acid catalysis. Chem. Commun. 53, 8964–8967 (2017).

    Article  CAS  Google Scholar 

  214. Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ota, E., Wang, H., Frye, N. L. & Knowles, R. R. A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. J. Am. Chem. Soc. 141, 1457–1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Abderrazak, Y., Bhattacharyya, A. & Reiser, O. Visible-light-induced homolysis of Earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. 60, 21100–21115 (2021).

    Article  CAS  Google Scholar 

  217. Zhang, K., Chang, L., An, Q., Wang, X. & Zuo, Z. Dehydroxymethylation of alcohols enabled by cerium photocatalysis. J. Am. Chem. Soc. 141, 10556–10564 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Hu, A. et al. δ-Selective functionalization of alkanols enabled by visible-light-induced ligand-to-metal charge transfer. J. Am. Chem. Soc. 140, 1612–1616 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Sambiagio, C. & Noël, T. Flow photochemistry: shine some light on those tubes! Trends Chem. 2, 92–106 (2020).

    Article  CAS  Google Scholar 

  220. Politano, F. & Oksdath-Mansilla, G. Light on the horizon: current research and future perspectives in flow photochemistry. Org. Process. Res. Dev. 22, 1045–1062 (2018).

    Article  CAS  Google Scholar 

  221. Loh, C. C. J. Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat. Rev. Chem. 5, 792–815 (2021).

    Article  CAS  Google Scholar 

  222. Yang, Q. et al. Photocatalytic C–H activation and the subtle role of chlorine radical complexation in reactivity. Science 372, 847–852 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from FORMAS (grant no. 2019-01269), the Swedish Research Council (grant no. 2020-04764), the Olle Engkvist Foundation, the Wenner-Gren Foundations, the Magnus Bergvall Foundation and the KTH Royal Institute of Technology to M.D.K. is gratefully acknowledged. Financial support to E.V.S. from the Russian Science Foundation (project no. 21-73-10211) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content, as well as writing and editing of the article.

Corresponding authors

Correspondence to Elena V. Stepanova or Markus D. Kärkäs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Biao Yu, Sébastien Vidal and the other anonymous reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shatskiy, A., Stepanova, E.V. & Kärkäs, M.D. Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 6, 782–805 (2022). https://doi.org/10.1038/s41570-022-00422-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00422-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing