Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical strategies to engineer hydrogels for cell culture

Abstract

Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cellular microenvironment in tissues.
Fig. 2: Molecular design of hydrogels to control chemical and mechanical properties.
Fig. 3: The effect of chemical and mechanical cues of the synthetic extracellular matrix on cell behaviour and organogenesis.
Fig. 4: Dynamic control of biochemical and biophysical properties of hydrogels.
Fig. 5: Stimuli-responsive chemistries utilized to control biomaterial function.

Similar content being viewed by others

References

  1. Hynes Richard, O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cushing, M. C. & Anseth, K. S. Hydrogel cell cultures. Science 316, 1133–1134 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). Highlights the importance of substrate stiffness in regulating stem cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  8. Ushiki, T. Preserving the original architecture of elastin components in the formic acid-digested aorta by an alternative procedure for scanning electron microscopy. J. Electron Microsc. 41, 60–63 (1992).

    CAS  Google Scholar 

  9. Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65, 109–126 (2002).

    Article  PubMed  Google Scholar 

  10. Theocharis, A. D., Skandalis, S. S., Gialeli, C. & Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eliaz, N. & Metoki, N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials 10, 334 (2017).

    Article  PubMed Central  Google Scholar 

  13. Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016). Describes an approach to independently control the stress relaxation of alginate hydrogels and demonstrates that the viscoelasticity of hydrogel regulates cell spreading and stem cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  17. Chrisnandy, A., Blondel, D., Rezakhani, S., Broguiere, N. & Lutolf, M. P. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. Nat. Mater. 21, 479–487 (2021). Presents a viscoelastic synthetic hydrogel that promotes morphogenesis of intestinal organoids.

    Article  PubMed  Google Scholar 

  18. Lou, J., Stowers, R., Nam, S., Xia, Y. & Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Tang, S., Richardson, B. M. & Anseth, K. S. Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues. Prog. Mater. Sci. 120, 100738 (2021).

    Article  CAS  Google Scholar 

  20. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Wen, Q. & Janmey, P. A. Effects of non-linearity on cell–ECM interactions. Exp. Cell Res. 319, 2481–2489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bashur, C. A., Shaffer, R. D., Dahlgren, L. A., Guelcher, S. A. & Goldstein, A. S. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A 15, 2435–2445 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Xian, X., Gopal, S. & Couchman, J. R. Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res. 339, 31–46 (2009).

    Article  PubMed  Google Scholar 

  25. Senbanjo, L. T. & Chellaiah, M. A. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol. 5, 18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mercurio, A. M. Laminin receptors: achieving specificity through cooperation. Trends Cell Biol. 5, 419–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Taipale, J. & Keski-Oja, J. Growth factors in the extracellular matrix. FASEB J. 11, 51–59 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Schultz, G. S. & Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17, 153–162 (2009).

    Article  PubMed  Google Scholar 

  30. Martino, M. M. et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343, 885–888 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robins, S. P. Biochemistry and functional significance of collagen cross-linking. Biochem. Soc. Trans. 35, 849–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Stearns-Reider, K. M. et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 16, 518–528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rahmany, M. B. & Van Dyke, M. Biomimetic approaches to modulate cellular adhesion in biomaterials: a review. Acta Biomater. 9, 5431–5437 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boekhoven, J., Rubert Pérez, C. M., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. 52, 12077–12080 (2013).

    Article  CAS  Google Scholar 

  38. Seo, J. H. et al. Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J. Am. Chem. Soc. 135, 5513–5516 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Oria, R. et al. Force loading explains spatial sensing of ligands by cells. Nature 552, 219–224 (2017). The spacing and distribution of RGD ligands are shown to regulate cell adhesion and intracellular signal transduction.

    Article  CAS  PubMed  Google Scholar 

  40. Huang, J. et al. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 9, 1111–1116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642–649 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Frith, J. E., Mills, R. J., Hudson, J. E. & Cooper-White, J. J. Tailored integrin–extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cell Dev. 21, 2442–2456 (2012).

    Article  CAS  Google Scholar 

  44. Freeman, R. et al. Instructing cells with programmable peptide DNA hybrids. Nat. Commun. 8, 15982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Derkus, B. et al. Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro. Acta Biomater. 109, 82–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Benoit, D. S. W., Durney, A. R. & Anseth, K. S. The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28, 66–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Jha, A. K. et al. Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials 47, 1–12 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, S. S. et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 4, 131–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Shah, R. N. et al. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl Acad. Sci. USA 107, 3293–3298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewis, J. A. et al. Transforming growth factor β-1 binding by peptide amphiphile hydrogels. ACS Biomater. Sci. Eng. 6, 4551–4560 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Fan, V. H. et al. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cell 25, 1241–1251 (2007).

    Article  CAS  Google Scholar 

  53. Andrea, L. D. et al. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc. Natl Acad. Sci. USA 102, 14215–14220 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Su, J., Satchell, S. C., Wertheim, J. A. & Shah, R. N. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior. Biomaterials 201, 99–112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Madl, C. M., Mehta, M., Duda, G. N., Heilshorn, S. C. & Mooney, D. J. Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules 15, 445–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Park, S. H. et al. An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater. 11, 30 (2019).

    Article  CAS  Google Scholar 

  57. Rubert Pérez, C. M., Álvarez, Z., Chen, F., Aytun, T. & Stupp, S. I. Mimicking the bioactivity of fibroblast growth factor-2 using supramolecular nanoribbons. ACS Biomater. Sci. Eng. 3, 2166–2175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rubinstein, M. & Colby, R. H. Polymer physics Vol. 23 (Oxford Univ. Press, 2003).

  59. Gentekos, D. T., Sifri, R. J. & Fors, B. P. Controlling polymer properties through the shape of the molecular-weight distribution. Nat. Rev. Mater. 4, 761–774 (2019).

    Article  Google Scholar 

  60. Vashahi, F. et al. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Sci. Adv. 8, eabm2469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmidt, J. J. et al. Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker. Biomacromolecules 14, 1361–1369 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Cai, L., Dewi, R. E. & Heilshorn, S. C. Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv. Funct. Mater. 25, 1344–1351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, H. et al. Covalently adaptable elastin-like protein–hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv. Funct. Mater. 27, 1605609 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kang, Y. M. et al. A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window. Biomaterials 31, 2453–2460 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Elling, B. R., Su, J. K. & Xia, Y. Degradable polyacetals/ketals from alternating ring-opening metathesis polymerization. ACS Macro Lett. 9, 180–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233–1242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhong, M. et al. Quantifying the impact of molecular defects on polymer network elasticity. Science 353, 1264–1268 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Lou, J., Friedowitz, S., Will, K., Qin, J. & Xia, Y. Predictably engineering the viscoelastic behavior of dynamic hydrogels via correlation with molecular parameters. Adv. Mater. 33, 2104460 (2021).

    Article  CAS  Google Scholar 

  70. Canal, T. & Peppas, N. A. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 23, 1183–1193 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Marco-Dufort, B., Iten, R. & Tibbitt, M. W. Linking molecular behavior to macroscopic properties in ideal dynamic covalent networks. J. Am. Chem. Soc. 142, 15371–15385 (2020). Establishes the correlation between the time-dependent viscoelasticity of hydrogels and the thermodynamics and kinetics of reversible crosslinks.

    Article  CAS  PubMed  Google Scholar 

  72. Marco-Dufort, B., Willi, J., Vielba-Gomez, F., Gatti, F. & Tibbitt, M. W. Environment controls biomolecule release from dynamic covalent hydrogels. Biomacromolecules 22, 146–157 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Accardo, J. V. & Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 9, 5987–5993 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Bis-aliphatic hydrazone-linked hydrogels form most rapidly at physiological pH: identifying the origin of hydrogel properties with small molecule kinetic studies. Chem. Mater. 26, 2382–2387 (2014).

    Article  CAS  Google Scholar 

  75. Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA 104, 7791–7796 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hinton, Z. R., Shabbir, A. & Alvarez, N. J. Dynamics of supramolecular self-healing recovery in extension. Macromolecules 52, 2231–2242 (2019).

    Article  CAS  Google Scholar 

  77. Yount, W. C., Loveless, D. M. & Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, H. et al. Control viscoelasticity of polymer networks with crosslinks of superposed fast and slow. Dyn. Angew. Chem. Int. Ed. 60, 22332–22338 (2021).

    Article  CAS  Google Scholar 

  79. Grindy, S. C. et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 14, 1210–1216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lou, J. et al. Dynamic hyaluronan hydrogels with temporally modulated high injectability and stability using a biocompatible catalyst. Adv. Mater. 30, 1705215 (2018).

    Article  Google Scholar 

  81. Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016). Features a degradable synthetic hydrogel that controls the development of intestinal organoids.

    Article  CAS  PubMed  Google Scholar 

  83. Mano, J. F. et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4, 999–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Davidenko, N. et al. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomater. 25, 131–142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F. & Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 15, 318–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  88. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  PubMed  Google Scholar 

  89. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leipzig, N. D., Wylie, R. G., Kim, H. & Shoichet, M. S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32, 57–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Li, H., Koenig, A. M., Sloan, P. & Leipzig, N. D. In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35, 9049–9057 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Varghese, S. et al. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 27, 12–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Aisenbrey, E. A. & Bryant, S. J. The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials 190-191, 51–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Stern, R., Kogan, G., Jedrzejas, M. J. & Šoltés, L. The many ways to cleave hyaluronan. Biotechnol. Adv. 25, 537–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Davison-Kotler, E., Marshall, W. S. & García-Gareta, E. Sources of collagen for biomaterials in skin wound healing. Bioengineering 6, 56 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  98. Sze, J. H., Brownlie, J. C. & Love, C. A. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 6, 67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Alsberg, E. et al. Regulating bone formation via controlled scaffold degradation. J. Dent. Res. 82, 903–908 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Jing, W. & DeAngelis, P. L. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J. Biol. Chem. 279, 42345–42349 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Alcantar, N. A., Aydil, E. S. & Israelachvili, J. N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 51, 343–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31, 4639–4656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Guo, J. L. et al. Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering. Sci. Adv. 5, eaaw7396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hild, G. Model networks based on ‘endlinking’ processes: synthesis, structure and properties. Prog. Polym. Sci. 23, 1019–1149 (1998).

    Article  CAS  Google Scholar 

  106. Shibayama, M., Li, X. & Sakai, T. Precision polymer network science with tetra-PEG gels — a decade history and future. Colloid Polym. Sci. 297, 1–12 (2019).

    Article  CAS  Google Scholar 

  107. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47, 10.16.11–10.16.16 (2010).

    Article  Google Scholar 

  108. Wen, J. H. et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13, 979–987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Cameron, A. R., Frith, J. E., Gomez, G. A., Yap, A. S. & Cooper-White, J. J. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35, 1857–1868 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9, 449 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schmedlen, R. H., Masters, K. S. & West, J. L. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23, 4325–4332 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, T. H. et al. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials 40, 51–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Hu, Y., You, J. O. & Aizenberg, J. Micropatterned hydrogel surface with high-aspect-ratio features for cell guidance and tissue growth. ACS Appl. Mater. Interfaces 8, 21939–21945 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. McCracken, J. M. et al. Programming mechanical and physicochemical properties of 3D hydrogel cellular microcultures via direct ink writing. Adv. Healthc. Mater. 5, 1025–1039 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Bai, T. et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. DiMarco, R. L. & Heilshorn, S. C. Multifunctional materials through modular protein engineering. Adv. Mater. 24, 3923–3940 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Lu, H. D., Charati, M. B., Kim, I. L. & Burdick, J. A. Injectable shear-thinning hydrogels engineered with a self-assembling dock-and-lock mechanism. Biomaterials 33, 2145–2153 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Okesola, B. O. & Mata, A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 47, 3721–3736 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Vining, K. H., Stafford, A. & Mooney, D. J. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials 188, 187–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A. & Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem. Int. Ed. 56, 12132–12136 (2017).

    Article  CAS  Google Scholar 

  125. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brown, T. E. et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. J. Am. Chem. Soc. 140, 11585–11588 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Madl, C. M., Katz, L. M. & Heilshorn, S. C. Bio-orthogonally crosslinked, engineered protein hydrogels with tunable mechanics and biochemistry for cell encapsulation. Adv. Funct. Mater. 26, 3612–3620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fisher, S. A., Anandakumaran, P. N., Owen, S. C. & Shoichet, M. S. Tuning the microenvironment: click-crosslinked hyaluronic acid-based hydrogels provide a platform for studying breast cancer cell invasion. Adv. Funct. Mater. 25, 7163–7172 (2015).

    Article  CAS  Google Scholar 

  129. Madl, C. M. & Heilshorn, S. C. Rapid Diels–Alder cross-linking of cell encapsulating hydrogels. Chem. Mater. 31, 8035–8043 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Alge, D. L., Azagarsamy, M. A., Donohue, D. F. & Anseth, K. S. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine–norbornene chemistry. Biomacromolecules 14, 949–953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Desai, R. M., Koshy, S. T., Hilderbrand, S. A., Mooney, D. J. & Joshi, N. S. Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials 50, 30–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Koshy, S. T. et al. Click-crosslinked injectable gelatin hydrogels. Adv. Healthc. Mater. 5, 541–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Darling, N. J., Hung, Y. S., Sharma, S. & Segura, T. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials 101, 199–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24, 64–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Paez, J. I., Farrukh, A., Valbuena-Mendoza, R., Włodarczyk-Biegun, M. K. & del Campo, A. Thiol-methylsulfone-based hydrogels for 3D cell encapsulation. ACS Appl. Mater. Interfaces 12, 8062–8072 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Truong, V. X., Ablett, M. P., Richardson, S. M., Hoyland, J. A. & Dove, A. P. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation. J. Am. Chem. Soc. 137, 1618–1622 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Hao, Y. et al. Rapid bioorthogonal chemistry enables in situ modulation of the stem cell behavior in 3D without external triggers. ACS Appl. Mater. Interfaces 10, 26016–26027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gupta, N. et al. A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nat. Chem. 2, 138–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Gao, Y., Peng, K. & Mitragotri, S. Covalently crosslinked hydrogels via step-growth reactions: crosslinking chemistries, polymers, and clinical impact. Adv. Mater. 33, 2006362 (2021).

    Article  CAS  Google Scholar 

  140. Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Crugeiras, J., Rios, A., Riveiros, E. & Richard, J. P. Substituent effects on the thermodynamic stability of imines formed from glycine and aromatic aldehydes: implications for the catalytic activity of pyridoxal-5′-phosphate. J. Am. Chem. Soc. 131, 15815–15824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tseng, T. C. et al. An injectable, self-healing hydrogel to repair the central nervous system. Adv. Mater. 27, 3518–3524 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Wei, Z. & Gerecht, S. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials 185, 86–96 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang, B. et al. Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym. Chem. 3, 3235–3238 (2012).

    Article  CAS  Google Scholar 

  145. Kalia, J. & Raines, R. T. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 47, 7523–7526 (2008).

    Article  CAS  Google Scholar 

  146. Kölmel, D. K. & Kool, E. T. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 117, 10358–10376 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dirksen, A., Yegneswaran, S. & Dawson, P. E. Bisaryl hydrazones as exchangeable biocompatible linkers. Angew. Chem. Int. Ed. 49, 2023–2027 (2010).

    Article  CAS  Google Scholar 

  148. Kool, E. T., Park, D. H. & Crisalli, P. Fast hydrazone reactants: electronic and acid/base effects strongly influence rate at biological pH. J. Am. Chem. Soc. 135, 17663–17666 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Richardson, B. M., Wilcox, D. G., Randolph, M. A. & Anseth, K. S. Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering. Acta Biomater. 83, 71–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Wei, Z., Schnellmann, R., Pruitt, H. C. & Gerecht, S. Hydrogel network dynamics regulate vascular morphogenesis. Cell Stem Cell 27, 798–812.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hunt, D. R. et al. Engineered matrices enable the culture of human patient-derived intestinal organoids. Adv. Sci. 8, 2004705 (2021).

    Article  CAS  Google Scholar 

  152. Sánchez-Morán, H., Ahmadi, A., Vogler, B. & Roh, K. H. Oxime cross-linked alginate hydrogels with tunable stress relaxation. Biomacromolecules 20, 4419–4429 (2019).

    Article  PubMed  Google Scholar 

  153. Grover, G. N., Lam, J., Nguyen, T. H., Segura, T. & Maynard, H. D. Biocompatible hydrogels by oxime click chemistry. Biomacromolecules 13, 3013–3017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Marozas, I. A., Anseth, K. S. & Cooper-White, J. J. Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. Biomaterials 223, 119430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tang, S. et al. Adaptable fast relaxing boronate-based hydrogels for probing cell–matrix interactions. Adv. Sci. 5, 1800638 (2018).

    Article  Google Scholar 

  156. Wang, C. et al. Productive exchange of thiols and thioesters to form dynamic polythioester-based polymers. ACS Macro Lett. 7, 1312–1316 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Brown, T. E. et al. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178, 496–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lata, S., Reichel, A., Brock, R., Tampé, R. & Piehler, J. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J. Am. Chem. Soc. 127, 10205–10215 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Nair, K. P., Breedveld, V. & Weck, M. Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties. Macromolecules 41, 3429–3438 (2008).

    Article  CAS  Google Scholar 

  160. Yang, B. et al. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nat. Commun. 12, 3514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Okumura, Y. & Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001).

    Article  CAS  Google Scholar 

  162. Liu, C. et al. Tough hydrogels with rapid self-reinforcement. Science 372, 1078–1081 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Tong, X. & Yang, F. Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater. 28, 7257–7263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim, Y. et al. Complexation of aliphatic ammonium ions with a water-soluble cucurbit[6]uril derivative in pure water: isothermal calorimetric, NMR, and X-ray crystallographic study. Chem. Eur. J. 15, 6143–6151 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Rauwald, U., Biedermann, F., Deroo, S., Robinson, C. V. & Scherman, O. A. Correlating solution binding and ESI-MS stabilities by incorporating solvation effects in a confined cucurbit[8]uril system. J. Phys. Chem. B 114, 8606–8615 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Park, K. M. et al. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6, 2960–2968 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Madl, A. C., Madl, C. M. & Myung, D. Injectable cucurbit[8]uril-based supramolecular gelatin hydrogels for cell encapsulation. ACS Macro Lett. 9, 619–626 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Nam, S., Stowers, R., Lou, J., Xia, Y. & Chaudhuri, O. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials 200, 15–24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Adebowale, K. et al. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat. Mater. 20, 1290–1299 (2021). Demonstrates that increasing the stress relaxation rate promotes 2D cell migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee, H. P., Gu, L., Mooney, D. J., Levenston, M. E. & Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16, 1243–1251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Indana, D., Agarwal, P., Bhutani, N. & Chaudhuri, O. Viscoelasticity and adhesion signaling in biomaterials control human pluripotent stem cell morphogenesis in 3D culture. Adv. Mater. 33, 2101966 (2021).

    Article  CAS  Google Scholar 

  176. Dankers, P. Y. W. et al. Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 24, 2703–2709 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Du, X., Zhou, J., Shi, J. & Xu, B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 115, 13165–13307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, C. et al. Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 19, 900–909 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Sawhney, A. S., Pathak, C. P. & Hubbell, J. A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 26, 581–587 (1993).

    Article  CAS  Google Scholar 

  182. Bryant, S. J. & Anseth, K. S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59, 63–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Jo, Y. S., Gantz, J., Hubbell, J. A. & Lutolf, M. P. Tailoring hydrogel degradation and drug release via neighboring amino acid controlled ester hydrolysis. Soft Matter 5, 440–446 (2009).

    Article  CAS  Google Scholar 

  184. Zustiak, S. P. & Leach, J. B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11, 1348–1357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bouhadir, K. H. et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17, 945–950 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hodneland, C. D., Lee, Y. S., Min, D. H. & Mrksich, M. Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl Acad. Sci. USA 99, 5048–5052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sperinde, J. J. & Griffith, L. G. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules 30, 5255–5264 (1997).

    Article  CAS  Google Scholar 

  189. Ehrbar, M. et al. Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials 28, 3856–3866 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Ehrbar, M. et al. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8, 3000–3007 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Caiazzo, M. et al. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15, 344–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Sun, F., Zhang, W. B., Mahdavi, A., Arnold, F. H. & Tirrell, D. A. Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc. Natl Acad. Sci. USA 111, 11269–11274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cambria, E. et al. Covalent modification of synthetic hydrogels with bioactive proteins via sortase-mediated ligation. Biomacromolecules 16, 2316–2326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019). Describes a strategy to spatially immobilize bioactive proteins by coupling enzyme-mediated ligation with photochemistry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Enemchukwu, N. O. et al. Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J. Cell Biol. 212, 113–124 (2015).

    Article  PubMed  Google Scholar 

  196. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tian, Y. F. et al. Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells. Biomaterials 73, 110–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cruz-Acuña, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Aimetti, A. A., Machen, A. J. & Anseth, K. S. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30, 6048–6054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Halstenberg, S., Panitch, A., Rizzi, S., Hall, H. & Hubbell, J. A. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3, 710–723 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. English, M. A. et al. Programmable CRISPR-responsive smart materials. Science 365, 780–785 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009). Presents a strategy to soften hydrogels using cytocompatible photodegradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).

    Article  PubMed  Google Scholar 

  204. Mabry, K. M., Lawrence, R. L. & Anseth, K. S. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials 49, 47–56 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang, H. et al. Rapid bioorthogonal chemistry turn-on through enzymatic or long wavelength photocatalytic activation of tetrazine ligation. J. Am. Chem. Soc. 138, 5978–5983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    Article  CAS  Google Scholar 

  207. Zhao, Y. et al. New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J. Am. Chem. Soc. 126, 4653–4663 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Griffin, D. R. & Kasko, A. M. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134, 13103–13107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lunzer, M. et al. A modular approach to sensitized two-photon patterning of photodegradable hydrogels. Angew. Chem. Int. Ed. 57, 15122–15127 (2018).

    Article  CAS  Google Scholar 

  210. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Walker, C. J. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat. Biomed. Eng. 5, 1485–1499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022). Describes an approach to spatiotemporally photopattern hydrogel mechanics and guide organogenesis with defined shape and size.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Brown, T. E., Marozas, I. A. & Anseth, K. S. Amplified photodegradation of cell-laden hydrogels via an addition–fragmentation chain transfer reaction. Adv. Mater. 29, 1605001 (2017).

    Article  Google Scholar 

  214. Grim, J. C. et al. A reversible and repeatable thiol-ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Cent. Sci. 4, 909–916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Yavitt, F. M. et al. The effect of thiol structure on allyl sulfide photodegradable hydrogels and their application as a degradable scaffold for organoid passaging. Adv. Mater. 32, 1905366 (2020).

    Article  CAS  Google Scholar 

  216. Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Luo, Y. & Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Aizawa, Y., Wylie, R. & Shoichet, M. Endothelial cell guidance in 3D patterned scaffolds. Adv. Mater. 22, 4831–4835 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Batalov, I., Stevens, K. R. & DeForest, C. A. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proc. Natl Acad. Sci. USA 118, e2014194118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chueh, B. H. et al. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed. Microdevices 12, 145–151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  222. DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1072–1078 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wei, Z. et al. Dextran-based self-healing hydrogels formed by reversible Diels–Alder reaction under physiological conditions. Macromol. Rapid Comm. 34, 1464–1470 (2013).

    Article  CAS  Google Scholar 

  227. Truong, V. X., Li, F. & Forsythe, J. S. Photolabile hydrogels responsive to broad spectrum visible light for selective cell release. ACS Appl. Mater. Interfaces 9, 32441–32445 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Zhang, W. et al. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 14, 391–394 (2017).

    Article  PubMed  Google Scholar 

  229. Liu, L. et al. Cyclic stiffness modulation of cell-laden protein–polymer hydrogels in response to user-specified stimuli including light. Adv. Biosyst. 2, 1800240 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Tibbitt, M. W., Kloxin, A. M. & Anseth, K. S. Modeling controlled photodegradation in optically thick hydrogels. J. Polym. Sci. Part A Polym. Chem. 51, 1899–1911 (2013).

    Article  CAS  Google Scholar 

  231. Adhikari, A. S., Chai, J. & Dunn, A. R. Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc. 133, 1686–1689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Chen, Z. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Willis-Fox, N., Rognin, E., Aljohani, T. A. & Daly, R. Polymer mechanochemistry: manufacturing is now a force to be reckoned with. Chem 4, 2499–2537 (2018).

    Article  CAS  Google Scholar 

  234. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    Article  CAS  PubMed  Google Scholar 

  235. Geerligs, M., Peters, G. W. M., Ackermans, P. A. J., Oomens, C. W. J. & Baaijens, F. P. T. Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45, 677–688 (2008).

    Article  PubMed  Google Scholar 

  236. Navajas, D., Maksym, G. N. & Bates, J. H. Dynamic viscoelastic nonlinearity of lung parenchymal tissue. J. Appl. Physiol. 79, 348–356 (1995).

    Article  CAS  PubMed  Google Scholar 

  237. Follet, H., Boivin, G., Rumelhart, C. & Meunier, P. J. The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34, 783–789 (2004).

    Article  CAS  PubMed  Google Scholar 

  238. Mirzaali, M. J. et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93, 196–211 (2016).

    Article  PubMed  Google Scholar 

  239. Dommerholt, J., Rutjes, F. P. J. T. & van Delft, F. L. Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top. Curr. Chem. 374, 16 (2016).

    Article  Google Scholar 

  240. Soellner, M. B., Nilsson, B. L. & Raines, R. T. Reaction mechanism and kinetics of the traceless staudinger ligation. J. Am. Chem. Soc. 128, 8820–8828 (2006).

    Article  CAS  PubMed  Google Scholar 

  241. Otto, S., Blokzijl, W. & Engberts, J. B. F. N. Diels–Alder reactions in water. Effects of hydrophobicity and hydrogen bonding. J. Org. Chem. 59, 5372–5376 (1994).

    Article  CAS  Google Scholar 

  242. Meijer, A., Otto, S. & Engberts, J. B. F. N. Effects of the hydrophobicity of the reactants on Diels–Alder reactions in water. J. Org. Chem. 63, 8989–8994 (1998).

    Article  CAS  Google Scholar 

  243. Tan, H., Rubin, J. P. & Marra, K. G. Direct synthesis of biodegradable polysaccharide derivative hydrogels through aqueous Diels–Alder chemistry. Macromol. Rapid Comm. 32, 905–911 (2011).

    Article  CAS  Google Scholar 

  244. Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. French, T. C., Auld, D. S. & Bruice, T. C. Catalytic reactions involving azomethines. V. Rates and equilibria of imine formation with 3-hydroxypyridine-4-aldehyde and amino acids. Biochemistry 4, 77–84 (1965).

    Article  CAS  PubMed  Google Scholar 

  246. Hine, J., Craig, J. C., Underwood, J. G. & Via, F. A. Kinetics and mechanism of the hydrolysis of N-isobutylidenemethylamine in aqueous solution. J. Am. Chem. Soc. 92, 5194–5199 (1970).

    Article  CAS  Google Scholar 

  247. Metzler, C. M., Cahill, A. & Metzler, D. E. Equilibriums and absorption spectra of Schiff bases. J. Am. Chem. Soc. 102, 6075–6082 (1980).

    Article  CAS  Google Scholar 

  248. Dirksen, A. & Dawson, P. E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19, 2543–2548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Figueiredo, T. et al. Injectable self-healing hydrogels based on boronate ester formation between hyaluronic acid partners modified with benzoxaborin derivatives and saccharides. Biomacromolecules 21, 230–239 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Bracher, P. J., Snyder, P. W., Bohall, B. R. & Whitesides, G. M. The relative rates of thiol–thioester exchange and hydrolysis for alkyl and aryl thioalkanoates in water. Orig. Life Evol. Biosph. 41, 399–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  251. Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).

    Article  CAS  PubMed  Google Scholar 

  252. Ooi, H. W. et al. Multivalency enables dynamic supramolecular host–guest hydrogel formation. Biomacromolecules 21, 2208–2217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Fang, Y. et al. Multiple steps and critical behaviors of the binding of calcium to alginate. J. Phys. Chem. B 111, 2456–2462 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Wellcome Leap as part of the HOPE Programme. The authors thank S. Nam and B. Nerger for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and D.J.M. developed the manuscript outline. J.L. wrote the manuscript. D.J.M. reviewed and edited the manuscript.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Mooney, D.J. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 6, 726–744 (2022). https://doi.org/10.1038/s41570-022-00420-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00420-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing