Abstract
Metal–organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure–function relationships that will guide future developments.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lee, S., Jeong, H., Nam, D., Lah, M. S. & Choe, W. The rise of metal–organic polyhedra. Chem. Soc. Rev. 50, 528–555 (2020).
Tranchemontagne, D. J., Ni, Z., O’Keeffe, M. & Yaghi, O. M. Reticular chemistry of metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008).
Pilgrim, B. S. & Champness, N. R. Metal-organic frameworks and metal-organic cages–a perspective. ChemPlusChem 85, 1842–1856 (2020).
Pullen, S. & Clever, G. H. Mixed-ligand metal–organic frameworks and heteroleptic coordination cages as multifunctional scaffolds — a comparison. Acc. Chem. Res. 51, 3052–3064 (2018).
Perry, J. J. IV, Perman, J. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009).
Zhang, Y. et al. Self-assembly of Goldberg polyhedra from a concave [WV5O11(RCO2)5(SO4)]3− building block with 5-fold symmetry. J. Am. Chem. Soc. 140, 17365–17368 (2018).
Liu, G., Ju, Z., Yuan, D. & Hong, M. In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem. 52, 13815–13817 (2013).
Gan, H. et al. Equi-size nesting of Platonic and Archimedean metal–organic polyhedra into a twin capsid. Nat. Commun. 11, 4103 (2020).
Gan, H.-M. et al. Self-assembled polyoxometalate-based metal-organic polyhedra as an effective heterogeneous catalyst for oxidation of sulfide. Cryst. Growth Des. 21, 1028–1034 (2021).
Gosselin, A. J., Rowland, C. A., Balto, K. P., Yap, G. P. A. & Bloch, E. D. Design and synthesis of porous nickel(II) and cobalt(II) cages. Inorg. Chem. 57, 11847–11850 (2018).
Furukawa, S. et al. Rhodium–organic cuboctahedra as porous solids with strong binding sites. Inorg. Chem. 55, 10843–10846 (2016).
Lorzing, G. R. et al. Design and synthesis of capped-paddlewheel-based porous coordination cages. Chem. Commun. 55, 9527–9530 (2019).
Wang, S. et al. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 138, 16236–16239 (2016).
Wang, H. et al. Assembling pentatopic terpyridine ligands with three types of coordination moieties into a giant supramolecular hexagonal prism: synthesis, self-assembly, characterization, and antimicrobial study. J. Am. Chem. Soc. 141, 16108–16116 (2019).
Wang, H. et al. Hierarchical self-assembly of nanowires on the surface by metallo-supramolecular truncated cuboctahedra. J. Am. Chem. Soc. 143, 5826–5835 (2021).
Lai, Y. L. et al. Self-assembly of a mixed valence copper triangular prism and transformation to cage triggered by an external stimulus. Inorg. Chem. 59, 17374–17378 (2020).
Gosselin, A. J., Rowland, C. A. & Bloch, E. D. Permanently microporous metal–organic polyhedra. Chem. Rev. 120, 8987–9014 (2020).
Jahović, I., Zou, Y.-Q., Adorinni, S., Nitschke, J. R. & Marchesan, S. Cages meet gels: smart materials with dual porosity. Matter 4, 2123–2140 (2021).
Taggart, G. A., Antonio, A. M., Lorzing, G. R., Yap, G. P. A. & Bloch, E. D. Tuning the porosity, solubility, and gas-storage properties of cuboctahedral coordination cages via amide or ester functionalization. ACS Appl. Mater. Interfaces 12, 24913–24919 (2020).
Liu, C., Zhang, Y. & An, Q. Functional material systems based on soft cages. Chem. Asian J. 16, 1198–1215 (2021).
Vardhan, H., Yusubov, M. & Verpoort, F. Self-assembled metal–organic polyhedra: An overview of various applications. Coord. Chem. Rev. 306, 171–194 (2016).
Liu, W. & Stoddart, J. F. Emergent behavior in nanoconfined molecular containers. Chem 7, 919–947 (2021).
Tan, C. et al. Supramolecular coordination cages for asymmetric catalysis. Chem. Eur. J. 25, 662–672 (2019).
Xue, Y. et al. Catalysis within coordination cages. Coord. Chem. Rev. 430, 213656 (2020).
Hong, C. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51, 2447–2455 (2018).
Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).
Vardhan, H. & Verpoort, F. Metal-organic polyhedra: catalysis and reactive intermediates. Adv. Synth. Catal. 357, 1351–1368 (2015).
Dey, N. & Haynes, C. J. E. Supramolecular coordination complexes as optical biosensors. ChemPlusChem 86, 418–433 (2021).
Pan, M., Wu, K., Zhang, J.-H. & Su, C.-Y. Chiral metal–organic cages/containers (MOCs): from structural and stereochemical design to applications. Coord. Chem. Rev. 378, 333–349 (2019).
Rizzuto, F. J., von Krbek, L. K. S. & Nitschke, J. R. Strategies for binding multiple guests in metal–organic cages. Nat. Rev. Chem. 3, 204–222 (2019).
Chen, L.-J., Yang, H.-B. & Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 46, 2555–2576 (2017).
Zhang, D., Ronson, T. K., Zou, Y.-Q. & Nitschke, J. R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 5, 168–182 (2021).
Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).
Seidel, S. R. & Stang, P. J. High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 35, 972–983 (2002).
Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).
Debata, N. B., Tripathy, D. & Sahoo, H. S. Development of coordination driven self-assembled discrete spherical ensembles. Coord. Chem. Rev. 387, 273–298 (2019).
Zhu, Z. Z., Tian, C. B. & Sun, Q. F. Coordination-assembled molecular cages with metal cluster nodes. Chem. Rec. 21, 498–522 (2021).
Percástegui, E. G. & Jancik, V. Coordination-driven assemblies based on meso-substituted porphyrins: Metal-organic cages and a new type of meso-metallaporphyrin macrocycles. Coord. Chem. Rev. 407, 213165 (2020).
Li, F. & Lindoy, L. F. Metalloligand strategies for assembling heteronuclear nanocages–recent developments. Aust. J. Chem. 72, 731–741 (2019).
Saalfrank, R. W., Maid, H. & Scheurer, A. Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew. Chem. Int. Ed. 47, 8794–8824 (2008).
Martín Díaz, A. E. & Lewis, J. E. M. Structural flexibility in metal-organic cages. Front. Chem. 9, 706462 (2021).
Fujita, M. et al. On the structure of transition metal-linked molecular squares. Chem. Commun. https://doi.org/10.1039/CC9960001535 (1996).
Fujita, M., Yazaki, J. & Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4′-bpy)]4(NO3)8, which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).
Umemoto, K., Yamaguchi, K. & Fujita, M. Molecular paneling via coordination: guest-controlled assembly of open cone and tetrahedron structure from eight metals and four ligands. J. Am. Chem. Soc. 122, 7150–7151 (2000).
Fujita, M. et al. Molecular paneling via coordination. Chem. Commun. https://doi.org/10.1039/B008684N (2001).
Takeda, N., Umemoto, K., Yamaguchi, K. & Fujita, M. A nanometre-sized hexahedral coordination capsule assembled from 24 components. Nature 398, 794–796 (1999).
Stang, P. J. & Cao, D. H. Transition metal based cationic molecular boxes. Self-assembly of macrocyclic platinum(II) and palladium(II) tetranuclear complexes. J. Am. Chem. Soc. 116, 4981–4982 (1994).
Schweiger, M., Seidel, S. R., Schmitz, M. & Stang, P. J. Rational design of chiral nanoscale adamantanoids. Org. Lett. 2, 1255–1257 (2000).
Northrop, B. H., Chercka, D. & Stang, P. J. Carbon-rich supramolecular metallacycles and metallacages. Tetrahedron 64, 11495–11503 (2008).
Caulder, D. L. & Raymond, K. N. The rational design of high symmetry coordination clusters. J. Chem. Soc. Dalton Trans. 8, 1185–1200 (1999).
Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).
Nitschke, J. R. & Campbell, V. Complex systems from simple building blocks via subcomponent self-assembly. Synlett 2008, 3077–3090 (2008).
Cohen, S. M. The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017).
Deegan, M. M., Antonio, A. M., Taggart, G. A. & Bloch, E. D. Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coord. Chem. Rev. 430, 213679 (2021).
Roberts, D. A., Pilgrim, B. S. & Nitschke, J. R. Covalent post-assembly modification in metallosupramolecular chemistry. Chem. Soc. Rev. 47, 626–644 (2018).
Mai, H. D., Tran, N. M. & Yoo, H. Multilevel coordination-driven assembly for metallosupramolecules with hierarchical structures. Coord. Chem. Rev. 387, 180–198 (2019).
El-Sayed, E.-S. M. & Yuan, D. Metal-organic cages (MOCs): from discrete to cage-based extended architectures. Chem. Lett. 49, 28–53 (2020).
Zeng, H., Stewart-Yates, L., Casey, L. M., Bampos, N. & Roberts, D. A. Covalent post-assembly modification: a synthetic multipurpose tool in supramolecular chemistry. ChemPlusChem 85, 1249–1269 (2020).
Wang, M. et al. Post-self-assembly covalent chemistry of discrete multicomponent metallosupramolecular hexagonal prisms. J. Am. Chem. Soc. 133, 10752–10755 (2011). This work reported an example of covalent PSMs in which palladium-based hexagonal prisms were functionalized using Diels–Alder reactions.
Schneider, M. L., Linder-Patton, O. M. & Bloch, W. M. A covalent deprotection strategy for assembling supramolecular coordination polymers from metal–organic cages. Chem. Commun. 56, 12969–12972 (2020).
Albalad, J., Carné-Sánchez, A., Grancha, T., Hernández-López, L. & Maspoch, D. Protection strategies for directionally-controlled synthesis of previously inaccessible metal–organic polyhedra (MOPs): the cases of carboxylate- and amino-functionalised Rh(II)-MOPs. Chem. Commun. 55, 12785–12788 (2019).
Pullen, S., Tessarolo, J. & Clever, G. H. Increasing structural and functional complexity in self-assembled coordination cages. Chem. Sci. 12, 7269–7293 (2021).
Chen, L., Chen, Q., Wu, M., Jiang, F. & Hong, M. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks. Acc. Chem. Res. 48, 201–210 (2015).
Ju, Z., Liu, G., Chen, Y. S., Yuan, D. & Chen, B. From coordination cages to a stable crystalline porous hydrogen-bonded framework. Chem. Eur. J. 23, 4774–4777 (2017).
Liu, L. et al. Controllable reassembly of a dynamic metallocage: from thermodynamic control to kinetic control. Chem. Eur. J. 23, 456–461 (2017).
Mollick, S., Fajal, S., Mukherjee, S. & Ghosh, S. K. Stabilizing metal–organic polyhedra (MOP): issues and strategies. Chem. Asian J. 14, 3096–3108 (2019).
Han, Y., Li, J. R., Xie, Y. & Guo, G. Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chem. Soc. Rev. 43, 5952–5981 (2014).
Wang, W., Wang, Y. X. & Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 45, 2656–2693 (2016).
McConnell, A. J., Wood, C. S., Neelakandan, P. P. & Nitschke, J. R. Stimuli-responsive metal–ligand assemblies. Chem. Rev. 115, 7729–7793 (2015).
Percástegui, E. G. Guest-induced transformations in metal-organic cages. Eur. J. Inorg. Chem. 2021, 4425–4438 (2021).
Roberts, D. A., Pilgrim, B. S., Sirvinskaite, G., Ronson, T. K. & Nitschke, J. R. Covalent post-assembly modification triggers multiple structural transformations of a tetrazine-edged Fe4L6 tetrahedron. J. Am. Chem. Soc. 140, 9616–9623 (2018).
Zhao, D. et al. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 23, 90–93 (2011).
Roberts, D. A., Castilla, A. M., Ronson, T. K. & Nitschke, J. R. Post-assembly modification of kinetically metastable FeII2L3 triple helicates. J. Am. Chem. Soc. 136, 8201–8204 (2014).
Kennedy, A. D. W. et al. Diastereoselective control of tetraphenylethene reactivity by metal template self-assembly. Chem. Eur. J. 25, 5708–5718 (2019).
Hiraoka, S., Yamauchi, Y., Arakane, R. & Shionoya, M. Template-directed synthesis of a covalent organic capsule based on a 3 nm-sized metallocapsule. J. Am. Chem. Soc. 131, 11646–11647 (2009).
Hosono, N., Gochomori, M., Matsuda, R., Sato, H. & Kitagawa, S. Metal–organic polyhedral core as a versatile scaffold for divergent and convergent star polymer synthesis. J. Am. Chem. Soc. 138, 6525–6531 (2016). This paper describes the covalent PSM of MOCs via RAFT polymerization, to form a coordination star polymer.
Samanta, D., Chowdhury, A. & Mukherjee, P. S. Covalent postassembly modification and water adsorption of Pd3 self-assembled trinuclear barrels. Inorg. Chem. 55, 1562–1568 (2016).
Liu, G. et al. Process-tracing study on the postassembly modification of highly stable zirconium metal–organic cages. J. Am. Chem. Soc. 140, 6231–6234 (2018).
McTernan, C. T., Ronson, T. K. & Nitschke, J. R. Post-assembly modification of phosphine cages controls host–guest behavior. J. Am. Chem. Soc. 141, 6837–6842 (2019).
Glasson, C. R. K. et al. Post-assembly covalent di- and tetracapping of a dinuclear [Fe2L3]4+ triple helicate and two [Fe4L6]8+ tetrahedra using sequential reductive aminations. Inorg. Chem. 54, 6986–6992 (2015).
Young, M. C., Johnson, A. M. & Hooley, R. J. Self-promoted post-synthetic modification of metal–ligand M2L3 mesocates. Chem. Commun. 50, 1378–1380 (2014).
Roberts, D. A. et al. Post-assembly modification of tetrazine-edged FeII4L6 tetrahedra. J. Am. Chem. Soc. 137, 10068–10071 (2015).
Ronson, T. K., Pilgrim, B. S. & Nitschke, J. R. Pathway-dependent post-assembly modification of an anthracene-edged MII4L6 tetrahedron. J. Am. Chem. Soc. 138, 10417–10420 (2016).
Pilgrim, B. S., Roberts, D. A., Lohr, T. G., Ronson, T. K. & Nitschke, J. R. Signal transduction in a covalent post-assembly modification cascade. Nat. Chem. 9, 1276–1281 (2017). This work reported the first cascade reaction occurring in MOCs.
Lu, W., Yuan, D., Yakovenko, A. & Zhou, H.-C. Surface functionalization of metal–organic polyhedron for homogeneous cyclopropanation catalysis. Chem. Commun. 47, 4968–4970 (2011).
Holloway, L. R., Bogie, P. M., Lyon, Y., Julian, R. R. & Hooley, R. J. Stereoselective postassembly CH oxidation of self-assembled metal–ligand cage complexes. Inorg. Chem. 56, 11435–11442 (2017).
Samanta, S. K., Moncelet, D., Vinciguerra, B., Briken, V. & Isaacs, L. Metal organic polyhedra: a click-and-clack approach toward targeted delivery. Helv. Chim. Acta 101, e1800057 (2018).
Bloch, W. M., Babarao, R. & Schneider, M. L. On/off porosity switching and post-assembly modifications of Cu4L4 metal–organic polyhedra. Chem. Sci. 11, 3664–3671 (2020).
Mihara, N., Ronson, T. K. & Nitschke, J. R. Different modes of anion response cause circulatory phase transfer of a coordination cage with controlled directionality. Angew. Chem. Int. Ed. 58, 12497–12501 (2019).
Samanta, D. & Mukherjee, P. S. Sunlight-induced covalent marriage of two triply interlocked Pd6 cages and their facile thermal separation. J. Am. Chem. Soc. 136, 17006–17009 (2014).
Hiraoka, S. et al. Isostructural coordination capsules for a series of 10 different d5–d10 transition-metal ions. Angew. Chem. Int. Ed. 45, 6488–6491 (2006).
Cao, A. et al. Metal–organic polyhedra-coated Si nanowires for the sensitive detection of trace explosives. Nano Lett. 17, 1–7 (2017).
Carné-Sánchez, A. et al. Postsynthetic covalent and coordination functionalization of rhodium(II)-based metal–organic polyhedra. J. Am. Chem. Soc. 141, 4094–4102 (2019). This work reports the combination of covalent and coordination strategies in PSMs of rhodium-based MOCs.
Grancha, T. et al. Phase transfer of rhodium(II)-based metal–organic polyhedra bearing coordinatively bound cargo enables molecular separation. J. Am. Chem. Soc. 141, 18349–18355 (2019).
Hernández-López, L. et al. Steric hindrance in metal coordination drives the separation of pyridine regioisomers using rhodium(II)-based metal–organic polyhedra. Angew. Chem. Int. Ed. 60, 11406–11413 (2021).
Liu, G. et al. Controlled orthogonal self-assembly of heterometal-decorated coordination cages. Chem. Eur. J. 22, 17345–17350 (2016).
Harris, K., Sun, Q.-F., Sato, S. & Fujita, M. M12L24 spheres with endo and exo coordination sites: scaffolds for non-covalent functionalization. J. Am. Chem. Soc. 135, 12497–12499 (2013).
Sun, Q. F., Sato, S. & Fujita, M. An M18L24 stellated cuboctahedron through post-stellation of an M12L24 core. Nat. Chem. 4, 330–333 (2012).
Rizzuto, F. J., Ramsay, W. J. & Nitschke, J. R. Otherwise unstable structures self-assemble in the cavities of cuboctahedral coordination cages. J. Am. Chem. Soc. 140, 11502–11509 (2018).
Müller-Dethlefs, K. & Hobza, P. Noncovalent interactions: a challenge for experiment and theory. Chem. Rev. 100, 143–167 (2000).
Mahadevi, A. S. & Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 116, 2775–2825 (2016).
Hobza, P. & Řezáč, J. Introduction: noncovalent interactions. Chem. Rev. 116, 4911–4912 (2016).
Ramsay, W. J., Ronson, T. K., Clegg, J. K. & Nitschke, J. R. Bidirectional regulation of halide binding in a heterometallic supramolecular cube. Angew. Chem. Int. Ed. 52, 13439–13443 (2013).
Ramsay, W. J. & Nitschke, J. R. Two distinct allosteric active sites regulate guest binding within a Fe8Mo1216+ cubic receptor. J. Am. Chem. Soc. 136, 7038–7043 (2014).
Sgarlata, C. et al. External and internal guest binding of a highly charged supramolecular host in water: deconvoluting the very different thermodynamics. J. Am. Chem. Soc. 132, 1005–1009 (2010).
Sgarlata, C. & Raymond, K. N. Untangling the diverse interior and multiple exterior guest interactions of a supramolecular host by the simultaneous analysis of complementary observables. Anal. Chem. 88, 6923–6929 (2016).
von Krbek, L. K. S., Roberts, D. A., Pilgrim, B. S., Schalley, C. A. & Nitschke, J. R. Multivalent crown ether receptors enable allosteric regulation of anion exchange in an Fe4L6 tetrahedron. Angew. Chem. Int. Ed. 57, 14121–14124 (2018).
Liu, J. et al. Hierarchical self-assembly of discrete metal–organic cages into supramolecular nanoparticles for intracellular protein delivery. Angew. Chem. Int. Ed. 60, 5429–5435 (2021).
Samanta, S. K., Moncelet, D., Briken, V. & Isaacs, L. Metal–organic polyhedron capped with cucurbit[8]uril delivers doxorubicin to cancer cells. J. Am. Chem. Soc. 138, 14488–14496 (2016). This work reports that MOCs that underwent noncovalent complexation with CB[8] modified anticancer prodrugs and could be applied in the delivery of anticancer drugs.
Samanta, S. K., Quigley, J., Vinciguerra, B., Briken, V. & Isaacs, L. Cucurbit[7]uril enables multi-stimuli-responsive release from the self-assembled hydrophobic phase of a metal organic polyhedron. J. Am. Chem. Soc. 139, 9066–9074 (2017).
Hao, X., Leng, Z., Sun, D., Peng, F. & Yasin, A. Photo-regulated supramolecular star with a pillar[6]arene-coated metal–organic polyhedron (MOP) core. Chem. Commun. 56, 6676–6679 (2020).
Li, Y. et al. Ionic self-assembly of surface functionalized metal–organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface. Chem. Commun. 48, 7946–7948 (2012).
Brega, V., Zeller, M., He, Y., Lu, H. P. & Klosterman, J. K. Multi-responsive metal–organic lantern cages in solution. Chem. Commun. 51, 5077–5080 (2015).
Chen, G. J., Chen, C. Q., Li, X. T., Ma, H. C. & Dong, Y. B. Cu3L2 metal–organic cages for A3-coupling reactions: reversible coordination interaction triggered homogeneous catalysis and heterogeneous recovery. Chem. Commun. 54, 11550–11553 (2018).
Li, N. et al. From discrete octahedral nanocages to 1D coordination polymer: Coordination-driven a single-crystal-to-single-crystal transformation via anion exchange. Chem. Commun. 47, 2327–2329 (2011).
Prajesh, N. et al. Ferroelectric behavior of an octahedral metal-ligand cage and its 2D-connected cage framework. Chem. Asian J. 15, 3275–3280 (2020).
Clever, G. H., Tashiro, S. & Shionoya, M. Light-triggered crystallization of a molecular host–guest complex. J. Am. Chem. Soc. 132, 9973–9975 (2010).
Clever, G. H., Kawamura, W. & Shionoya, M. Encapsulation versus aggregation of metal–organic cages controlled by guest size variation. Inorg. Chem. 50, 4689–4691 (2011).
Liu, T. F., Chen, Y. P., Yakovenko, A. A. & Zhou, H. C. Interconversion between discrete and a chain of nanocages: self-assembly via a solvent-driven, dimension-augmentation strategy. J. Am. Chem. Soc. 134, 17358–17361 (2012).
Chen, Q. et al. A controllable and dynamic assembly system based on discrete metallocages. Chem. Sci. 5, 483–488 (2014).
Zhao, C. & Seidel, D. Enantioselective A3 reactions of secondary amines with a Cu(I)/acid–thiourea catalyst combination. J. Am. Chem. Soc. 137, 4650–4653 (2015).
Luz, I., Llabrés i Xamena, F. X. & Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J. Catal. 285, 285–291 (2012).
Ramu, V. G. et al. Copper nanoparticles stabilized on nitrogen-doped carbon nanotubes as efficient and recyclable catalysts for alkyne/aldehyde/cyclic amine A3-type coupling reactions. Appl. Catal. A Gen. 431-432, 88–94 (2012).
Yang, Z. et al. Homoporous hybrid membranes containing metal-organic cages for gas separation. J. Membr. Sci. 636, 119564 (2021).
Liu, G. et al. Thin-film nanocomposite membranes containing water-stable zirconium metal–organic cages for desalination. ACS Mater. Lett. 3, 268–274 (2021).
Ahmad, N. et al. Development of mixed metal metal-organic polyhedra networks, colloids, and MOFs and their pharmacokinetic applications. Sci. Rep. 7, 832 (2017).
Yan, Q. Q. et al. Metallopolymers cross-linked with self-assembled Ln4L4 cages. Dalton Trans. 48, 7080–7084 (2019).
Xie, X. Y., Wu, F., Liu, X. Q. & Sun, L. B. Enhancing the hydrostability and processability of metal–organic polyhedra by self-polymerization or copolymerization with styrene. Dalton Trans. 48, 17153–17157 (2019).
Lal, G. et al. Mechanical properties of a metal–organic framework formed by covalent cross-linking of metal–organic polyhedra. J. Am. Chem. Soc. 141, 1045–1053 (2019).
Nam, D. et al. Cross-linking Zr-based metal–organic polyhedra via postsynthetic polymerization. Chem. Sci. 8, 7765–7771 (2017). This study reports on the covalent crosslinking of MOCs, showing that the amine-functionalized zirconium-based cages react with acyl chloride to form a crosslinked product in the crystalline state.
Schneider, M. L., Markwell-Heys, A. W., Linder-Patton, O. M. & Bloch, W. M. Assembly and covalent cross-linking of an amine-functionalised metal-organic cage. Front. Chem. 9, 696081 (2021).
Zhao, J. et al. Metal–organic polyhedra crosslinked supramolecular polymeric elastomers. Chem. Commun. 56, 8031–8034 (2020).
Uchida, J. et al. Self-assembly of giant spherical liquid-crystalline complexes and formation of nanostructured dynamic gels that exhibit self-healing properties. Angew. Chem. Int. Ed. 56, 14085–14089 (2017).
Liu, J. et al. Self-healing hyper-cross-linked metal–organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J. Am. Chem. Soc. 141, 12064–12070 (2019). This study develops self-healing hybrid polymer membranes composed of MOCs as high-connectivity nodes and their use for separation and as antimicrobial agents.
Gu, Y. et al. Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature 560, 65–69 (2018).
Wang, Y. et al. Block co-polyMOCs by stepwise self-assembly. J. Am. Chem. Soc. 138, 10708–10715 (2016).
Zhukhovitskiy, A. V. et al. Polymer structure dependent hierarchy in polyMOC gels. Macromolecules 49, 6896–6902 (2016).
Zhukhovitskiy, A. V. et al. Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nat. Chem. 8, 33–41 (2016).
Wang, Y. et al. Star polyMOCs with diverse structures, dynamics, and functions by three-component assembly. Angew. Chem. Int. Ed. 56, 188–192 (2017).
Oldenhuis, N. J. et al. Photoswitchable sol–gel transitions and catalysis mediated by polymer networks with coumarin-decorated Cu24L24 metal–organic cages as junctions. Angew. Chem. Int. Ed. 59, 2784–2792 (2020).
Nagarkar, S. S., Tsujimoto, M., Kitagawa, S., Hosono, N. & Horike, S. Modular self-assembly and dynamics in coordination star polymer glasses: new media for ion transport. Chem. Mater. 30, 8555–8561 (2018).
Hosono, N., Guo, W., Omoto, K., Yamada, H. & Kitagawa, S. Bottom-up synthesis of defect-free mixed-matrix membranes by using polymer-grafted metal–organic polyhedra. Chem. Lett. 48, 597–600 (2019).
Foster, J. A. et al. Differentially addressable cavities within metal–organic cage-cross-linked polymeric hydrogels. J. Am. Chem. Soc. 137, 9722–9729 (2015).
Xie, X. Y. et al. Photopolymerization of metal–organic polyhedra: an efficient approach to improve the hydrostability, dispersity, and processability. Chem. Commun. 55, 6177–6180 (2019).
Kim, H. et al. Single crystalline hollow metal–organic frameworks: a metal–organic polyhedron single crystal as a sacrificial template. Chem. Commun. 51, 3678–3681 (2015).
Yadav, A., Gupta, A. K., Steiner, A. & Boomishankar, R. Mapping the assembly of metal–organic cages into complex coordination networks. Chem. Eur. J. 23, 18296–18302 (2017).
Kim, Y. et al. Rational design and construction of hierarchical superstructures using shape-persistent organic cages: porphyrin box-based metallosupramolecular assemblies. J. Am. Chem. Soc. 140, 14547–14551 (2018).
Feng, J. et al. Gelation of luminescent supramolecular cages and transformation to crystals with trace-doped-enhancement luminescence. Langmuir 32, 12184–12189 (2016).
Wang, H. N. et al. Stepwise assembly of metal–organic framework based on a metal–organic polyhedron precursor for drug delivery. Chem. Commun. 47, 7128–7130 (2011).
Chen, G.-H. et al. Optical resolution studies on Ti/Zr-based tetrahedral cages. Cryst. Growth Des. 20, 6316–6320 (2020).
Chen, G.-H. et al. Ti4(embonate)6 based cage-cluster construction in a stable metal–organic framework for gas sorption and separation. Cryst. Growth Des. 20, 29–32 (2019).
Li, J.-R., Timmons, D. J. & Zhou, H.-C. Interconversion between molecular polyhedra and metal–organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009). This work reports the first example of the interconversion between 0D copper-based MOCs and 3D MOFs connected by organic linkers.
Niu, Z. et al. Solvent-assisted coordination driven assembly of a supramolecular architecture featuring two types of connectivity from discrete nanocages. Chem. Sci. 10, 6661–6665 (2019).
Niu, Z. et al. Coordination-driven polymerization of supramolecular nanocages. J. Am. Chem. Soc. 137, 14873–14876 (2015).
Cao, L. et al. Diamondoid supramolecular coordination frameworks from discrete adamantanoid platinum(II) cages. J. Am. Chem. Soc. 140, 7005–7011 (2018).
Zhang, Z., Wojtas, L. & Zaworotko, M. J. Organic–inorganic hybrid polyhedra that can serve as supermolecular building blocks. Chem. Sci. 5, 927–931 (2014). This study reports the conversion from vanadium-based MOCs to MOFs connected by coordination between Ba2+ and metal nodes.
He, Y. P., Chen, G. H., Yuan, L. B., Zhang, L. & Zhang, J. Ti4(embonate)6 cage-ligand strategy on the construction of metal–organic frameworks with high stability and gas sorption properties. Inorg. Chem. 59, 964–967 (2020).
He, Y. P., Yuan, L. B., Chen, G. H., Zhang, L. & Zhang, J. Coordination assembly of the water-soluble Ti4(embonate)6 cages with Mn2+ ions. Isr. J. Chem. 59, 233–236 (2018).
Teng, Q. et al. Coordination assembly of tetrahedral Zr4(embonate)6 cages with Eu3+ ions. Inorg. Chem. 60, 18178–18184 (2021).
He, Y. P. et al. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J. Am. Chem. Soc. 139, 16845–16851 (2017).
Jung, H.-J., Moon, D.-H. & Chun, H.-P. Non-framework coordination polymers with tunable bimodal porosities based on inter-connected metal-organic polyhedra. Bull. Korean Chem. Soc. 32, 2489–2492 (2011).
Pastore, V. J. & Cook, T. R. Coordination-driven self-assembly in polymer–inorganic hybrid materials. Chem. Mater. 32, 3680–3700 (2020).
Deegan, M. M. & Bloch, E. D. Synthesis, characterization, and polymerization of capped paddlewheel porous cages. Dalton Trans. 50, 3127–3131 (2021).
Carné-Sánchez, A. et al. A coordinative solubilizer method to fabricate soft porous materials from insoluble metal–organic polyhedra. Angew. Chem. Int. Ed. 58, 6347–6350 (2019).
Grancha, T. et al. Synthesis of polycarboxylate Rh(II)-metal-organic polyhedra and their use as building blocks for highly-connected metal-organic frameworks. Angew. Chem. Int. Ed. 60, 5729–5733 (2020).
Wang, Z. et al. Porous colloidal hydrogels formed by coordination-driven self-assembly of charged metal-organic polyhedra. Chem. Asian J. 16, 1092–1100 (2021).
Wang, Z. et al. Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization. Chem. Sci. 12, 12556–12563 (2021).
Zhao, J. & Yan, X. Rh(II)-based metal–organic polyhedra. Chem. Lett. 49, 659–665 (2020).
Carné-Sánchez, A. et al. Self-assembly of metal–organic polyhedra into supramolecular polymers with intrinsic microporosity. Nat. Commun. 9, 2506 (2018). This study reports on rhodium-based cages used as porous monomers in supramolecular coordination polymerization, generating amorphous polymeric gels with controlled microporosity.
Legrand, A. et al. Spatiotemporal control of supramolecular polymerization and gelation of metal–organic polyhedra. J. Am. Chem. Soc. 143, 3562–3570 (2021).
Shao, L. et al. Construction of polymeric metal–organic nanocapsule networks via supramolecular coordination-driven self-assembly. J. Am. Chem. Soc. 142, 7270–7275 (2020).
Liu, Y. et al. Modulating polymer dynamics via supramolecular interaction with ultrasmall nanocages for recyclable gas separation membranes with intrinsic microporosity. Nano Lett. 21, 9021–9029 (2021). This work reports a strategy in which MOCs are crosslinked by coordination PSMs to fabricate gas separation membranes.
Yamauchi, Y. et al. m × n stacks of discrete aromatic stacks in solution. J. Am. Chem. Soc. 132, 9555–9557 (2010).
Saha, S. et al. Rational design of an amphiphilic coordination cage-based emulsifier. J. Am. Chem. Soc. 140, 17384–17388 (2018).
Kieffer, M. et al. Embedding and positioning of two FeII4L4 cages in supramolecular tripeptide gels for selective chemical segregation. Angew. Chem. Int. Ed. 58, 7982–7986 (2019).
Wei, S. C. et al. Creating coordination-based cavities in a multiresponsive supramolecular gel. Chem. Eur. J. 21, 7418–7427 (2015).
Cheng, A.-L., Liu, N., Zhang, J.-Y. & Gao, E.-Q. Assembling the cage-based metal–organic network from a cubic metalloligand. Inorg. Chem. 46, 1034–1035 (2007).
Qin, Y. et al. A hydrogel directly assembled from a copper metal–organic polyhedron for antimicrobial application. Chem. Commun. 55, 2206–2209 (2019).
He, Y.-P. et al. Optical resolution of the water-soluble Ti4(embonate)6 cages for enantioselective recognition of chiral drugs. Chem. Mater. 30, 7769–7775 (2018). This paper describes a chiral titanium-based MOC that was transformed into a 3D framework through hydrogen bonding.
Sutar, P., Suresh, V. M., Jayaramulu, K., Hazra, A. & Maji, T. K. Binder driven self-assembly of metal-organic cubes towards functional hydrogels. Nat. Commun. 9, 3587 (2018).
Yang, Y. et al. Nanosheets and hydrogels formed by 2 nm metal–organic cages with electrostatic interaction. ACS Appl. Mater. Interfaces 12, 56310–56318 (2020).
Le Ouay, B. et al. Crystalline assembly of metal–organic polyhedra driven by ionic interactions with polyoxometalates. Chem. Commun. 57, 5187–5190 (2021).
Gosselin, E. J. et al. A charged coordination cage-based porous salt. J. Am. Chem. Soc. 142, 9594–9598 (2020). This paper described a unique method in which the combination of cages with opposite charges afforded framework-like materials, also called porous salts.
Gosselin, A. J. et al. Elaboration of porous salts. J. Am. Chem. Soc. 143, 14956–14961 (2021).
Jackson, N., Vazquez, I. R., Chen, Y. P., Chen, Y. S. & Gao, W. Y. A porous supramolecular ionic solid. Chem. Commun. 57, 7248–7251 (2021).
Lu, C. et al. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host–guest interactions. J. Am. Chem. Soc. 140, 7674–7680 (2018).
Kalaj, M. & Cohen, S. M. Postsynthetic modification: an enabling technology for the advancement of metal–organic frameworks. ACS Cent. Sci. 6, 1046–1057 (2020).
He, C. et al. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab157 (2021).
Wan, L., Liu, H., Huang, C. & Shen, X. Enzyme-like MOFs: synthetic molecular receptors with high binding capacity and their application in selective photocatalysis. J. Mater. Chem. A 8, 25931–25940 (2020).
Acknowledgements
This work was supported by National Natural Science Foundation of China (21971126) and National Key R&D Program of China (2018YFA0901800).
Author information
Authors and Affiliations
Contributions
J.L. and Z.W. researched the literature for the Review. J.L. wrote the first version of the manuscript. J.L. and Z.W. prepared the figures. All authors contributed to the discussion and editing of the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks S. Pullen, Y. Bai and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, J., Wang, Z., Cheng, P. et al. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 6, 339–356 (2022). https://doi.org/10.1038/s41570-022-00380-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-022-00380-y
This article is cited by
-
Baicalin nanodelivery system based on functionalized metal-organic framework for targeted therapy of osteoarthritis by modulating macrophage polarization
Journal of Nanobiotechnology (2024)
-
Surface manipulation for prevention of migratory viscous crude oil fouling in superhydrophilic membranes
Nature Communications (2023)
-
Homochiral design of titanium-organic cage for circularly polarized luminescence-based molecular detection
Science China Chemistry (2023)
-
Water boosted CO2/C2H2 separation in L-arginine functionalized metal—organic framework
Nano Research (2023)