Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Energy- and atom-efficient chemical synthesis with endergonic photocatalysis

Abstract

Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical representations of typical free-energy profiles for reactions.
Fig. 2: Deracemization and ring-opening isomerization.
Fig. 3: Olefin isomerization reactions.
Fig. 4: Dearomatization and cycloaddition reactions.
Fig. 5: Dehydrogenations and dehydrogenative cross-couplings.
Fig. 6: Group transfer reactions.

Similar content being viewed by others

References

  1. Roth, H. The beginnings of organic photochemistry. Angew. Chem. Int. Ed. Engl. 28, 1193–1207 (1989).

    Article  Google Scholar 

  2. Osterloh, F. E. Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Lett. 2, 445–453 (2017).

    Article  CAS  Google Scholar 

  3. Astumian, R. D. Optical vs. chemical driving for molecular machines. Faraday Discuss. 195, 583–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Kathan, M. et al. Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems. Nat. Chem. 10, 1031–1036 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–244 (2018).

    Article  PubMed  Google Scholar 

  8. Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, C. et al. Catalytic α‑deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Großkopf, J. et al. Photochemical deracemization at sp3‑hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).

    Article  PubMed  Google Scholar 

  12. Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Z. & Hu, X. Visible-light-driven catalytic deracemization of secondary alcohols. Angew. Chem. Int. Ed. 60, 22833–22838 (2021).

    Article  CAS  Google Scholar 

  14. Singh, K., Staig, S. J. & Weaver, J. D. Facile synthesis of Z-alkenes via uphill catalysis. J. Am. Chem. Soc. 136, 5275–5278 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Singh, A., Fennell, C. J. & Weaver, J. D. Photocatalyst size controls electron and energy transfer: selective E/Z isomer synthesis via C–F alkenylation. Chem. Sci. 7, 6796–6802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Metternich, J. B. & Gilmour, R. A bio-inspired, catalytic EZ isomerization of activated olefins. J. Am. Chem. Soc. 137, 11254–11257 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Molloy, J. J., Metternich, J. B., Daniliuc, C. G., Watson, A. J. B. & Gilmour, B. Contra-thermodynamic, photocatalytic EZ isomerization of styrenyl boron species: vectors to facilitate exploration of two-dimensional chemical space. Angew. Chem. Int. Ed. 57, 3168–3172 (2018).

    Article  CAS  Google Scholar 

  18. Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Neveselý, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the EZ isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).

    Article  PubMed  Google Scholar 

  20. Brégent, T., Bouillon, J.-P. & Poisson, T. Copper-photocatalyzed contra-thermodynamic isomerization of polarized alkenes. Org. Lett. 22, 7688–7693 (2020).

    Article  PubMed  Google Scholar 

  21. Ota, E., Wang, H., Frye, N. L. & Knowles, R. R. A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. J. Am. Chem. Soc. 141, 1457–1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yayla, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O–H bonds. J. Am. Chem. Soc. 138, 10794–10797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trost, B. M. & Livingston, R. C. Two-metal catalyst system for redox isomerization of propargyl alcohols to enals and enones. J. Am. Chem. Soc. 117, 9586–9587 (1995).

    Article  CAS  Google Scholar 

  24. Li, H. & Mazet, C. Iridium-catalyzed selective isomerization of primary allylic alcohols. Acc. Chem. Res. 49, 1232–1241 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Crossley, S. W. M., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerization of alkenes: the pinnacle of atom economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).

    Article  CAS  Google Scholar 

  27. Zhao, K. & Knowles, R. R. Contra-thermodynamic positional isomerization of olefins. J. Am. Chem. Soc. 144, 137–144 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Occhialini, G., Palani, V. & Wendlandt, A. E. Catalytic, contra-thermodynamic positional alkene isomerization. J. Am. Chem. Soc. 144, 145–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Morack, T., Onneken, C., Nakakohara, H., Mück-Lichtenfeld, C. & Gilmour, R. Enantiodivergent prenylation via deconjugative isomerization. ACS Catal. 11, 11929–11937 (2021).

    Article  CAS  Google Scholar 

  30. Zhu, M., Zheng, C., Zhang, X. & You, S.-L. Synthesis of cyclobutane-fused angular tetracyclic spiroindolines via visible-light-promoted intramolecular dearomatization of indole derivatives. J. Am. Chem. Soc. 141, 2636–2644 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, M., Zhang, X., Zheng, C. & You, S.-L. Visible-light-induced dearomatization via [2+2] cycloaddition or 1,5-hydrogen atom transfer: divergent reaction pathways of transient diradicals. ACS Catal. 10, 12618–12626 (2020).

    Article  CAS  Google Scholar 

  32. Zhu, M., Xu, H., Zhang, X., Zheng, C. & You, S.-L. Visible-light-induced intramolecular double dearomative cycloaddition of arenes. Angew. Chem. Int. Ed. 60, 7036–7040 (2021).

    Article  CAS  Google Scholar 

  33. Ma, J. et al. Direct dearomatization of pyridines via an energy-transfer-catalyzed intramolecular [4+2] cycloaddition. Chem 5, 2854–2864 (2019).

    Article  CAS  Google Scholar 

  34. Ma, J. et al. Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes. Science 371, 1338–1345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Filippo, M. D., Trujillo, C., Sánchez-Sanz, G., Batsanov, A. S. & Baumann, M. Discovery of a photochemical cascade process by flow-based interception of isomerizing alkenes. Chem. Sci. 12, 9895–9901 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Z. et al. Photocatalytic intramolecular [2 + 2] cycloaddition of indole derivatives via energy transfer: a method for late-stage skeletal transformation. ACS Catal. 10, 10149–10156 (2020).

    Article  CAS  Google Scholar 

  37. Park, Y. et al. Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nat. Chem. 13, 969–976 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Chatterjee, A. & König, B. Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angew. Chem. Int. Ed. 58, 14289–14294 (2019).

    Article  CAS  Google Scholar 

  39. Cole, J. P. et al. Organocatalyzed Birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joshi, D. K., Sutton, J. W., Carver, S. & Blanchard, J. P. Experiences with commercial production scale operation of dissolving metal reduction using lithium metal and liquid ammonia. Org. Process. Res. Dev. 9, 997–1002 (2005).

    Article  CAS  Google Scholar 

  41. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarkar, D., Bera, N. & Ghosh, S. [2+2] photochemical cycloaddition in organic synthesis. Eur. J. Org. Chem. 2020, 1310–1326 (2020).

    Article  CAS  Google Scholar 

  44. Sicignano, M., Rodríguez, R. I. & Alemán, J. Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions. Eur. J. Org. Chem. 2021, 3303–3321 (2021).

    Article  CAS  Google Scholar 

  45. Huang, X. et al. Direct visible-light-excited asymmetric Lewis acid catalysis of intermolecular [2+2] photocycloadditions. J. Am. Chem. Soc. 139, 9120–9123 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Jung, H. et al. Understanding the mechanism of direct visible-light-activated [2+2] cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chem. Sci. 12, 9673–9681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng, J., Dong, X. & Yoon, T. P. Divergent photocatalytic reactions of α-ketoesters under triplet sensitization and photoredox conditions. Org. Lett. 22, 6520–6525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murray, P. R. D. et al. Intermolecular crossed [2+2] cycloaddition promoted by visible-light triplet photosensitization: expedient access to polysubstituted 2-oxaspiro[3.3]heptanes. J. Am. Chem. Soc. 143, 4055–4063 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Singh, K., Trinh, W. & Weaver, J. D. An elusive thermal [2+2] cycloaddition driven by visible light photocatalysis: tapping into strain to access C2-symmetric tricyclic rings. Org. Biomol. Chem. 17, 1854–1861 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  Google Scholar 

  51. Zhou, M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Fuse, H., Kojima, M., Mitsunuma, H. & Kanai, M. Acceptorless dehydrogenation of hydrocarbons by noble-metal-free hybrid catalyst system. Org. Lett. 20, 2042–2045 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Fuse, H., Mitsunuma, H. & Kanai, M. Catalytic acceptorless dehydrogenation of aliphatic alcohols. J. Am. Chem. Soc. 142, 4493–4499 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Cheng, E. et al. Isobutane dehydrogenation over bulk and supported molybdenum sulfide catalysts. Ind. Eng. Chem. Res. 59, 1113–1122 (2020).

    Article  CAS  Google Scholar 

  55. Li, C. & Wang, G. Dehydrogenation of light alkanes to mono-olefins. Chem. Soc. Rev. 50, 4359–4381 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Bender, M. An overview of industrial processes for the production of olefins — C4 hydrocarbons. ChemBioEng Rev. 1, 136–147 (2014).

    Article  CAS  Google Scholar 

  57. Xiang, M. et al. Activation of C–H bonds through oxidant-free photoredox catalysis: cross-coupling hydrogen-evolution transformation of isochromans and β-keto esters. Chem. Eur. J. 21, 18080–18084 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Zheng, Y.-W. et al. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J. Am. Chem. Soc. 138, 10080–10083 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Zheng, Y.-W. et al. Benzene C–H etherification via photocatalytic hydrogen-evolution cross-coupling reaction. Org. Lett. 19, 2206–2209 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, G. et al. Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. Chem. Commun. 52, 10407–10410 (2016).

    Article  CAS  Google Scholar 

  61. Zhang, G. et al. Anti-Markovnikov oxidation of β-alkyl styrenes with H2O as the terminal oxidant. J. Am. Chem. Soc. 138, 12037–12040 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Yi, H. et al. Photocatalytic dehydrogenative cross-coupling of alkenes with alcohols or azoles without external oxidant. Angew. Chem. Int. Ed. 56, 1120–1124 (2017).

    Article  CAS  Google Scholar 

  63. McManus, J. B., Griffin, J. D., White, A. R. & Nicewicz, D. A. Homobenzylic oxygenation enabled by dual organic photoredox and cobalt catalysis. J. Am. Chem. Soc. 142, 10325–10330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kawasaki, T., Ishida, N. & Murakami, M. Dehydrogenative coupling of benzylic and aldehydic C–H bonds. J. Am. Chem. Soc. 142, 3366–3370 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Cao, H. et al. Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes. Nat. Commun. 11, 1956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Ishida, N., Masuda, Y., Uemoto, S. & Murakami, M. A light/ketone/copper system for carboxylation of allylic C–H bonds of alkenes with CO2. Chem. Eur. J. 22, 6524–6527 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Ishida, N., Masuda, Y., Imamura, Y., Yamazaki, K. & Murakami, M. Carboxylation of benzylic and aliphatic C–H bonds with CO2 induced by light/ketone/nickel. J. Am. Chem. Soc. 141, 19611–19615 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Seo, H., Katcher, M. H. & Jamison, T. F. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat. Chem. 9, 453–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Meng, Q.-Y., Schirmer, T. E., Berger, A. L., Donabauer, K. & König, B. Photocarboxylation of benzylic C–H bonds. J. Am. Chem. Soc. 141, 11393–11397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarver, P. J., Bissonnette, N. B. & Macmillan, D. W. C. Decatungstate-catalyzed C(sp3)–H sulfinylation: rapid access to diverse organosulfur functionality. J. Am. Chem. Soc. 143, 9737–9743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bronner, S. M. & Grubbs, R. H. Formal anti-Markovnikov hydroamination of terminal olefins. Chem. Sci. 5, 101–106 (2014).

    Article  CAS  Google Scholar 

  73. Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Zhu, Q., Graff, D. E. & Knowles, R. R. Intermolecular anti-Markovnikov hydroamination of unactivated alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 140, 741–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller, D. C. et al. Anti-Markovnikov hydroamination of unactivated alkenes with primary alkyl amines. J. Am. Chem. Soc. 141, 16590–16594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chinn, A. J., Sedillo, K. & Doyle, A. G. Phosphine/photoredox catalyzed anti-Markovnikov hydroamination of olefins with primary sulfonamides via α‑scission from phosphoranyl radicals. J. Am. Chem. Soc. 143, 18331–18338 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Musacchio, A. J. et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 355, 727–730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, S., Jeong, J., Fujita, K., Yamamoto, A. & Yoshida, H. Anti-Markovnikov hydroamination of alkenes with aqueous ammonia by metal-loaded titanium oxide photocatalyst. J. Am. Chem. Soc. 142, 12708–12714 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Iwamoto, T., Hosokawa, A. & Nakamura, M. Endergonic addition of N-methylamines to aromatic ketones driven by photochemical offset of the entropic cost. Chem. Commun. 55, 11683–11686 (2019).

    Article  CAS  Google Scholar 

  80. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  81. Strunk, J. (ed.) Heterogeneous Photocatalysis: From Fundamentals To Applications In Energy Conversion And Depollution (Wiley, 2021).

  82. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Patil, B. S. et al. Nitrogen fixation. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2017).

  84. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  85. Tanabe, Y. & Nishibayashi, Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem. Soc. Rev. 50, 5201–5242 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Kuriyama, S. & Nishibayashi, Y. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 83, 131986 (2021).

    Article  CAS  Google Scholar 

  87. Huang, R. et al. Recent advances in photocatalytic nitrogen fixation: from active sites to ammonia quantification methods. RSC Adv. 11, 14844–14861 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, S., Loose, F. & Chirik, P. J. Beyond ammonia: nitrogen–element bond forming reactions with coordinated dinitrogen. Chem. Rev. 120, 5637–5681 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Sovacool, B. K., Griffiths, S., Kim, J. & Bazilian, M. Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sust. Energ. Rev. 141, 110759 (2021).

    Article  CAS  Google Scholar 

  90. Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian, Inc., 2019).

  91. Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

  92. Chai, J. D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. McLean, A. D. & Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980).

    Article  CAS  Google Scholar 

  94. Blaudeau, J.-P., McGrath, M. P., Curtiss, L. A. & Radom, L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 107, 5016–5021 (1997).

    Article  CAS  Google Scholar 

  95. Wachters, A. J. H. Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 52, 1033–1036 (1970).

    Article  CAS  Google Scholar 

  96. Hay, P. J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J. Chem. Phys. 66, 4377–4384 (1977).

    Article  CAS  Google Scholar 

  97. Raghavachari, K. & Trucks, G. W. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. J. Chem. Phys. 91, 1062–1065 (1989).

    Article  Google Scholar 

  98. Binning, R. C. & Curtiss, L. A. Compact contracted basis sets for third-row atoms: Ga–Kr. J. Comp. Chem. 11, 1206–1216 (1990).

    Article  CAS  Google Scholar 

  99. McGrath, M. P. & Radom, L. Extension of Gaussian-1 (G1) theory to bromine-containing molecules. J. Chem. Phys. 94, 511–516 (1991).

    Article  CAS  Google Scholar 

  100. Curtiss, L. A. et al. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. J. Chem. Phys. 103, 6104–6113 (1995).

    Article  CAS  Google Scholar 

  101. Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J. Comp. Chem. 4, 294–301 (1983).

    Article  CAS  Google Scholar 

  102. Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

    Article  CAS  Google Scholar 

  103. Wiberg, K. B. The C7–C10 cycloalkanes revisited. J. Org. Chem. 68, 9322–9329 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Neuenschwander, U. & Hermans, I. The conformations of cyclooctene: consequences for epoxidation chemistry. J. Org. Chem. 76, 10236–10240 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Smithson, T. L., Ibrahim, N. & Wieser, H. Methylenecyclohexenes: inversion barriers from the far-infrared spectra. Can. J. Chem. 61, 442–453 (1983).

    Article  CAS  Google Scholar 

  106. Lima, C. F. R. A. C. et al. The role of aromatic interactions in the structure and energetics of benzyl ketones. Phys. Chem. Chem. Phys. 12, 11228–11237 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Nyden, M. R. & Petersson, G. A. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. J. Chem. Phys. 75, 1843–1862 (1981).

    Article  CAS  Google Scholar 

  108. Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A. & Shirley, W. A. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89, 2193–2218 (1988).

    Article  CAS  Google Scholar 

  109. Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).

    Article  CAS  Google Scholar 

  110. Petersson, G. A., Tensfeldt, T. & Montgomery, J. A. Jr A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 94, 6091–6101 (1991).

    Article  CAS  Google Scholar 

  111. Montgomery, J. A. Jr, Ochterski, J. W. & Petersson, G. A. A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. J. Chem. Phys. 101, 5900–5909 (1994).

    Article  CAS  Google Scholar 

  112. Montgomery, J. A. Jr & Frisch, M. J. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999).

    Article  CAS  Google Scholar 

  113. Montgomery, J. A. Jr, Frisch, M. J. & Ochterski, J. W. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 112, 6532–6542 (2000).

    Article  CAS  Google Scholar 

  114. Johnson, R. D. III NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101, Release 21, accessed August 2020; http://cccbdb.nist.gov/.

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; grant TRR 325-444632635) for funding support. H.W. thanks N. Y. Shin (Princeton University) for a discussion regarding deracemization.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and writing process of the manuscript. H.W. performed the computational studies.

Corresponding author

Correspondence to Burkhard König.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tian, YM. & König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 6, 745–755 (2022). https://doi.org/10.1038/s41570-022-00421-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00421-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing