Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-synthetic modifications of metal–organic cages

Abstract

Metal–organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure–function relationships that will guide future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The chronological development in post-synthetic modifications of metal–organic cages with representative examples.
Fig. 2: Strategies for post-synthetic modifications of metal–organic cages and the targeted properties.
Fig. 3: Post-synthetic modification from 0D cages to 0D cages by covalent strategies.
Fig. 4: Post-synthetic modification from 0D cages to 0D cages by covalent or coordination strategies.
Fig. 5: Coordination and noncovalent post-synthetic modifications from 0D cages to 0D cages, and 0D cages to 1D or 2D structures.
Fig. 6: Covalent crosslinking of 0D cages to form 3D polymeric materials.
Fig. 7: Post-synthetic assembly of 0D cages into 3D networks by coordination modifications.
Fig. 8: Post-assembly of 0D cages into 3D structures by noncovalent post-synthetic modifications.

Similar content being viewed by others

References

  1. Lee, S., Jeong, H., Nam, D., Lah, M. S. & Choe, W. The rise of metal–organic polyhedra. Chem. Soc. Rev. 50, 528–555 (2020).

    Article  PubMed  Google Scholar 

  2. Tranchemontagne, D. J., Ni, Z., O’Keeffe, M. & Yaghi, O. M. Reticular chemistry of metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008).

    Article  CAS  Google Scholar 

  3. Pilgrim, B. S. & Champness, N. R. Metal-organic frameworks and metal-organic cages–a perspective. ChemPlusChem 85, 1842–1856 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Pullen, S. & Clever, G. H. Mixed-ligand metal–organic frameworks and heteroleptic coordination cages as multifunctional scaffolds — a comparison. Acc. Chem. Res. 51, 3052–3064 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perry, J. J. IV, Perman, J. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. et al. Self-assembly of Goldberg polyhedra from a concave [WV5O11(RCO2)5(SO4)]3− building block with 5-fold symmetry. J. Am. Chem. Soc. 140, 17365–17368 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, G., Ju, Z., Yuan, D. & Hong, M. In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem. 52, 13815–13817 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Gan, H. et al. Equi-size nesting of Platonic and Archimedean metal–organic polyhedra into a twin capsid. Nat. Commun. 11, 4103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gan, H.-M. et al. Self-assembled polyoxometalate-based metal-organic polyhedra as an effective heterogeneous catalyst for oxidation of sulfide. Cryst. Growth Des. 21, 1028–1034 (2021).

    Article  CAS  Google Scholar 

  10. Gosselin, A. J., Rowland, C. A., Balto, K. P., Yap, G. P. A. & Bloch, E. D. Design and synthesis of porous nickel(II) and cobalt(II) cages. Inorg. Chem. 57, 11847–11850 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Furukawa, S. et al. Rhodium–organic cuboctahedra as porous solids with strong binding sites. Inorg. Chem. 55, 10843–10846 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Lorzing, G. R. et al. Design and synthesis of capped-paddlewheel-based porous coordination cages. Chem. Commun. 55, 9527–9530 (2019).

    Article  CAS  Google Scholar 

  13. Wang, S. et al. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 138, 16236–16239 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H. et al. Assembling pentatopic terpyridine ligands with three types of coordination moieties into a giant supramolecular hexagonal prism: synthesis, self-assembly, characterization, and antimicrobial study. J. Am. Chem. Soc. 141, 16108–16116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, H. et al. Hierarchical self-assembly of nanowires on the surface by metallo-supramolecular truncated cuboctahedra. J. Am. Chem. Soc. 143, 5826–5835 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Lai, Y. L. et al. Self-assembly of a mixed valence copper triangular prism and transformation to cage triggered by an external stimulus. Inorg. Chem. 59, 17374–17378 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Gosselin, A. J., Rowland, C. A. & Bloch, E. D. Permanently microporous metal–organic polyhedra. Chem. Rev. 120, 8987–9014 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Jahović, I., Zou, Y.-Q., Adorinni, S., Nitschke, J. R. & Marchesan, S. Cages meet gels: smart materials with dual porosity. Matter 4, 2123–2140 (2021).

    Article  CAS  Google Scholar 

  19. Taggart, G. A., Antonio, A. M., Lorzing, G. R., Yap, G. P. A. & Bloch, E. D. Tuning the porosity, solubility, and gas-storage properties of cuboctahedral coordination cages via amide or ester functionalization. ACS Appl. Mater. Interfaces 12, 24913–24919 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, C., Zhang, Y. & An, Q. Functional material systems based on soft cages. Chem. Asian J. 16, 1198–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Vardhan, H., Yusubov, M. & Verpoort, F. Self-assembled metal–organic polyhedra: An overview of various applications. Coord. Chem. Rev. 306, 171–194 (2016).

    Article  CAS  Google Scholar 

  22. Liu, W. & Stoddart, J. F. Emergent behavior in nanoconfined molecular containers. Chem 7, 919–947 (2021).

    Article  CAS  Google Scholar 

  23. Tan, C. et al. Supramolecular coordination cages for asymmetric catalysis. Chem. Eur. J. 25, 662–672 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Xue, Y. et al. Catalysis within coordination cages. Coord. Chem. Rev. 430, 213656 (2020).

    Article  CAS  Google Scholar 

  25. Hong, C. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51, 2447–2455 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Vardhan, H. & Verpoort, F. Metal-organic polyhedra: catalysis and reactive intermediates. Adv. Synth. Catal. 357, 1351–1368 (2015).

    Article  CAS  Google Scholar 

  28. Dey, N. & Haynes, C. J. E. Supramolecular coordination complexes as optical biosensors. ChemPlusChem 86, 418–433 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Pan, M., Wu, K., Zhang, J.-H. & Su, C.-Y. Chiral metal–organic cages/containers (MOCs): from structural and stereochemical design to applications. Coord. Chem. Rev. 378, 333–349 (2019).

    Article  CAS  Google Scholar 

  30. Rizzuto, F. J., von Krbek, L. K. S. & Nitschke, J. R. Strategies for binding multiple guests in metal–organic cages. Nat. Rev. Chem. 3, 204–222 (2019).

    Article  Google Scholar 

  31. Chen, L.-J., Yang, H.-B. & Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 46, 2555–2576 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, D., Ronson, T. K., Zou, Y.-Q. & Nitschke, J. R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 5, 168–182 (2021).

    Article  CAS  Google Scholar 

  33. Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Seidel, S. R. & Stang, P. J. High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 35, 972–983 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Debata, N. B., Tripathy, D. & Sahoo, H. S. Development of coordination driven self-assembled discrete spherical ensembles. Coord. Chem. Rev. 387, 273–298 (2019).

    Article  CAS  Google Scholar 

  37. Zhu, Z. Z., Tian, C. B. & Sun, Q. F. Coordination-assembled molecular cages with metal cluster nodes. Chem. Rec. 21, 498–522 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Percástegui, E. G. & Jancik, V. Coordination-driven assemblies based on meso-substituted porphyrins: Metal-organic cages and a new type of meso-metallaporphyrin macrocycles. Coord. Chem. Rev. 407, 213165 (2020).

    Article  CAS  Google Scholar 

  39. Li, F. & Lindoy, L. F. Metalloligand strategies for assembling heteronuclear nanocages–recent developments. Aust. J. Chem. 72, 731–741 (2019).

    Article  CAS  Google Scholar 

  40. Saalfrank, R. W., Maid, H. & Scheurer, A. Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew. Chem. Int. Ed. 47, 8794–8824 (2008).

    Article  CAS  Google Scholar 

  41. Martín Díaz, A. E. & Lewis, J. E. M. Structural flexibility in metal-organic cages. Front. Chem. 9, 706462 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fujita, M. et al. On the structure of transition metal-linked molecular squares. Chem. Commun. https://doi.org/10.1039/CC9960001535 (1996).

    Article  Google Scholar 

  43. Fujita, M., Yazaki, J. & Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4′-bpy)]4(NO3)8, which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).

    Article  CAS  Google Scholar 

  44. Umemoto, K., Yamaguchi, K. & Fujita, M. Molecular paneling via coordination: guest-controlled assembly of open cone and tetrahedron structure from eight metals and four ligands. J. Am. Chem. Soc. 122, 7150–7151 (2000).

    Article  CAS  Google Scholar 

  45. Fujita, M. et al. Molecular paneling via coordination. Chem. Commun. https://doi.org/10.1039/B008684N (2001).

    Article  Google Scholar 

  46. Takeda, N., Umemoto, K., Yamaguchi, K. & Fujita, M. A nanometre-sized hexahedral coordination capsule assembled from 24 components. Nature 398, 794–796 (1999).

    Article  CAS  Google Scholar 

  47. Stang, P. J. & Cao, D. H. Transition metal based cationic molecular boxes. Self-assembly of macrocyclic platinum(II) and palladium(II) tetranuclear complexes. J. Am. Chem. Soc. 116, 4981–4982 (1994).

    Article  CAS  Google Scholar 

  48. Schweiger, M., Seidel, S. R., Schmitz, M. & Stang, P. J. Rational design of chiral nanoscale adamantanoids. Org. Lett. 2, 1255–1257 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Northrop, B. H., Chercka, D. & Stang, P. J. Carbon-rich supramolecular metallacycles and metallacages. Tetrahedron 64, 11495–11503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Caulder, D. L. & Raymond, K. N. The rational design of high symmetry coordination clusters. J. Chem. Soc. Dalton Trans. 8, 1185–1200 (1999).

    Article  Google Scholar 

  51. Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).

    Article  CAS  Google Scholar 

  52. Nitschke, J. R. & Campbell, V. Complex systems from simple building blocks via subcomponent self-assembly. Synlett 2008, 3077–3090 (2008).

    Article  CAS  Google Scholar 

  53. Cohen, S. M. The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Deegan, M. M., Antonio, A. M., Taggart, G. A. & Bloch, E. D. Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coord. Chem. Rev. 430, 213679 (2021).

    Article  CAS  Google Scholar 

  55. Roberts, D. A., Pilgrim, B. S. & Nitschke, J. R. Covalent post-assembly modification in metallosupramolecular chemistry. Chem. Soc. Rev. 47, 626–644 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Mai, H. D., Tran, N. M. & Yoo, H. Multilevel coordination-driven assembly for metallosupramolecules with hierarchical structures. Coord. Chem. Rev. 387, 180–198 (2019).

    Article  CAS  Google Scholar 

  57. El-Sayed, E.-S. M. & Yuan, D. Metal-organic cages (MOCs): from discrete to cage-based extended architectures. Chem. Lett. 49, 28–53 (2020).

    Article  CAS  Google Scholar 

  58. Zeng, H., Stewart-Yates, L., Casey, L. M., Bampos, N. & Roberts, D. A. Covalent post-assembly modification: a synthetic multipurpose tool in supramolecular chemistry. ChemPlusChem 85, 1249–1269 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, M. et al. Post-self-assembly covalent chemistry of discrete multicomponent metallosupramolecular hexagonal prisms. J. Am. Chem. Soc. 133, 10752–10755 (2011). This work reported an example of covalent PSMs in which palladium-based hexagonal prisms were functionalized using Diels–Alder reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schneider, M. L., Linder-Patton, O. M. & Bloch, W. M. A covalent deprotection strategy for assembling supramolecular coordination polymers from metal–organic cages. Chem. Commun. 56, 12969–12972 (2020).

    Article  CAS  Google Scholar 

  61. Albalad, J., Carné-Sánchez, A., Grancha, T., Hernández-López, L. & Maspoch, D. Protection strategies for directionally-controlled synthesis of previously inaccessible metal–organic polyhedra (MOPs): the cases of carboxylate- and amino-functionalised Rh(II)-MOPs. Chem. Commun. 55, 12785–12788 (2019).

    Article  CAS  Google Scholar 

  62. Pullen, S., Tessarolo, J. & Clever, G. H. Increasing structural and functional complexity in self-assembled coordination cages. Chem. Sci. 12, 7269–7293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, L., Chen, Q., Wu, M., Jiang, F. & Hong, M. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks. Acc. Chem. Res. 48, 201–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Ju, Z., Liu, G., Chen, Y. S., Yuan, D. & Chen, B. From coordination cages to a stable crystalline porous hydrogen-bonded framework. Chem. Eur. J. 23, 4774–4777 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, L. et al. Controllable reassembly of a dynamic metallocage: from thermodynamic control to kinetic control. Chem. Eur. J. 23, 456–461 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Mollick, S., Fajal, S., Mukherjee, S. & Ghosh, S. K. Stabilizing metal–organic polyhedra (MOP): issues and strategies. Chem. Asian J. 14, 3096–3108 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Han, Y., Li, J. R., Xie, Y. & Guo, G. Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chem. Soc. Rev. 43, 5952–5981 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, W., Wang, Y. X. & Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 45, 2656–2693 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. McConnell, A. J., Wood, C. S., Neelakandan, P. P. & Nitschke, J. R. Stimuli-responsive metal–ligand assemblies. Chem. Rev. 115, 7729–7793 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Percástegui, E. G. Guest-induced transformations in metal-organic cages. Eur. J. Inorg. Chem. 2021, 4425–4438 (2021).

    Article  CAS  Google Scholar 

  71. Roberts, D. A., Pilgrim, B. S., Sirvinskaite, G., Ronson, T. K. & Nitschke, J. R. Covalent post-assembly modification triggers multiple structural transformations of a tetrazine-edged Fe4L6 tetrahedron. J. Am. Chem. Soc. 140, 9616–9623 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, D. et al. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 23, 90–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Roberts, D. A., Castilla, A. M., Ronson, T. K. & Nitschke, J. R. Post-assembly modification of kinetically metastable FeII2L3 triple helicates. J. Am. Chem. Soc. 136, 8201–8204 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Kennedy, A. D. W. et al. Diastereoselective control of tetraphenylethene reactivity by metal template self-assembly. Chem. Eur. J. 25, 5708–5718 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Hiraoka, S., Yamauchi, Y., Arakane, R. & Shionoya, M. Template-directed synthesis of a covalent organic capsule based on a 3 nm-sized metallocapsule. J. Am. Chem. Soc. 131, 11646–11647 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Hosono, N., Gochomori, M., Matsuda, R., Sato, H. & Kitagawa, S. Metal–organic polyhedral core as a versatile scaffold for divergent and convergent star polymer synthesis. J. Am. Chem. Soc. 138, 6525–6531 (2016). This paper describes the covalent PSM of MOCs via RAFT polymerization, to form a coordination star polymer.

    Article  CAS  PubMed  Google Scholar 

  77. Samanta, D., Chowdhury, A. & Mukherjee, P. S. Covalent postassembly modification and water adsorption of Pd3 self-assembled trinuclear barrels. Inorg. Chem. 55, 1562–1568 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, G. et al. Process-tracing study on the postassembly modification of highly stable zirconium metal–organic cages. J. Am. Chem. Soc. 140, 6231–6234 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. McTernan, C. T., Ronson, T. K. & Nitschke, J. R. Post-assembly modification of phosphine cages controls host–guest behavior. J. Am. Chem. Soc. 141, 6837–6842 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Glasson, C. R. K. et al. Post-assembly covalent di- and tetracapping of a dinuclear [Fe2L3]4+ triple helicate and two [Fe4L6]8+ tetrahedra using sequential reductive aminations. Inorg. Chem. 54, 6986–6992 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Young, M. C., Johnson, A. M. & Hooley, R. J. Self-promoted post-synthetic modification of metal–ligand M2L3 mesocates. Chem. Commun. 50, 1378–1380 (2014).

    Article  CAS  Google Scholar 

  82. Roberts, D. A. et al. Post-assembly modification of tetrazine-edged FeII4L6 tetrahedra. J. Am. Chem. Soc. 137, 10068–10071 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Ronson, T. K., Pilgrim, B. S. & Nitschke, J. R. Pathway-dependent post-assembly modification of an anthracene-edged MII4L6 tetrahedron. J. Am. Chem. Soc. 138, 10417–10420 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Pilgrim, B. S., Roberts, D. A., Lohr, T. G., Ronson, T. K. & Nitschke, J. R. Signal transduction in a covalent post-assembly modification cascade. Nat. Chem. 9, 1276–1281 (2017). This work reported the first cascade reaction occurring in MOCs.

    Article  CAS  Google Scholar 

  85. Lu, W., Yuan, D., Yakovenko, A. & Zhou, H.-C. Surface functionalization of metal–organic polyhedron for homogeneous cyclopropanation catalysis. Chem. Commun. 47, 4968–4970 (2011).

    Article  CAS  Google Scholar 

  86. Holloway, L. R., Bogie, P. M., Lyon, Y., Julian, R. R. & Hooley, R. J. Stereoselective postassembly CH oxidation of self-assembled metal–ligand cage complexes. Inorg. Chem. 56, 11435–11442 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Samanta, S. K., Moncelet, D., Vinciguerra, B., Briken, V. & Isaacs, L. Metal organic polyhedra: a click-and-clack approach toward targeted delivery. Helv. Chim. Acta 101, e1800057 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bloch, W. M., Babarao, R. & Schneider, M. L. On/off porosity switching and post-assembly modifications of Cu4L4 metal–organic polyhedra. Chem. Sci. 11, 3664–3671 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mihara, N., Ronson, T. K. & Nitschke, J. R. Different modes of anion response cause circulatory phase transfer of a coordination cage with controlled directionality. Angew. Chem. Int. Ed. 58, 12497–12501 (2019).

    Article  CAS  Google Scholar 

  90. Samanta, D. & Mukherjee, P. S. Sunlight-induced covalent marriage of two triply interlocked Pd6 cages and their facile thermal separation. J. Am. Chem. Soc. 136, 17006–17009 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Hiraoka, S. et al. Isostructural coordination capsules for a series of 10 different d5–d10 transition-metal ions. Angew. Chem. Int. Ed. 45, 6488–6491 (2006).

    Article  CAS  Google Scholar 

  92. Cao, A. et al. Metal–organic polyhedra-coated Si nanowires for the sensitive detection of trace explosives. Nano Lett. 17, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Carné-Sánchez, A. et al. Postsynthetic covalent and coordination functionalization of rhodium(II)-based metal–organic polyhedra. J. Am. Chem. Soc. 141, 4094–4102 (2019). This work reports the combination of covalent and coordination strategies in PSMs of rhodium-based MOCs.

    Article  PubMed  CAS  Google Scholar 

  94. Grancha, T. et al. Phase transfer of rhodium(II)-based metal–organic polyhedra bearing coordinatively bound cargo enables molecular separation. J. Am. Chem. Soc. 141, 18349–18355 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Hernández-López, L. et al. Steric hindrance in metal coordination drives the separation of pyridine regioisomers using rhodium(II)-based metal–organic polyhedra. Angew. Chem. Int. Ed. 60, 11406–11413 (2021).

    Article  CAS  Google Scholar 

  96. Liu, G. et al. Controlled orthogonal self-assembly of heterometal-decorated coordination cages. Chem. Eur. J. 22, 17345–17350 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Harris, K., Sun, Q.-F., Sato, S. & Fujita, M. M12L24 spheres with endo and exo coordination sites: scaffolds for non-covalent functionalization. J. Am. Chem. Soc. 135, 12497–12499 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Sun, Q. F., Sato, S. & Fujita, M. An M18L24 stellated cuboctahedron through post-stellation of an M12L24 core. Nat. Chem. 4, 330–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Rizzuto, F. J., Ramsay, W. J. & Nitschke, J. R. Otherwise unstable structures self-assemble in the cavities of cuboctahedral coordination cages. J. Am. Chem. Soc. 140, 11502–11509 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Müller-Dethlefs, K. & Hobza, P. Noncovalent interactions: a challenge for experiment and theory. Chem. Rev. 100, 143–167 (2000).

    Article  PubMed  CAS  Google Scholar 

  101. Mahadevi, A. S. & Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 116, 2775–2825 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Hobza, P. & Řezáč, J. Introduction: noncovalent interactions. Chem. Rev. 116, 4911–4912 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Ramsay, W. J., Ronson, T. K., Clegg, J. K. & Nitschke, J. R. Bidirectional regulation of halide binding in a heterometallic supramolecular cube. Angew. Chem. Int. Ed. 52, 13439–13443 (2013).

    Article  CAS  Google Scholar 

  104. Ramsay, W. J. & Nitschke, J. R. Two distinct allosteric active sites regulate guest binding within a Fe8Mo1216+ cubic receptor. J. Am. Chem. Soc. 136, 7038–7043 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Sgarlata, C. et al. External and internal guest binding of a highly charged supramolecular host in water: deconvoluting the very different thermodynamics. J. Am. Chem. Soc. 132, 1005–1009 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Sgarlata, C. & Raymond, K. N. Untangling the diverse interior and multiple exterior guest interactions of a supramolecular host by the simultaneous analysis of complementary observables. Anal. Chem. 88, 6923–6929 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. von Krbek, L. K. S., Roberts, D. A., Pilgrim, B. S., Schalley, C. A. & Nitschke, J. R. Multivalent crown ether receptors enable allosteric regulation of anion exchange in an Fe4L6 tetrahedron. Angew. Chem. Int. Ed. 57, 14121–14124 (2018).

    Article  CAS  Google Scholar 

  108. Liu, J. et al. Hierarchical self-assembly of discrete metal–organic cages into supramolecular nanoparticles for intracellular protein delivery. Angew. Chem. Int. Ed. 60, 5429–5435 (2021).

    Article  CAS  Google Scholar 

  109. Samanta, S. K., Moncelet, D., Briken, V. & Isaacs, L. Metal–organic polyhedron capped with cucurbit[8]uril delivers doxorubicin to cancer cells. J. Am. Chem. Soc. 138, 14488–14496 (2016). This work reports that MOCs that underwent noncovalent complexation with CB[8] modified anticancer prodrugs and could be applied in the delivery of anticancer drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Samanta, S. K., Quigley, J., Vinciguerra, B., Briken, V. & Isaacs, L. Cucurbit[7]uril enables multi-stimuli-responsive release from the self-assembled hydrophobic phase of a metal organic polyhedron. J. Am. Chem. Soc. 139, 9066–9074 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hao, X., Leng, Z., Sun, D., Peng, F. & Yasin, A. Photo-regulated supramolecular star with a pillar[6]arene-coated metal–organic polyhedron (MOP) core. Chem. Commun. 56, 6676–6679 (2020).

    Article  CAS  Google Scholar 

  112. Li, Y. et al. Ionic self-assembly of surface functionalized metal–organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface. Chem. Commun. 48, 7946–7948 (2012).

    Article  CAS  Google Scholar 

  113. Brega, V., Zeller, M., He, Y., Lu, H. P. & Klosterman, J. K. Multi-responsive metal–organic lantern cages in solution. Chem. Commun. 51, 5077–5080 (2015).

    Article  CAS  Google Scholar 

  114. Chen, G. J., Chen, C. Q., Li, X. T., Ma, H. C. & Dong, Y. B. Cu3L2 metal–organic cages for A3-coupling reactions: reversible coordination interaction triggered homogeneous catalysis and heterogeneous recovery. Chem. Commun. 54, 11550–11553 (2018).

    Article  CAS  Google Scholar 

  115. Li, N. et al. From discrete octahedral nanocages to 1D coordination polymer: Coordination-driven a single-crystal-to-single-crystal transformation via anion exchange. Chem. Commun. 47, 2327–2329 (2011).

    Article  CAS  Google Scholar 

  116. Prajesh, N. et al. Ferroelectric behavior of an octahedral metal-ligand cage and its 2D-connected cage framework. Chem. Asian J. 15, 3275–3280 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Clever, G. H., Tashiro, S. & Shionoya, M. Light-triggered crystallization of a molecular host–guest complex. J. Am. Chem. Soc. 132, 9973–9975 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Clever, G. H., Kawamura, W. & Shionoya, M. Encapsulation versus aggregation of metal–organic cages controlled by guest size variation. Inorg. Chem. 50, 4689–4691 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, T. F., Chen, Y. P., Yakovenko, A. A. & Zhou, H. C. Interconversion between discrete and a chain of nanocages: self-assembly via a solvent-driven, dimension-augmentation strategy. J. Am. Chem. Soc. 134, 17358–17361 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, Q. et al. A controllable and dynamic assembly system based on discrete metallocages. Chem. Sci. 5, 483–488 (2014).

    Article  CAS  Google Scholar 

  121. Zhao, C. & Seidel, D. Enantioselective A3 reactions of secondary amines with a Cu(I)/acid–thiourea catalyst combination. J. Am. Chem. Soc. 137, 4650–4653 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Luz, I., Llabrés i Xamena, F. X. & Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J. Catal. 285, 285–291 (2012).

    Article  CAS  Google Scholar 

  123. Ramu, V. G. et al. Copper nanoparticles stabilized on nitrogen-doped carbon nanotubes as efficient and recyclable catalysts for alkyne/aldehyde/cyclic amine A3-type coupling reactions. Appl. Catal. A Gen. 431-432, 88–94 (2012).

    Article  CAS  Google Scholar 

  124. Yang, Z. et al. Homoporous hybrid membranes containing metal-organic cages for gas separation. J. Membr. Sci. 636, 119564 (2021).

    Article  CAS  Google Scholar 

  125. Liu, G. et al. Thin-film nanocomposite membranes containing water-stable zirconium metal–organic cages for desalination. ACS Mater. Lett. 3, 268–274 (2021).

    Article  CAS  Google Scholar 

  126. Ahmad, N. et al. Development of mixed metal metal-organic polyhedra networks, colloids, and MOFs and their pharmacokinetic applications. Sci. Rep. 7, 832 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Yan, Q. Q. et al. Metallopolymers cross-linked with self-assembled Ln4L4 cages. Dalton Trans. 48, 7080–7084 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Xie, X. Y., Wu, F., Liu, X. Q. & Sun, L. B. Enhancing the hydrostability and processability of metal–organic polyhedra by self-polymerization or copolymerization with styrene. Dalton Trans. 48, 17153–17157 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Lal, G. et al. Mechanical properties of a metal–organic framework formed by covalent cross-linking of metal–organic polyhedra. J. Am. Chem. Soc. 141, 1045–1053 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Nam, D. et al. Cross-linking Zr-based metal–organic polyhedra via postsynthetic polymerization. Chem. Sci. 8, 7765–7771 (2017). This study reports on the covalent crosslinking of MOCs, showing that the amine-functionalized zirconium-based cages react with acyl chloride to form a crosslinked product in the crystalline state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schneider, M. L., Markwell-Heys, A. W., Linder-Patton, O. M. & Bloch, W. M. Assembly and covalent cross-linking of an amine-functionalised metal-organic cage. Front. Chem. 9, 696081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhao, J. et al. Metal–organic polyhedra crosslinked supramolecular polymeric elastomers. Chem. Commun. 56, 8031–8034 (2020).

    Article  CAS  Google Scholar 

  133. Uchida, J. et al. Self-assembly of giant spherical liquid-crystalline complexes and formation of nanostructured dynamic gels that exhibit self-healing properties. Angew. Chem. Int. Ed. 56, 14085–14089 (2017).

    Article  CAS  Google Scholar 

  134. Liu, J. et al. Self-healing hyper-cross-linked metal–organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J. Am. Chem. Soc. 141, 12064–12070 (2019). This study develops self-healing hybrid polymer membranes composed of MOCs as high-connectivity nodes and their use for separation and as antimicrobial agents.

    Article  CAS  PubMed  Google Scholar 

  135. Gu, Y. et al. Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature 560, 65–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Y. et al. Block co-polyMOCs by stepwise self-assembly. J. Am. Chem. Soc. 138, 10708–10715 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Zhukhovitskiy, A. V. et al. Polymer structure dependent hierarchy in polyMOC gels. Macromolecules 49, 6896–6902 (2016).

    Article  CAS  Google Scholar 

  138. Zhukhovitskiy, A. V. et al. Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nat. Chem. 8, 33–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Wang, Y. et al. Star polyMOCs with diverse structures, dynamics, and functions by three-component assembly. Angew. Chem. Int. Ed. 56, 188–192 (2017).

    Article  CAS  Google Scholar 

  140. Oldenhuis, N. J. et al. Photoswitchable sol–gel transitions and catalysis mediated by polymer networks with coumarin-decorated Cu24L24 metal–organic cages as junctions. Angew. Chem. Int. Ed. 59, 2784–2792 (2020).

    Article  CAS  Google Scholar 

  141. Nagarkar, S. S., Tsujimoto, M., Kitagawa, S., Hosono, N. & Horike, S. Modular self-assembly and dynamics in coordination star polymer glasses: new media for ion transport. Chem. Mater. 30, 8555–8561 (2018).

    Article  CAS  Google Scholar 

  142. Hosono, N., Guo, W., Omoto, K., Yamada, H. & Kitagawa, S. Bottom-up synthesis of defect-free mixed-matrix membranes by using polymer-grafted metal–organic polyhedra. Chem. Lett. 48, 597–600 (2019).

    Article  CAS  Google Scholar 

  143. Foster, J. A. et al. Differentially addressable cavities within metal–organic cage-cross-linked polymeric hydrogels. J. Am. Chem. Soc. 137, 9722–9729 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Xie, X. Y. et al. Photopolymerization of metal–organic polyhedra: an efficient approach to improve the hydrostability, dispersity, and processability. Chem. Commun. 55, 6177–6180 (2019).

    Article  CAS  Google Scholar 

  145. Kim, H. et al. Single crystalline hollow metal–organic frameworks: a metal–organic polyhedron single crystal as a sacrificial template. Chem. Commun. 51, 3678–3681 (2015).

    Article  CAS  Google Scholar 

  146. Yadav, A., Gupta, A. K., Steiner, A. & Boomishankar, R. Mapping the assembly of metal–organic cages into complex coordination networks. Chem. Eur. J. 23, 18296–18302 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Kim, Y. et al. Rational design and construction of hierarchical superstructures using shape-persistent organic cages: porphyrin box-based metallosupramolecular assemblies. J. Am. Chem. Soc. 140, 14547–14551 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Feng, J. et al. Gelation of luminescent supramolecular cages and transformation to crystals with trace-doped-enhancement luminescence. Langmuir 32, 12184–12189 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, H. N. et al. Stepwise assembly of metal–organic framework based on a metal–organic polyhedron precursor for drug delivery. Chem. Commun. 47, 7128–7130 (2011).

    Article  CAS  Google Scholar 

  150. Chen, G.-H. et al. Optical resolution studies on Ti/Zr-based tetrahedral cages. Cryst. Growth Des. 20, 6316–6320 (2020).

    Article  CAS  Google Scholar 

  151. Chen, G.-H. et al. Ti4(embonate)6 based cage-cluster construction in a stable metal–organic framework for gas sorption and separation. Cryst. Growth Des. 20, 29–32 (2019).

    CAS  Google Scholar 

  152. Li, J.-R., Timmons, D. J. & Zhou, H.-C. Interconversion between molecular polyhedra and metal–organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009). This work reports the first example of the interconversion between 0D copper-based MOCs and 3D MOFs connected by organic linkers.

    Article  CAS  PubMed  Google Scholar 

  153. Niu, Z. et al. Solvent-assisted coordination driven assembly of a supramolecular architecture featuring two types of connectivity from discrete nanocages. Chem. Sci. 10, 6661–6665 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Niu, Z. et al. Coordination-driven polymerization of supramolecular nanocages. J. Am. Chem. Soc. 137, 14873–14876 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Cao, L. et al. Diamondoid supramolecular coordination frameworks from discrete adamantanoid platinum(II) cages. J. Am. Chem. Soc. 140, 7005–7011 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, Z., Wojtas, L. & Zaworotko, M. J. Organic–inorganic hybrid polyhedra that can serve as supermolecular building blocks. Chem. Sci. 5, 927–931 (2014). This study reports the conversion from vanadium-based MOCs to MOFs connected by coordination between Ba2+ and metal nodes.

    Article  CAS  Google Scholar 

  157. He, Y. P., Chen, G. H., Yuan, L. B., Zhang, L. & Zhang, J. Ti4(embonate)6 cage-ligand strategy on the construction of metal–organic frameworks with high stability and gas sorption properties. Inorg. Chem. 59, 964–967 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. He, Y. P., Yuan, L. B., Chen, G. H., Zhang, L. & Zhang, J. Coordination assembly of the water-soluble Ti4(embonate)6 cages with Mn2+ ions. Isr. J. Chem. 59, 233–236 (2018).

    Article  CAS  Google Scholar 

  159. Teng, Q. et al. Coordination assembly of tetrahedral Zr4(embonate)6 cages with Eu3+ ions. Inorg. Chem. 60, 18178–18184 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. He, Y. P. et al. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J. Am. Chem. Soc. 139, 16845–16851 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Jung, H.-J., Moon, D.-H. & Chun, H.-P. Non-framework coordination polymers with tunable bimodal porosities based on inter-connected metal-organic polyhedra. Bull. Korean Chem. Soc. 32, 2489–2492 (2011).

    Article  CAS  Google Scholar 

  162. Pastore, V. J. & Cook, T. R. Coordination-driven self-assembly in polymer–inorganic hybrid materials. Chem. Mater. 32, 3680–3700 (2020).

    Article  CAS  Google Scholar 

  163. Deegan, M. M. & Bloch, E. D. Synthesis, characterization, and polymerization of capped paddlewheel porous cages. Dalton Trans. 50, 3127–3131 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Carné-Sánchez, A. et al. A coordinative solubilizer method to fabricate soft porous materials from insoluble metal–organic polyhedra. Angew. Chem. Int. Ed. 58, 6347–6350 (2019).

    Article  CAS  Google Scholar 

  165. Grancha, T. et al. Synthesis of polycarboxylate Rh(II)-metal-organic polyhedra and their use as building blocks for highly-connected metal-organic frameworks. Angew. Chem. Int. Ed. 60, 5729–5733 (2020).

    Article  CAS  Google Scholar 

  166. Wang, Z. et al. Porous colloidal hydrogels formed by coordination-driven self-assembly of charged metal-organic polyhedra. Chem. Asian J. 16, 1092–1100 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Wang, Z. et al. Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization. Chem. Sci. 12, 12556–12563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhao, J. & Yan, X. Rh(II)-based metal–organic polyhedra. Chem. Lett. 49, 659–665 (2020).

    Article  CAS  Google Scholar 

  169. Carné-Sánchez, A. et al. Self-assembly of metal–organic polyhedra into supramolecular polymers with intrinsic microporosity. Nat. Commun. 9, 2506 (2018). This study reports on rhodium-based cages used as porous monomers in supramolecular coordination polymerization, generating amorphous polymeric gels with controlled microporosity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Legrand, A. et al. Spatiotemporal control of supramolecular polymerization and gelation of metal–organic polyhedra. J. Am. Chem. Soc. 143, 3562–3570 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Shao, L. et al. Construction of polymeric metal–organic nanocapsule networks via supramolecular coordination-driven self-assembly. J. Am. Chem. Soc. 142, 7270–7275 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Liu, Y. et al. Modulating polymer dynamics via supramolecular interaction with ultrasmall nanocages for recyclable gas separation membranes with intrinsic microporosity. Nano Lett. 21, 9021–9029 (2021). This work reports a strategy in which MOCs are crosslinked by coordination PSMs to fabricate gas separation membranes.

    Article  CAS  PubMed  Google Scholar 

  173. Yamauchi, Y. et al. m × n stacks of discrete aromatic stacks in solution. J. Am. Chem. Soc. 132, 9555–9557 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Saha, S. et al. Rational design of an amphiphilic coordination cage-based emulsifier. J. Am. Chem. Soc. 140, 17384–17388 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Kieffer, M. et al. Embedding and positioning of two FeII4L4 cages in supramolecular tripeptide gels for selective chemical segregation. Angew. Chem. Int. Ed. 58, 7982–7986 (2019).

    Article  CAS  Google Scholar 

  176. Wei, S. C. et al. Creating coordination-based cavities in a multiresponsive supramolecular gel. Chem. Eur. J. 21, 7418–7427 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Cheng, A.-L., Liu, N., Zhang, J.-Y. & Gao, E.-Q. Assembling the cage-based metal–organic network from a cubic metalloligand. Inorg. Chem. 46, 1034–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Qin, Y. et al. A hydrogel directly assembled from a copper metal–organic polyhedron for antimicrobial application. Chem. Commun. 55, 2206–2209 (2019).

    Article  CAS  Google Scholar 

  179. He, Y.-P. et al. Optical resolution of the water-soluble Ti4(embonate)6 cages for enantioselective recognition of chiral drugs. Chem. Mater. 30, 7769–7775 (2018). This paper describes a chiral titanium-based MOC that was transformed into a 3D framework through hydrogen bonding.

    Article  CAS  Google Scholar 

  180. Sutar, P., Suresh, V. M., Jayaramulu, K., Hazra, A. & Maji, T. K. Binder driven self-assembly of metal-organic cubes towards functional hydrogels. Nat. Commun. 9, 3587 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Yang, Y. et al. Nanosheets and hydrogels formed by 2 nm metal–organic cages with electrostatic interaction. ACS Appl. Mater. Interfaces 12, 56310–56318 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Le Ouay, B. et al. Crystalline assembly of metal–organic polyhedra driven by ionic interactions with polyoxometalates. Chem. Commun. 57, 5187–5190 (2021).

    Article  Google Scholar 

  183. Gosselin, E. J. et al. A charged coordination cage-based porous salt. J. Am. Chem. Soc. 142, 9594–9598 (2020). This paper described a unique method in which the combination of cages with opposite charges afforded framework-like materials, also called porous salts.

    Article  CAS  PubMed  Google Scholar 

  184. Gosselin, A. J. et al. Elaboration of porous salts. J. Am. Chem. Soc. 143, 14956–14961 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Jackson, N., Vazquez, I. R., Chen, Y. P., Chen, Y. S. & Gao, W. Y. A porous supramolecular ionic solid. Chem. Commun. 57, 7248–7251 (2021).

    Article  CAS  Google Scholar 

  186. Lu, C. et al. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host–guest interactions. J. Am. Chem. Soc. 140, 7674–7680 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kalaj, M. & Cohen, S. M. Postsynthetic modification: an enabling technology for the advancement of metal–organic frameworks. ACS Cent. Sci. 6, 1046–1057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. He, C. et al. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab157 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wan, L., Liu, H., Huang, C. & Shen, X. Enzyme-like MOFs: synthetic molecular receptors with high binding capacity and their application in selective photocatalysis. J. Mater. Chem. A 8, 25931–25940 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21971126) and National Key R&D Program of China (2018YFA0901800).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and Z.W. researched the literature for the Review. J.L. wrote the first version of the manuscript. J.L. and Z.W. prepared the figures. All authors contributed to the discussion and editing of the manuscript before submission.

Corresponding authors

Correspondence to Yao Chen or Zhenjie Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks S. Pullen, Y. Bai and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, Z., Cheng, P. et al. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 6, 339–356 (2022). https://doi.org/10.1038/s41570-022-00380-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00380-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing