Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The principles, design and applications of fused-ring electron acceptors

Abstract

Fused-ring electron acceptors (FREAs) have a donor–acceptor–donor structure comprising an electron-donating fused-ring core, electron-accepting end groups, π-bridges and side chains. FREAs possess beneficial features, such as feasibility to tailor their structures, high property tunability, strong visible and near-infrared light absorption and excellent n-type semiconducting characteristics. FREAs have initiated a revolution to the field of organic solar cells in recent years. FREA-based organic solar cells have achieved unprecedented efficiencies, over 20%, which breaks the theoretical efficiency limit of traditional fullerene acceptors (~13%), and boast potential operational lifetimes approaching 10 years. Based on the original studies of FREAs, a variety of new structures, mechanisms and applications have flourished. In this Review, we introduce the fundamental principles of FREAs, including their structures and inherent electronic and physical properties. Next, we discuss the way in which the properties of FREAs can be modulated through variations to the electronic structure or molecular packing. We then present the current applications and consider the future areas that may benefit from developments in FREAs. Finally, we conclude with the position of FREA chemistry, reflecting on the challenges and opportunities that may arise in the future of this burgeoning field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Packing of fused-ring electron acceptors in single crystals.
Fig. 2: The structures of fused-ring electron acceptors with extended rings and donors d1–d3.
Fig. 3: The structures of fused-ring electron acceptors with substituted rings.
Fig. 4: The structures of fused-ring electron acceptors with heteroatoms or heteroatom-containing groups substituted in end groups and side chains and donors d4–d10.
Fig. 5: The structures of polymeric FREAs and donor d11.
Fig. 6: The structure of fused-ring electron acceptors with different packing properties and donors d12–d14.
Fig. 7: Molecular structures and various applications of FREAs.

Similar content being viewed by others

References

  1. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153–161 (2012).

    Article  CAS  Google Scholar 

  2. Krebs, F. C., Espinosa, N., Hösel, M., Søndergaard, R. R. & Jørgensen, M. 25th anniversary article: rise to power — OPV-based solar parks. Adv. Mater. 26, 29–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 30, 1800388 (2018).

    Article  CAS  Google Scholar 

  4. Tang, C. W. Two layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  CAS  Google Scholar 

  5. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  6. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  7. Scharber, M. C. On the efficiency limit of conjugated polymer: fullerene-based bulk heterojunction solar cells. Adv. Mater. 28, 1994–2001 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Zhong, Y. et al. Efficient organic solar cells with helical perylene diimide electron acceptors. J. Am. Chem. Soc. 136, 15215–15221 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Schulze, K. et al. Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60. Adv. Mater. 18, 2872–2875 (2006).

    Article  CAS  Google Scholar 

  11. Mishra, A. & Bäuerle, P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51, 2020–2067 (2012).

    Article  CAS  Google Scholar 

  12. Zhang, X. et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater. 25, 5791–5797 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Kwon, O. K., Park, J.-H., Kim, D. W., Park, S. K. & Park, S. Y. An all-small-molecule organic solar cell with high efficiency nonfullerene acceptor. Adv. Mater. 27, 1951–1956 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Bai, H. et al. An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. J. Mater. Chem. A 3, 1910–1914 (2015).

    Article  CAS  Google Scholar 

  15. Lin, Y. et al. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ. Sci. 8, 610–616 (2015).

    Article  CAS  Google Scholar 

  16. Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Kronenberg, N. M. et al. Bulk heterojunction organic solar cells based on merocyanine colorants. Chem. Commun. 48, 6489–6491 (2008).

    Article  Google Scholar 

  18. Bürckstümmer, H. et al. Efficient solution-processed bulk heterojunction solar cells by antiparallel supramolecular arrangement of dipolar donor–acceptor dyes. Angew. Chem. Int. Ed. 50, 11628–11632 (2011).

    Article  CAS  Google Scholar 

  19. Wang, J. & Zhan, X. Fused-ring electron acceptors for photovoltaics and beyond. Acc. Chem. Res. 54, 132–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  21. Zheng, Z. et al. Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022).

    Article  CAS  Google Scholar 

  22. Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, P., Li, G., Zhan, X. & Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 12, 131–142 (2018).

    Article  CAS  Google Scholar 

  24. Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. n-Type organic semiconductors in organic electronics. Adv. Mater. 22, 3876–3892 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Kupgan, G., Chen, X.-K. & Brédas, J.-L. Low energetic disorder in small-molecule non-fullerene electron acceptors. ACS Mater. Lett. 1, 350–353 (2019).

    Article  CAS  Google Scholar 

  26. Kim, J. H., Schembri, T., Bialas, D., Stolte, M. & Würthner, F. Slip-stacked J-aggregate materials for organic solar cells and photodetectors. Adv. Mater. 34, 2104678 (2022).

    Article  CAS  Google Scholar 

  27. Aldrich, T. J. et al. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J. Am. Chem. Soc. 141, 3274–3287 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Dai, S. et al. High-performance fluorinated fused-ring electron acceptor with 3D stacking and exciton/charge transport. Adv. Mater. 32, 2000645 (2020).

    Article  CAS  Google Scholar 

  29. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, G. et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11, 3943 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han, G., Guo, Y., Song, X., Wang, Y. & Yi, Y. Terminal π–π stacking determines three-dimensional molecular packing and isotropic charge transport in an A–π–A electron acceptor for non-fullerene organic solar cells. J. Mater. Chem. C 5, 4852–4857 (2017).

    Article  CAS  Google Scholar 

  32. Lin, Y. et al. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency. Adv. Mater. 30, 1706363 (2018).

    Article  CAS  Google Scholar 

  33. Chandrabose, S. et al. High exciton diffusion coefficients in fused ring electron acceptor films. J. Am. Chem. Soc. 141, 6922–6929 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Firdaus, Y. et al. Long-range exciton diffusion in molecular non-fullerene acceptors. Nat. Commun. 11, 5220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, J. et al. Ultrafast and long-range exciton migration through anisotropic coulombic coupling in the textured films of fused-ring electron acceptors. J. Phys. Chem. Lett. 11, 7908–7913 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, L., Yi, Y. & Wei, Z. Exciton binding energies of nonfullerene small molecule acceptors: implication for exciton dissociation driving forces in organic solar cells. J. Phys. Chem. C 122, 22309–22316 (2018).

    Article  CAS  Google Scholar 

  37. Liu, J. et al. Charge separation boosts exciton diffusion in fused ring electron acceptors. J. Mater. Chem. A 8, 23304–23312 (2020).

    Article  CAS  Google Scholar 

  38. Zhu, L., Tu, Z., Yi, Y. & Wei, Z. Achieving small exciton binding energies in small molecule acceptors for organic solar cells: effect of molecular packing. J. Phys. Chem. Lett. 10, 4888–4894 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, L., Yang, C., Yi, Y. & Wei, Z. Effective modulation of exciton binding energies in polymorphs of a small-molecule acceptor for organic photovoltaics. J. Phys. Chem. Lett. 11, 10227–10232 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Coropceanu, V., Chen, X.-K., Wang, T., Zheng, Z. & Brédas, J.-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 4, 689–707 (2019).

    Article  Google Scholar 

  41. Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Classen, A. et al. The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nat. Energy 5, 711–719 (2020).

    Article  CAS  Google Scholar 

  44. Yang, F. et al. Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater. Chem. Front. 1, 1389–1395 (2017).

    Article  CAS  Google Scholar 

  45. Xiao, C., Li, C., Liu, F., Zhang, L. & Li, W. Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. J. Mater. Chem. C 8, 5370–5374 (2020).

    Article  CAS  Google Scholar 

  46. Rao, A. et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Menke, S. M. et al. Limits for recombination in a low energy loss organic heterojunction. ACS Nano 10, 10736–10744 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Bixon, M., Jortner, J. & Verhoeven, J. W. Lifetimes for radiative charge recombination in donor-acceptor molecules. J. Am. Chem. Soc. 116, 7349–7355 (1994).

    Article  CAS  Google Scholar 

  49. Chen, X.-K. et al. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021).

    Article  CAS  Google Scholar 

  50. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  51. Zhu, J. et al. Enhancing the performance of a fused-ring electron acceptor via extending benzene to naphthalene. J. Mater. Chem. C 6, 66–71 (2018).

    Article  CAS  Google Scholar 

  52. Wang, Y. et al. Facile synthesis of polycyclic aromatic hydrocarbon (PAH)-based acceptors with fine-tuned optoelectronic properties: toward efficient additive-free nonfullerene organic solar cells. Adv. Energy Mater. 9, 1803976 (2019).

    Article  CAS  Google Scholar 

  53. Dai, S. et al. Effect of core size on performance of fused-ring electron acceptors. Chem. Mater. 30, 5390–5396 (2018).

    Article  CAS  Google Scholar 

  54. Dai, S. et al. Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors. Adv. Mater. 30, 1706571 (2018).

    Article  CAS  Google Scholar 

  55. Schwarze, M. et al. Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nat. Commun. 10, 2466 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Karuthedath, S. et al. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater. 20, 378–384 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Jia, B. et al. Enhancing the performance of a fused-ring electron acceptor by unidirectional extension. J. Am. Chem. Soc. 141, 19023–19031 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Qiu, N. et al. A new nonfullerene electron acceptor with a ladder type backbone for high-performance organic solar cells. Adv. Mater. 29, 1604964 (2017).

    Article  CAS  Google Scholar 

  59. Hsiao, Y.-T. et al. Haptacyclic carbazole-based ladder-type nonfullerene acceptor with side-chain optimization for efficient organic photovoltaics. ACS Appl. Mater. Interfaces 9, 42035–42042 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Kan, B. et al. A small molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for high efficient non-fullerene organic solar cells. J. Am. Chem. Soc. 139, 4929–4934 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, W. et al. Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv. Mater. 29, 1701308 (2017).

    Article  CAS  Google Scholar 

  62. Zhang, J. et al. Panchromatic ternary photovoltaic cells using a nonfullerene acceptor synthesized using C–H functionalization. Chem. Mater. 30, 309–313 (2018).

    Article  CAS  Google Scholar 

  63. Lin, F. et al. Regio-specific selenium substitution in non-fullerene acceptors for efficient organic solar cells. Chem. Mater. 31, 6770–6778 (2019).

    Article  CAS  Google Scholar 

  64. Sun, J. et al. Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells. Adv. Mater. 30, 1707150 (2018).

    Article  CAS  Google Scholar 

  65. Xiao, Z. et al. 26 mA cm−2 JSC from organic solar cells with a low-bandgap nonfullerene acceptor. Sci. Bull. 62, 1494–1496 (2017).

    Article  CAS  Google Scholar 

  66. Huang, C. et al. Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors. Chem. Mater. 30, 5429–5434 (2018).

    Article  CAS  Google Scholar 

  67. Ma, Y. et al. Ladder-type heteroheptacenes with different heterocycles for nonfullerene acceptors. Angew. Chem. Int. Ed. 59, 21627–21633 (2020).

    Article  CAS  Google Scholar 

  68. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  69. Yao, H. et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv. Mater. 29, 1700254 (2017).

    Article  CAS  Google Scholar 

  70. Xie, D. et al. A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency. Sol. RRL 1, 1700044 (2017).

    Article  CAS  Google Scholar 

  71. Luo, Z. et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%. Joule 4, 1236–1247 (2020).

    Article  CAS  Google Scholar 

  72. Liu, Y. et al. Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J. Am. Chem. Soc. 139, 3356–3359 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, F. et al. Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor. Adv. Mater. 29, 1606574 (2017).

    Article  CAS  Google Scholar 

  74. Wu, Y. et al. A planar electron acceptor for efficient polymer solar cells. Energy Environ. Sci. 8, 3215–3221 (2015).

    Article  CAS  Google Scholar 

  75. Tang, A. et al. Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high VOC of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater. 31, 3941–3947 (2019).

    Article  CAS  Google Scholar 

  76. Dai, S. et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 139, 1336–1343 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Tang, M. L. & Bao, Z. Halogenated materials as organic semiconductors. Chem. Mater. 23, 446–455 (2011).

    Article  CAS  Google Scholar 

  78. Lai, H. et al. Isomer-free: precise positioning of chlorine-induced interpenetrating charge transfer for elevated solar conversion. iScience 17, 302–314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo, Z. et al. Reduced energy loss enabled by a chlorinated thiophene-fused ending-group small molecular acceptor for efficient nonfullerene organic solar cells with 13.6% efficiency. Adv. Energy Mater. 9, 1900041 (2019).

    Article  CAS  Google Scholar 

  80. Zhang, H. et al. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 30, 1800613 (2018).

    Article  CAS  Google Scholar 

  81. Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Li, S. et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28, 9423–9429 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Li, Z. et al. Enhancing the performance of the electron acceptor ITIC-Th via tailoring its end groups. Mater. Chem. Front. 2, 537–543 (2018).

    Article  CAS  Google Scholar 

  84. Li, S. et al. Significant influence of the methoxyl substitution position on optoelectronic properties and molecular packing of small-molecule electron acceptors for photovoltaic cells. Adv. Energy Mater. 7, 1700183 (2017).

    Article  CAS  Google Scholar 

  85. Li, Y. et al. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci. 10, 1610–1620 (2017).

    Article  CAS  Google Scholar 

  86. Chen, Y. et al. Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells. Adv. Energy Mater. 11, 2003141 (2021).

    Article  CAS  Google Scholar 

  87. Yao, H. et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv. Mater. 28, 8283–8287 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Z.-G. & Li, Y. Polymerized small molecule acceptors for high performance all-polymer solar cells. Angew. Chem. Int. Ed. 60, 4422–4433 (2020).

    Article  CAS  Google Scholar 

  89. Wang, J. & Zhan, X. Rylene diimide electron acceptors for organic solar cells. Trends Chem. 1, 869–881 (2019).

    Article  CAS  Google Scholar 

  90. Zhang, Z.-G. et al. A new strategy to construct low bandgap polymer acceptor for high performance all-polymer solar cells. Angew. Chem. Int. Ed. 56, 13503–13507 (2017).

    Article  CAS  Google Scholar 

  91. Jia, T. et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 72, 104718 (2020).

    Article  CAS  Google Scholar 

  92. Fu, H. et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J. Am. Chem. Soc. 143, 2665–2670 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Peng, F. et al. A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Lett. 5, 3702–3707 (2020).

    Article  CAS  Google Scholar 

  94. Sun, H. et al. A narrow-bandgap n-type polymer with an acceptor–acceptor backbone enabling efficient all-polymer solar cells. Adv. Mater. 32, 2004183 (2020).

    Article  CAS  Google Scholar 

  95. Wang, J. et al. Effect of isomerization on high-performance nonfullerene electron acceptors. J. Am. Chem. Soc. 140, 9140–9147 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Kupgan, G., Chen, X.-K. & Brédas, J.-L. Molecular packing in the active layers of organic solar cells based on non-fullerene acceptors: impact of isomerization on charge transport, exciton dissociation, and nonradiative recombination. ACS Appl. Energy Mater. 4, 4002–4011 (2021).

    Article  CAS  Google Scholar 

  97. Swick, S. M. et al. Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proc. Natl Acad. Sci. USA 115, E8341–E8348 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, S. et al. Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor. Adv. Mater. 29, 1704051 (2017).

    Article  CAS  Google Scholar 

  99. Lin, Y. et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc. 138, 4955–4961 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Mai, J. et al. Hidden structure ordering along backbone of fused-ring electron acceptors enhanced by ternary bulk heterojunction. Adv. Mater. 30, 1802888 (2018).

    Article  CAS  Google Scholar 

  101. Wang, J. et al. Enhancing performance of nonfullerene acceptors via side-chain conjugation strategy. Adv. Mater. 29, 1702125 (2017).

    Article  CAS  Google Scholar 

  102. Zhang, X. et al. Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused-ring electron acceptors. Angew. Chem. Int. Ed. 60, 17720–17725 (2021).

    Article  CAS  Google Scholar 

  103. Yang, Y. et al. Side-chain isomerization on n-type organic semiconductor itic acceptor make 11.77% high efficiency polymer solar cells. J. Am. Chem. Soc. 138, 15011–15018 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Li, Y. et al. A simple phenyl group introduced at the tail of alkyl side chains of small molecular acceptors: new strategy to balance the crystallinity of acceptors and miscibility of bulk heterojunction enabling highly efficient organic solar cells. Adv. Mater. 31, 1807832 (2019).

    Article  CAS  Google Scholar 

  105. Lin, Y. et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 138, 2973–2976 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Z. et al. Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells. Adv. Funct. Mater. 28, 1705095 (2018).

    Article  CAS  Google Scholar 

  107. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  CAS  Google Scholar 

  108. Jiang, K. et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3, 3020–3033 (2019).

    Article  CAS  Google Scholar 

  109. Freunek, M., Freunek, M. & Reindl, L. M. Maximum efficiencies of indoor photovoltaic devices. IEEE J. Photovolt. 3, 59–64 (2013).

    Article  Google Scholar 

  110. Cui, Y. et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat. Energy 4, 768–775 (2019).

    Article  CAS  Google Scholar 

  111. Cui, Y. et al. 1 cm2 organic photovoltaic cells for indoor application with over 20% efficiency. Adv. Mater. 31, 1904512 (2019).

    Article  CAS  Google Scholar 

  112. Liao, C.-Y. et al. Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule 4, 189–206 (2020).

    Article  CAS  Google Scholar 

  113. Dai, S. & Zhan, X. Nonfullerene acceptors for semitransparent organic solar cells. Adv. Energy Mater. 8, 1800002 (2018).

    Article  CAS  Google Scholar 

  114. Liu, Y. et al. Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis. ACS Nano 13, 1071–1077 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Li, T. et al. Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells. Adv. Mater. 30, 1705969 (2018).

    Article  CAS  Google Scholar 

  116. Wang, D. et al. High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 32, 2001621 (2020).

    Article  CAS  Google Scholar 

  117. Yin, P., Yin, Z., Ma, Y. & Zheng, Q. Improving charge transport of ternary blend active layer for efficient semitransparent organic solar cells. Energy Environ. Sci. 13, 5177–5185 (2020).

    Article  CAS  Google Scholar 

  118. Betancur, R. et al. Transparent polymer solar cells employing a layered light-trapping architecture. Nat. Photonics 7, 995–1000 (2013).

    Article  CAS  Google Scholar 

  119. Li, Y. et al. Color-neutral, semitransparent organic photovoltaics for power window applications. Proc. Natl Acad. Sci. USA 117, 21147–21154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, J. et al. Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Adv. Mater. 31, 1807159 (2019).

    Article  CAS  Google Scholar 

  121. Sun, C. et al. Heat-insulating multifunctional semitransparent polymer solar cells. Joule 2, 1816–1826 (2018).

    Article  CAS  Google Scholar 

  122. Liu, Q. et al. Light harvesting at oblique incidence decoupled from transmission in organic solar cells exhibiting 9.8% efficiency and 50% visible light transparency. Adv. Energy Mater. 10, 1904196 (2020).

    Article  CAS  Google Scholar 

  123. Ameri, T., Dennler, G., Lungenschmied, C. & Brabec, C. J. Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009).

    Article  CAS  Google Scholar 

  124. Cheng, P., Wang, J., Zhan, X. & Yang, Y. Constructing high-performance organic photovoltaics via emerging non-fullerene acceptors and tandem-junction structure. Adv. Energy Mater. 10, 2000746 (2020).

    Article  CAS  Google Scholar 

  125. Liu, W. et al. Nonfullerene tandem organic solar cells with high open-circuit voltage of 1.97 V. Adv. Mater. 28, 9729–9734 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Sun, Y. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019).

    Article  CAS  Google Scholar 

  128. Cheng, P. & Zhan, X. Versatile third components for efficient and stable organic solar cells. Mater. Horiz. 2, 462–485 (2015).

    Article  CAS  Google Scholar 

  129. Cheng, P. et al. Unique energy alignments of a ternary material system toward high-performance organic photovoltaics. Adv. Mater. 30, 1801501 (2018).

    Article  CAS  Google Scholar 

  130. Zhan, L. et al. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13, 635–645 (2020).

    Article  CAS  Google Scholar 

  131. Song, J. et al. Ternary organic solar cells with efficiency >16.5% based on two compatible nonfullerene acceptors. Adv. Mater. 31, 1905645 (2019).

    Article  CAS  Google Scholar 

  132. Nian, L. et al. Approaching 16% efficiency in all-small-molecule organic solar cells based on ternary strategy with a highly crystalline acceptor. Joule 4, 2223–2236 (2020).

    Article  CAS  Google Scholar 

  133. Baran, D. et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2016).

    Article  PubMed  CAS  Google Scholar 

  134. Du, X. et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215–226 (2019).

    Article  CAS  Google Scholar 

  135. Che, Y., Niazi, M. R., Izquierdo, R. & Perepichka, D. F. Mechanism of the photodegradation of A-D-A acceptors for organic photovoltaics. Angew. Chem. Int. Ed. 60, 24833–24837 (2021).

    Article  CAS  Google Scholar 

  136. Zhu, X. et al. Design of all-fused-ring electron acceptors with high thermal, chemical, and photochemical stability for organic photovoltaics. CCS Chem. 3, 1070–1080 (2021).

    Article  CAS  Google Scholar 

  137. Du, X. et al. Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small-molecular acceptors. Adv. Mater. 32, 1908305 (2020).

    Article  CAS  Google Scholar 

  138. Yu, R. et al. Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat. Commun. 9, 4645 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Hu, L. et al. Chemical reaction between an ITIC electron acceptor and an amine-containing interfacial layer in non-fullerene solar cells. J. Mater. Chem. A 6, 2273–2278 (2018).

    Article  CAS  Google Scholar 

  140. Wen, X. et al. Phenol-functionalized perylene bisimides as amine-free electron transporting interlayers for stable nonfullerene organic solar cells. Adv. Funct. Mater. 32, 2111706 (2022).

    Article  CAS  Google Scholar 

  141. Cheng, P. & Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Qin, F. et al. 54 cm2 large-area flexible organic solar modules with efficiency above 13%. Adv. Mater. 33, 2103017 (2021).

    Article  CAS  Google Scholar 

  143. Chen, H. et al. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 6, 1045–1053 (2021).

    Article  CAS  Google Scholar 

  144. Jiang, Y. et al. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 7, 352–359 (2022).

    Article  CAS  Google Scholar 

  145. Distler, A., Brabec, C. J. & Egelhaaf, H.-J. Organic photovoltaic modules with new world record efficiencies. Prog. Photovolt. Res. Appl. 29, 24–31 (2021).

    Article  Google Scholar 

  146. Zhang, M. & Zhan, X. Nonfullerene n-type organic semiconductors for perovskite solar cells. Adv. Energy Mater. 9, 1900860 (2019).

    Article  CAS  Google Scholar 

  147. Lin, Y. et al. π-Conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 29, 1604545 (2017).

    Article  CAS  Google Scholar 

  148. Zhang, M. et al. A low temperature processed fused-ring electron transport material for efficient planar perovskite solar cells. J. Mater. Chem. A 5, 24820–24825 (2017).

    Article  CAS  Google Scholar 

  149. Zhang, M. et al. High-performance fused ring electron acceptor–perovskite hybrid. J. Am. Chem. Soc. 140, 14938–14944 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Niu, T. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, 1706576 (2018).

    Article  CAS  Google Scholar 

  151. Wang, J. et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11, 177 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, K. et al. Fluorinated fused nonacyclic interfacial materials for efficient and stable perovskite solar cells. J. Mater. Chem. A 5, 21414–21421 (2017).

    Article  CAS  Google Scholar 

  153. Hu, Q. et al. Improving efficiency and stability of perovskite solar cells enabled by a near-infrared-absorbing moisture barrier. Joule 4, 1575–1593 (2020).

    Article  CAS  Google Scholar 

  154. Qin, M. et al. Fused-ring electron acceptor ITIC-Th: a novel stabilizer for halide perovskite precursor solution. Adv. Energy Mater. 8, 1703399 (2018).

    Article  CAS  Google Scholar 

  155. Zhao, X. et al. Extending the photovoltaic response of perovskite solar cells into the near-infrared with a narrow-bandgap organic semiconductor. Adv. Mater. 31, 1904494 (2019).

    Article  CAS  Google Scholar 

  156. Zhang, M. et al. Integrated perovskite/organic photovoltaics with ultrahigh photocurrent and photoresponse approaching 1000 nm. Sol. RRL 4, 2000140 (2020).

    Article  CAS  Google Scholar 

  157. Xue, J. et al. A small-molecule “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, 1900111 (2019).

    Article  CAS  Google Scholar 

  158. Baek, S.-W. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 4, 969–976 (2019).

    Article  CAS  Google Scholar 

  159. Wang, C., Dong, H., Hu, W., Liu, Y. & Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Wang, Y. et al. Narrowband organic photodetectors – towards miniaturized, spectroscopic sensing. Mater. Horiz. 9, 220–251 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Huang, J. et al. A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 32, 1906027 (2020).

    Article  CAS  Google Scholar 

  162. Xie, B. et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 11, 2871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Miao, J. & Zhang, F. Recent progress on photomultiplication type organic photodetectors. Laser Photon. Rev. 13, 1800204 (2019).

    Google Scholar 

  164. Wang, W. et al. Photomultiplication photodetectors with P3HT: fullerene-free material as the active layers exhibiting a broad response. Nanoscale 8, 5578–5586 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Yoon, S. et al. End-group functionalization of non-fullerene acceptors for high external quantum efficiency over 150 000% in photomultiplication type organic photodetectors. Adv. Funct. Mater. 31, 2006448 (2021).

    Article  CAS  Google Scholar 

  166. Li, C. et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 9, 31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. He, S., Song, J., Qu, J. & Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47, 4258–4278 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Cai, Y. et al. Novel acceptor–donor–acceptor structured small molecule-based nanoparticles for highly efficient photothermal therapy. Chem. Commun. 55, 8967–8970 (2019).

    Article  CAS  Google Scholar 

  169. Li, X. et al. Biodegradable π-conjugated oligomer nanoparticles with high photothermal conversion efficiency for cancer theranostics. ACS Nano 13, 12901–12911 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Li, L. et al. An NIR-II-emissive photosensitizer for hypoxia-tolerant photodynamic theranostics. Adv. Mater. 32, 2003471 (2020).

    Article  CAS  Google Scholar 

  171. Li, X. et al. Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horiz. 6, 177–185 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Pawlicki, M., Collins, H. A., Denning, R. G. & Anderson, H. L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48, 3244–3266 (2009).

    Article  CAS  Google Scholar 

  173. Godin, R. & Durrant, J. R. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chem. Soc. Rev. 50, 13372–13409 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Banerjee, T., Podjaski, F., Kröger, J., Biswal, B. P. & Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 6, 168–190 (2021).

    Article  CAS  Google Scholar 

  175. Allen, T. G. et al. Highly conjugated, fused-ring, quadrupolar organic chromophores with large two-photon absorption cross-sections in the near-infrared. J. Phys. Chem. A 124, 4367–4378 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Wang, D. et al. A molecular tandem cell for efficient solar water splitting. Proc. Natl Acad. Sci. USA 117, 13256–13260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kosco, J. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19, 559–565 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ghasemi, M. et al. A molecular interaction–diffusion framework for predicting organic solar cell stability. Nat. Mater. 20, 525–532 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Häse, F., Roch, L. M., Friederich, P. & Aspuru-Guzik, A. Designing and understanding light-harvesting devices with machine learning. Nat. Commun. 11, 4587 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Du, X. et al. Elucidating the full potential of OPV materials utilizing a high-throughput robot-based platform and machine learning. Joule 5, 495–506 (2021).

    Article  CAS  Google Scholar 

  181. Reb, L. K. et al. Perovskite and organic solar cells on a rocket flight. Joule 4, 1880–1892 (2020).

    Article  CAS  Google Scholar 

  182. Xue, P., Cheng, P., Han, R. P. S. & Zhan, X. Printing fabrication of large-area non-fullerene organic solar cells. Mater. Horiz. 9, 194–219 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.Z. thanks the National Science Foundation of China (21734001, U21A20101).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data and contributed to the writing of the article. J.W. and X.Z. organized and edited the manuscript before submission.

Corresponding author

Correspondence to Xiaowei Zhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Internet of things

Physical objects with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the internet.

Power conversion efficiency

(PCE). The efficiency of converting solar energy into electricity, which is the ratio of output power from the solar cell to input power from the sun.

Open-circuit voltage

(VOC). The voltage generated when the solar cell is open circuited under illumination, which is the maximum voltage available from a solar cell.

Short-circuit current density

(JSC). The current density generated when the solar cell is short circuited under illumination, which is the maximum current density available from a solar cell.

Fill factor

(FF). The ratio of the maximum output power to the product of open-circuit voltage and short-circuit current density.

Domain

An area of a phase in a blended film that generally comprises three phases, namely, pure donor phase, pure acceptor phase and donor–acceptor mixed phase.

Reorganization energies

Gibbs energy dissipated when a system that has undergone vertical electron transfer relaxes to the equilibrium state for its new charge distribution.

Face-on orientation

A molecular orientation in which the molecular backbone is parallel to the substrate, which is beneficial to the charge transport in the vertical direction.

Passivate defects

Deactivation of defects, which are active centres inducing detrimental processes such as charge recombination, ion migration and material degradation, in perovskite through various methods.

p-i-n

The inverted device structure (substrate/transparent electrode/hole transport layer/perovskite/electron transport layer/top electrode) of perovskite solar cells.

n-i-p

The normal device structure (substrate/transparent electrode/electron transport layer/perovskite/hole transport layer/top electrode) of perovskite solar cells.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xue, P., Jiang, Y. et al. The principles, design and applications of fused-ring electron acceptors. Nat Rev Chem 6, 614–634 (2022). https://doi.org/10.1038/s41570-022-00409-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00409-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing