Abstract
The diverse and tunable surface and bulk chemistry of MXenes affords valuable and distinctive properties, which can be useful across many components of energy storage devices. MXenes offer diverse functions in batteries and supercapacitors, including double-layer and redox-type ion storage, ion transfer regulation, steric hindrance, ion redistribution, electrocatalysts, electrodeposition substrates and so on. They have been utilized to enhance the stability and performance of electrodes, electrolytes and separators. In this Review, we present a discussion on the roles of MXene bulk and surface chemistries across various energy storage devices and clarify the correlations between their chemical properties and the required functions. We also provide guidelines for the utilization of MXene surface terminations to control the properties and improve the performance of batteries and supercapacitors. Finally, we conclude with a perspective on the challenges and opportunities of MXene-based energy storage components towards future practical applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Naguib, M. et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4207–4207 (2011). This is the first reported MXene synthesis.
Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). This article highlights the broad electrochemical tolerance of MXenes for a variety of cations.
Deysher, G. et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020).
Zeraati, A. S. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13, 3572–3580 (2021).
Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).
Lipatov, A. et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018). This paper reports the elastic properties of the MXene monolayer and bilayer.
Lipatov, A. et al. Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6, 1901382 (2020).
Borysiuk, V. N., Mochalin, V. N. & Gogotsi, Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology 26, 265705 (2015).
Maleski, K., Shuck, C. E., Fafarman, A. T. & Gogotsi, Y. The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 9, 2001563 (2021).
Salles, P. et al. Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater. 29, 1809223 (2019).
Jhon, Y. I. et al. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 29, 1702496 (2017).
Fredrickson, K. D., Anasori, B., Seh, Z. W., Gogotsi, Y. & Vojvodic, A. Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. J. Phys. Chem. C 120, 28432–28440 (2016).
Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
Wang, L., Han, M., Shuck, C. E., Wang, X. & Gogotsi, Y. Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021).
VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, abf1581 (2021). A comprehensive review of the extensive applications of MXenes in the past decade.
Peng, J. H., Chen, X. Z., Ong, W. J., Zhao, X. J. & Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019).
Li, Z. & Wu, Y. 2D early transition metal carbides (MXenes) for catalysis. Small 15, e1804736 (2019).
Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).
Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).
Meng, Z., Stolz, R. M., Mendecki, L. & Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019).
Kim, S. J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018).
Agresti, A. et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019).
Dong, Y. C. et al. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy 44, 103–110 (2018).
Zhang, Y. Z. et al. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49, 7229–7251 (2020).
Huang, K., Li, Z., Lin, J., Han, G. & Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018).
Shuck, C. E. et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020).
Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). This is the first study demonstrating the synthesis of double transition metals MXenes via the HF etchant.
Rigby, M. T. et al. Synthesis of new M-layer solid-solution 312 MAX phases (Ta1−xTix)3AlC2 (x = 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes. RSC Adv. 11, 3110–3114 (2021).
Han, M. K. et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 142, 19110–19118 (2020).
Tao, Q. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017).
Shekhirev, M., Shuck, C. E., Sarycheva, A. & Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 120, 100757 (2020).
Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).
Li, M. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021). This is the first study demonstrating the synthesis of isostoichiometric MXenes terminated with the uniform halide.
Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).
Nemani, S. K. et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021).
Pang, J. et al. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019).
Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J. & Zhang, C. J. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021).
Ming, F., Liang, H., Huang, G., Bayhan, Z. & Alshareef, H. N. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 33, 2004039 (2021).
Sarycheva, A. & Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020).
Griffith, K. J. et al. Bulk and surface chemistry of the niobium MAX and MXene phases from multinuclear solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 18924–18935 (2020).
Maleski, K., Mochalin, V. N. & Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017).
Zhang, Q. et al. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021).
VahidMohammadi, A., Hadjikhani, A., Shahbazmohamadi, S. & Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 11, 11135–11144 (2017).
Garg, R., Agarwal, A. & Agarwal, M. A review on MXene for energy storage application: effect of interlayer distance. Mater. Res. Express 7, ab750d (2020).
Chen, Z. et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 14, 3492–3501 (2021).
Yao, W., He, S., Xue, Y., Zhang, Q. & Xiao, X. V2CTx MXene artificial solid electrolyte interphases toward dendrite-free lithium metal anodes. ACS Sustain. Chem. Eng. 9, 9961–9969 (2021).
Fei, M. et al. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells. Nanotechnology 29, 035403 (2017).
Zhang, F., Guo, X., Xiong, P., Zhang, J. & Wang, G. Interface engineering of MXene composite separator for high-performance Li–Se and Na–Se batteries. Adv. Energy Mater. 10, 2000446 (2020).
Song, J. et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016).
Zhang, X. et al. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. Engl. 57, 15028–15033 (2018).
Zhang, N. et al. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 60, 2861–2865 (2021).
Zhang, C. J. et al. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019).
Liang, X., Garsuch, A. & Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. Engl. 54, 3907–3911 (2015).
Gu, J. et al. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 14, 891–898 (2020).
Tang, X. et al. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, e1906739 (2020).
Wei, C. et al. Recent advances of emerging 2D MXene for stable and dendrite‐free metal anodes. Adv. Funct. Mater. 30, 202004613 (2020).
Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).
Verger, L. et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019).
Ma, R. et al. Ti3C2Tx MXene for electrode materials of supercapacitors. J. Mater. Chem. A 9, 11501–11529 (2021).
Gogotsi, Y. & Penner, R. M. Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018).
Wang, X. et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015).
Kajiyama, S. et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016).
Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019). This is the first study demonstrating the unusual pseudocapacitive performance of MXenes in specific solvent environments.
Tian, H. J., Zhang, S. L., Meng, Z., He, W. & Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2, 1170–1176 (2017).
Mashtalir, O., Lukatskaya, M. R., Zhao, M. Q., Barsoum, M. W. & Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015).
Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).
Ghidiu, M. et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28, 3507–3514 (2016).
Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).
Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2020).
Eames, C. & Islam, M. S. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136, 16270–16276 (2014).
Xie, Y. et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014).
Gao, Q. et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ. Sci. 13, 2549–2558 (2020).
Shpigel, N. et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J. Am. Chem. Soc. 140, 8910–8917 (2018).
Wang, X. et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137, 2715–2721 (2015).
Li, N. et al. Lattice constant-dependent anchoring effect of MXenes for lithium–sulfur (Li–S) batteries: a DFT study. Nanoscale 11, 8485–8493 (2019).
Gao, X. et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020).
Li, K. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 202000842 (2020).
Cheng, R. et al. Understanding the lithium storage mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 123, 1099–1109 (2018).
Naguib, M. et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61–64 (2012).
Aslam, M. K., Niu, Y. & Xu, M. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 202000681 (2020).
Ma, Y. et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017).
Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).
Wang, X. et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021). This article reports how the solvation behaviour exerts a crucial influence on the electrochemical properties of MXene electrodes.
Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).
Liu, Z. et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232 (2020).
Xu, J., Ma, J., Fan, Q., Guo, S. & Dou, S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 29, 1606454 (2017).
Li, D., Chen, X., Xiang, P., Du, H. & Xiao, B. Chalcogenated-Ti3C2X2 MXene (X = O, S, Se and Te) as a high-performance anode material for Li-ion batteries. Appl. Surf. Sci. 501, 144221 (2020).
Sun, D. et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014).
Zhang, H. et al. Synthesis of NaV6O15 nanorods via thermal oxidation of sodium-intercalated 2D V2CTx and their electrochemical properties as anode for lithium-ion batteries. Electrochim. Acta 248, 178–187 (2017).
He, S., Zhu, Q., Soomro, R. A. & Xu, B. MXene derivatives for energy storage applications. Sustain. Energy Fuels 4, 4988–5004 (2020).
Su, T. et al. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 11, 688–699 (2018).
Byeon, A. et al. Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochim. Acta 258, 979–987 (2017).
Tang, J. Y. et al. MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Mater. 26, 550–559 (2020).
Dong, Y., Shi, H. & Wu, Z. S. Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30, 202000706 (2020).
Ridley, P. et al. MXene-derived bilayered vanadium oxides with enhanced stability in Li-ion batteries. ACS Appl. Energy Mater. 3, 10892–10901 (2020).
Wyatt, B. C., Rosenkranz, A. & Anasori, B. 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, e2007973 (2021).
Guo, Z., Zhou, J., Si, C. & Sun, Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 17, 15348–15354 (2015).
Chakraborty, P., Das, T., Nafday, D., Boeri, L. & Saha-Dasgupta, T. Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping. Phys. Rev. B 95, 184106 (2017).
Gao, L. F. et al. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703–1747 (2020).
Carey, M. & Barsoum, M. W. MXene polymer nanocomposites: a review. Mater. Today Adv. 9, 100120 (2021).
Boota, M. et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016).
Li, J. M. et al. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 20, 455–461 (2019).
Ling, Z. et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl Acad. Sci. USA 111, 16676–16681 (2014).
Pan, Q. W. et al. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 1, 395–402 (2019).
Wu, W., Zhao, W., Sun, Q., Yu, B. & Qu, J. Surface treatment of two dimensional MXene for poly(vinylidene fluoride) nanocomposites with tunable dielectric permittivity. Compos. Commun. 23, 100562 (2020).
Yang, T. et al. Excellent electrolyte-electrode interface stability enabled by inhibition of anion mobility in hybrid gel polymer electrolyte based Li–O2 batteries. J. Membr. Sci. 604, 118051 (2020).
Zhang, J. K. et al. Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ion. 310, 100–111 (2017).
Xue, P. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2020).
Zhang, Y. Z. et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4, eaat0098 (2018).
Zhang, C. F. J. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017).
Hayashi, A. et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10, 5266 (2019).
Liu, W. et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017).
Liu, Y., Zhang, J., Zhang, X., Li, Y. & Wang, J. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane. ACS Appl. Mater. Interfaces 8, 20352–20363 (2016).
Liu, W. et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2016).
Rusong et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2019).
Choudhury, S. et al. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat. Commun. 10, 4398 (2019).
Wyatt, B. C. et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene. J. Phys. Condens. Matter 33, 224002 (2021).
Seredych, M. et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31, 3324–3332 (2019).
Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).
Dong, Y. et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12, 2381–2388 (2018).
Sun, C. et al. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano 14, 1176–1184 (2020). This study demonstrates that the MXene interface layer effectively inhibits the shuttle effect in lithium–iodine batteries and significantly increases iodine loading.
Tang, X. et al. High-performance quasi-solid-state MXene-based Li–I batteries. ACS Cent. Sci. 5, 365–373 (2019).
Jiao, L. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019).
Dewei et al. Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017).
Li, X., Li, N., Huang, Z., Chen, Z. & Zhi, C. Confining aqueous Zn–Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano 15, 1718–1726 (2021). This is the first study demonstrating an effective electrodeposition process for liquid Br2 loading in MXene interlayer.
Wang, X. et al. Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. Engl. 60, 2371–2378 (2021).
Bao, W. Z. et al. Boosting performance of Na–S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13, 11500–11509 (2019).
Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).
Zhao, C. Z. et al. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446 (2018).
Lee, J. H. et al. Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy Environ. Sci. 13, 2839–2848 (2020).
Wei, C. et al. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 15, e1903214 (2019).
Yang, D. et al. Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 31, 202010987 (2021).
Tian, Y. et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13, 11676–11685 (2019).
He, X. et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem. Int. Ed. 59, 16705–16711 (2020).
Greaves, M., Barg, S. & Bissett, M. A. MXene-based anodes for metal-ion batteries. Batter. Supercaps 3, 214–235 (2020).
Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).
Yufit, V. et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3, 485–502 (2019).
Sang, X. et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016).
Sang, X. et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat. Commun. 9, 2266 (2018).
Jiang, H., Tan, P., Liu, M., Zeng, Y. & Zhao, T. Unraveling the positive roles of point defects on carbon surfaces in nonaqueous lithium–oxygen batteries. J. Phys. Chem. C 120, 18394–18402 (2016).
Wang, S. H. et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019).
Chi, X. et al. A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 592, 551–557 (2021).
Louli, A. J. et al. Optimizing cycling conditions for anode-free lithium metal cells. J. Electrochem. Soc. 168, 020515 (2021).
Zheng, J. et al. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nat. Energy 6, 398–406 (2021).
Zhang, J. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).
Zhou, T. et al. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020).
Wan, S. et al. Strong sequentially bridged MXene sheets. Proc. Natl Acad. Sci. USA 117, 27154–27161 (2020).
Shi, H. et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14, 8678–8688 (2020).
Shi, H. et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium–metal anodes. ACS Nano 13, 14308–14318 (2019).
Zhang, D., Wang, S., Li, B., Gong, Y. & Yang, S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 31, 1901820 (2019).
Zhang, X. et al. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. Engl. 57, 15028–15033 (2018).
Bu, F., Zagho, M. M., Ibrahim, Y., Ma, B. & Zhao, D. Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2019).
Guo, Y. et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv. Mater. 31, 1900342 (2019).
Xie, X. S. et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020).
Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).
Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).
Ma, J., Liu, M., He, Y. & Zhang, J. Iodine redox chemistry in rechargeable batteries. Angew. Chem. Int. Ed. Engl. 60, 12636–12647 (2021).
Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).
Yang, C. et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl Acad. Sci. USA 114, 6197–6202 (2017).
Liang, X., Garsuch, A. & Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. Engl. 127, 3979–3983 (2015).
Liu, X. B. A., Shao, X. F., Li, F. & Zhao, M. W. Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study. Appl. Surf. Sci. 455, 522–526 (2018).
Rao, D. W. et al. Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017).
Zhao, Q., Zhu, Q., Liu, Y. & Xu, B. Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31, 2100457 (2021).
Tang, H. et al. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li–S batteries. Adv. Funct. Mater. 29, 1901907 (2019).
Wang, D. et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13, 11078–11086 (2019). This article reports the electrocatalysis function of Ti3C2T2 MXene for lithium–sulfur batteries.
Li, G. et al. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium–oxygen batteries. Adv. Energy Mater. 11, 2002721 (2020).
Huang, H. et al. Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J. Colloid Interface Sci. 567, 190–201 (2020).
Jia, X., Liu, C., Neale, Z. G., Yang, J. & Cao, G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020).
Xue, W. J. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).
Chae, S., Ko, M., Kim, K., Ahn, K. & Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1, 47–60 (2017).
Li, Y., Huang, S., Wei, C., Wu, C. & Mochalin, V. N. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat. Commun. 10, 3014 (2019).
Zhang, Y. et al. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019).
Luo, S. et al. Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Adv. Funct. Mater. 29, 1901336 (2019).
Hui, X., Zhao, R., Zhang, P., Li, C. & Yin, L. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 9, 1901065 (2019).
Chen, C. et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 1846–1850 (2018).
Zhu, X. et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx MXene. ACS Nano 15, 2971–2983 (2021).
Vaghasiya, J. V., Mayorga-Martinez, C., Vyskoil, J., Sofer, Z. & Pumera, M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-phase WS2 nanosheets. Adv. Funct. Mater. 30, 2003673 (2020).
Couly, C. et al. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 4, 1700339 (2017).
Zhang, C. J. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019).
Sun, L., Song, G., Sun, Y., Fu, Q. & Pan, C. MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl. Mater. Interfaces 12, 44777–44788 (2020).
Han, M. K. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 201900267 (2019).
Orangi, J., Hamade, F., Davis, V. A. & Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2019).
Schwartz, J. J. & Boydston, A. J. Multimaterial actinic spatial control 3D and 4D printing. Nat. Commun. 10, 791 (2019).
Shuck, C. E. & Gogotsi, Y. Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020). This article distils the barriers to moving MXenes from the laboratory to commercial use and offers prospects for future research.
Jolly, S., Paranthaman, M. P. & Naguib, M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater. Today Adv. 10, 100139 (2021).
Shuck, C. E. et al. Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28, 326–338 (2021).
Pang, S. Y. et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019). This study highlights the green synthesis of MXenes with a thermal-assisted electrochemical etching protocol based on the HF-free etchant.
Kim, Y. J. et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33, 6346–6355 (2021).
Mathis, T. S. et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021).
Iqbal, A., Hong, J., Ko, T. Y. & Koo, C. M. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021).
Huang, S. & Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58, 1958–1966 (2019).
Liu, Y. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 31, 2008033 (2020).
Acknowledgements
This research was supported by the National Key R&D Program of China under project 2019YFA0705104 and a grant from City University of Hong Kong (9667165). C.E.S. and Y.G. were supported by a grant DMR-2041050 from the US National Science Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed to writing and editing the manuscript. X.L. and Z.H. contributed equally to this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks C. Birkel, Y. Gao and L. Wang for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Faradic reaction
-
An electrochemical process that follows Faraday’s law where charges are transferred.
- Etchant
-
Chemical substance that can remove the A layers from the MAX.
- Shuttle effect
-
The diffusion backwards and forwards of reaction species between electrodes.
- Density functional theory
-
(DFT). A computational quantum mechanical modelling method used to investigate the electronic structure of molecules and bulk materials.
- Rocking chair mechanism
-
A battery operation principle based on the reversible shuttle of charge carriers between electrodes.
- Adatoms
-
An atom that lies on a crystal surface. Used as a short form for adsorbed atom.
- Tribological
-
The study of the science and technology of interacting surfaces in relative motion.
- Wettability
-
The tendency of one fluid to spread on or adhere to a solid surface in the presence of other immiscible fluids.
- Hydrogen evolution reaction
-
(HER). The production of hydrogen through the process of water electrolysis or electrolyte decomposition.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, X., Huang, Z., Shuck, C.E. et al. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-022-00384-8
This article is cited by
-
Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater
Nature Communications (2024)
-
MXene-based all-solid flexible electrochromic microsupercapacitor
Microsystems & Nanoengineering (2024)
-
Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels
Nature Communications (2024)
-
A comprehensive survey of the application of swarm intelligent optimization algorithm in photovoltaic energy storage systems
Scientific Reports (2024)
-
Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene
Nature Protocols (2024)