Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis

Abstract

Energy-intensive thermochemical processes within chemical manufacturing are a major contributor to global CO2 emissions. With the increasing push for sustainability, the scientific community is striving to develop renewable energy-powered electrochemical technologies in lieu of CO2-emitting fossil-fuel-driven methods. However, to fully electrify chemical manufacturing, it is imperative to expand the scope of electrosynthetic technologies, particularly through the innovation of reactions involving nitrogen-based reactants. This Review focuses on a rapidly emerging area, namely the formation of C–N bonds through heterogeneous electrocatalysis. The C–N bond motif is found in many fertilizers (such as urea) as well as commodity and fine chemicals (with functional groups such as amines and amides). The ability to generate C–N bonds from reactants such as CO2, NO3 or N2 would provide sustainable alternatives to the thermochemical routes used at present. We start by examining thermochemical, enzymatic and molecular catalytic systems for C–N bond formation, identifying how concepts from these can be translated to heterogeneous electrocatalysis. Next, we discuss successful heterogeneous electrocatalytic systems and highlight promising research directions. Finally, we discuss the remaining questions and knowledge gaps and thus set the trajectory for future advances in heterogeneous electrocatalytic formation of C–N bonds.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Heterogeneous electrocatalysis for C–N coupling.
Fig. 2: Examples of key C–N-bond-forming reactions across different catalytic domains.
Fig. 3: Amide and urea synthesis.
Fig. 4: Amine synthesis and characterization.
Fig. 5: Effective strategies for heterogeneous electrocatalytic C–N coupling.
Fig. 6: Future strategies for electrochemical C–N coupling.

References

  1. Edenhofer, O. et al. (eds) Climate Change 2014: Mitigation of Climate Change (IPCC, 2014).

  2. International Energy Agency (IEA) Technology Roadmap — Energy and GHG Reductions in the Chemical Industry via Catalytic Processes (IEA, 2013).

  3. Bogdanov, D. et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227, 120467 (2021).

    Article  Google Scholar 

  4. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    CAS  Article  Google Scholar 

  5. Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    CAS  Article  Google Scholar 

  6. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    CAS  PubMed  Article  Google Scholar 

  7. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    CAS  PubMed  Article  Google Scholar 

  8. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  9. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    PubMed  Article  CAS  Google Scholar 

  10. Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).

    Article  Google Scholar 

  11. Amines Market: Information by Product Type (Ethylene Amine, Alkyl Amines, Fatty Amines, Specialty Amines, and Ethanol Amines), Application (Water Treatment, Cleaning Products, Agriculture, Personal Care, Petroleum, Paint & Coatings, Pharmaceuticals, and Others) and Region — Forecast till 2030. https://www.marketresearchfuture.com/reports/amines-market-1991 (Market Research Future, 2021).

  12. Global Urea Market https://www.expertmarketresearch.com/reports/urea-market (Expert Market Research, 2021).

  13. Fernández, L. Global production capacity of carbamide 2018–2030. Statista https://www.statista.com/statistics/1063689/global-urea-production-capacity/ (2021).

  14. Roose, P., Eller, K., Henkes, E., Rossbacher, R. & Höke, H. Amines, aliphatic. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2015).

  15. Meessen, J. H. & Petersen, H. Urea. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2000).

  16. Appl, M. Ammonia, 2. Production processes. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2011).

  17. Zhang, H., Sun, Z. & Hu, Y. H. Steam reforming of methane: current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 149, 111330 (2021).

    CAS  Article  Google Scholar 

  18. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  19. Bicer, Y., Dincer, I., Zamfirescu, C., Vezina, G. & Raso, F. Comparative life cycle assessment of various ammonia production methods. J. Clean. Prod. 135, 1379–1395 (2016).

    CAS  Article  Google Scholar 

  20. Wyndorps, J., Ostovari, H. & von der Assen, N. Is electrochemical CO2 reduction the future technology for power-to-chemicals? An environmental comparison with H2-based pathways. Sustain. Energy Fuels 5, 5748–5761 (2021).

    CAS  Article  Google Scholar 

  21. Kim, J. E., Choi, S., Balamurugan, M., Jang, J. H. & Nam, K. T. Electrochemical C–N bond formation for sustainable amine synthesis. Trends Chem. 2, 1004–1019 (2020).

    CAS  Article  Google Scholar 

  22. Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy Environ. Sci. 14, 2535–2548 (2021).

    CAS  Article  Google Scholar 

  23. Brazdil, J. F. Acrylonitrile. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2012).

  24. Torborg, C. & Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal. 351, 3027–3043 (2009).

    CAS  Article  Google Scholar 

  25. Abdel-Magid, A. F., Carson, K. G., Harris, B. D., Maryanoff, C. A. & Shah, R. D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures1. J. Org. Chem. 61, 3849–3862 (1996).

    CAS  PubMed  Article  Google Scholar 

  26. Goddard, W. A., Chenoweth, K., Pudar, S., van Duin, A. C. T. & Cheng, M.-J. Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Top. Catal. 50, 2–18 (2008).

    CAS  Article  Google Scholar 

  27. Luo, D. et al. Intrinsic mechanism of active metal dependent primary amine selectivity in the reductive amination of carbonyl compounds. J. Catal. 395, 293–301 (2021).

    CAS  Article  Google Scholar 

  28. Irrgang, T. & Kempe, R. Transition-metal-catalyzed reductive amination employing hydrogen. Chem. Rev. 120, 9583–9674 (2020).

    CAS  PubMed  Article  Google Scholar 

  29. Kita, Y., Kuwabara, M., Yamadera, S., Kamata, K. & Hara, M. Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst. Chem. Sci. 11, 9884–9890 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Baiker, A. & Kijenski, J. Catalytic synthesis of higher aliphatic amines from the corresponding alcohols. Catal. Rev. 27, 653–697 (1985).

    CAS  Article  Google Scholar 

  31. Sukhorukov, A. Y. Catalytic reductive amination of aldehydes and ketones with nitro compounds: new light on an old reaction. Front. Chem. 8, 215 (2020).

  32. Sharma, M., Mangas-Sanchez, J., Turner, N. J. & Grogan, G. NAD(P)H-dependent dehydrogenases for the asymmetric reductive amination of ketones: structure, mechanism, evolution and application. Adv. Synth. Catal. 359, 2011–2025 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Slabu, I., Galman, J. L., Lloyd, R. C. & Turner, N. J. Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catal. 7, 8263–8284 (2017).

    CAS  Article  Google Scholar 

  34. Peisach, D., Chipman, D. M., Van Ophem, P. W., Manning, J. M. & Ringe, D. Crystallographic study of steps along the reaction pathway of d-amino acid aminotransferase. Biochemistry 37, 4958–4967 (1998).

    CAS  PubMed  Article  Google Scholar 

  35. Kirsch, J. F. et al. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J. Mol. Biol. 174, 497–525 (1984).

    CAS  PubMed  Article  Google Scholar 

  36. Paul, F., Patt, J. & Hartwig, J. F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc. 116, 5969–5970 (1994).

    CAS  Article  Google Scholar 

  37. Guram, A. S. & Buchwald, S. L. Palladium-catalyzed aromatic aminations with in situ generated aminostannanes. J. Am. Chem. Soc. 116, 7901–7902 (1994).

    CAS  Article  Google Scholar 

  38. Surry, D. S. & Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. 2, 27–50 (2011).

    CAS  PubMed  Article  Google Scholar 

  39. Goldberg, I. Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator. [in German]. Ber. Dtsch. Chem. Ges. 39, 1691–1692 (1906).

    Article  Google Scholar 

  40. Evano, G., Blanchard, N. & Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev. 108, 3054–3131 (2008).

    CAS  PubMed  Article  Google Scholar 

  41. Chan, D. M. T., Monaco, K. L., Wang, R.-P. & Winters, M. P. New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett. 39, 2933–2936 (1998).

    CAS  Article  Google Scholar 

  42. Lam, P. Y. S. et al. New aryl/heteroaryl C–N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett. 39, 2941–2944 (1998).

    CAS  Article  Google Scholar 

  43. West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).

    CAS  PubMed  Article  Google Scholar 

  44. Giri, R. et al. Mechanism of the Ullmann biaryl ether synthesis catalyzed by complexes of anionic ligands: evidence for the reaction of iodoarenes with ligated anionic CuI intermediates. J. Am. Chem. Soc. 140, 793–806 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Bähn, S. et al. The catalytic amination of alcohols. ChemCatChem 3, 1853–1864 (2011).

    Article  CAS  Google Scholar 

  46. Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    PubMed  Article  CAS  Google Scholar 

  47. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    CAS  PubMed  Article  Google Scholar 

  48. Louillat, M.-L. & Patureau, F. W. Oxidative C–H amination reactions. Chem. Soc. Rev. 43, 901–910 (2014).

    CAS  PubMed  Article  Google Scholar 

  49. Hirosawa, C., Wakasa, N. & Fuchikami, T. Hydrogenation of amides by the use of bimetallic catalysts consisting of group 8 to 10, and group 6 or 7 metals. Tetrahedron Lett. 37, 6749–6752 (1996).

    CAS  Article  Google Scholar 

  50. Beamson, G., Papworth, A. J., Philipps, C., Smith, A. M. & Whyman, R. Selective hydrogenation of amides using ruthenium/molybdenum catalysts. Adv. Synth. Catal. 352, 869–883 (2010).

    CAS  Article  Google Scholar 

  51. Cabrero-Antonino, J. R., Adam, R., Papa, V. & Beller, M. Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nat. Commun. 11, 3893 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Arnold, K. et al. To catalyze or not to catalyze? Insight into direct amide bond formation from amines and carboxylic acids under thermal and catalyzed conditions. Adv. Synth. Catal. 348, 813–820 (2006).

    CAS  Article  Google Scholar 

  53. Hoang, L. T. M. et al. An azobenzene-containing metal–organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds. Chem. Commun. 51, 17132–17135 (2015).

    CAS  Article  Google Scholar 

  54. Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2, 98–102 (2019).

    CAS  Article  Google Scholar 

  55. Fu, N., Sauer Gregory, S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).

    CAS  PubMed  Article  Google Scholar 

  56. Corbin, D. R., Schwarz, S. & Sonnichsen, G. C. Methylamines synthesis: a review. Catal. Today 37, 71–102 (1997).

    CAS  Article  Google Scholar 

  57. Chen, Z., Zeng, H., Gong, H., Wang, H. & Li, C.-J. Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chem. Sci. 6, 4174–4178 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Mazzei, L., Musiani, F. & Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. JBIC 25, 829–845 (2020).

    CAS  PubMed  Article  Google Scholar 

  59. Fang, X. & Wang, C.-J. Recent advances in asymmetric organocatalysis mediated by bifunctional amine–thioureas bearing multiple hydrogen-bonding donors. Chem. Commun. 51, 1185–1197 (2015).

    CAS  Article  Google Scholar 

  60. Nam, D.-H. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    CAS  PubMed  Article  Google Scholar 

  61. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    CAS  Article  Google Scholar 

  62. Wakerley, D. et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18, 1222–1227 (2019).

    CAS  PubMed  Article  Google Scholar 

  63. Okimoto, M. & Chiba, T. Electrochemical transformations of aldehydes into methyl carboxylates and nitriles. J. Org. Chem. 53, 218–219 (1988).

    CAS  Article  Google Scholar 

  64. Shibata, M., Yoshida, K. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: IV. Simultaneous reduction of carbon dioxide and nitrate ions with various metal catalysts. J. Electrochem. Soc. 145, 2348–2353 (1998).

    CAS  Article  Google Scholar 

  65. Shibata, M., Yoshida, K. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: III. Simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts. J. Electrochem. Soc. 145, 595–600 (1998).

    CAS  Article  Google Scholar 

  66. Shibata, M., Yoshida, K. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: Part II. Simultaneous reduction of carbon dioxide and nitrite ions at Cu, Ag and Au catalysts. J. Electroanal. Chem. 442, 67–72 (1998).

    CAS  Article  Google Scholar 

  67. Shibata, M. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. J. Electroanal. Chem. 507, 177–184 (2001).

    CAS  Article  Google Scholar 

  68. Greenburg, A., Breneman, C. M. & Liebman, J. F. (eds) The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science (Wiley, 2000).

  69. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019). This is the first work to electrochemically synthesize amides from CO2 and CO.

    CAS  PubMed  Article  Google Scholar 

  70. Li, J. & Kornienko, N. Electrochemically driven C–N bond formation from CO2 and ammonia at the triple-phase boundary. Chem. Sci. https://doi.org/10.1039/D1SC06590D (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen, C., He, N. & Wang, S. Electrocatalytic C–N coupling for urea synthesis. Small Sci. 1, 2100070 (2021).

    Article  Google Scholar 

  72. Feng, Y. et al. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 20, 8282–8289 (2020).

    CAS  PubMed  Article  Google Scholar 

  73. Meng, N., Huang, Y., Liu, Y., Yu, Y. & Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2, 100378 (2021).

    CAS  Article  Google Scholar 

  74. Saravanakumar, D., Song, J., Lee, S., Hur, N. H. & Shin, W. Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a titania–nafion composite electrode. ChemSusChem 10, 3999–4003 (2017).

    CAS  PubMed  Article  Google Scholar 

  75. Cao, N. et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interf. Sci. 577, 109–114 (2020).

    CAS  Article  Google Scholar 

  76. Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Article  Google Scholar 

  77. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020). This work comprehensively investigates N2 and CO2 coupling to form urea.

    CAS  PubMed  Article  Google Scholar 

  78. Yuan, M. et al. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott–Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 60, 10910–10918 (2021).

    CAS  Article  Google Scholar 

  79. Yuan, M. et al. Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chem. Sci. 12, 6048–6058 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Yuan, M. et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ. Sci. 14, 6605–6615 (2021).

    CAS  Article  Google Scholar 

  81. Yuan, M. et al. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem. Catal. 2, 309–320 (2022). This work unveils a new frustrated Lewis pair strategy to couple N2 and CO2.

    Article  Google Scholar 

  82. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  PubMed  Article  Google Scholar 

  83. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    CAS  PubMed  Article  Google Scholar 

  84. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021). This work shows how *CH2O can be intercepted en route to methanol production to instead generate methylamine.

    Article  Google Scholar 

  85. Rooney, C. L., Wu, Y., Tao, Z. & Wang, H. Electrochemical reductive N-methylation with CO2 enabled by a molecular catalyst. J. Am. Chem. Soc. 143, 19983–19991 (2021).

    CAS  PubMed  Article  Google Scholar 

  86. Tao, Z. et al. Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. J. Energy Chem. 65, 367–370 (2022).

    Article  Google Scholar 

  87. Kim, J. E. et al. Electrochemical synthesis of glycine from oxalic acid and nitrate. Angew. Chem. Int. Ed. 60, 21943–21951 (2021).

    CAS  Article  Google Scholar 

  88. Paris, A. R. & Bocarsly, A. B. High-efficiency conversion of CO2 to oxalate in water is possible using a Cr-Ga oxide electrocatalyst. ACS Catal. 9, 2324–2333 (2019).

    CAS  Article  Google Scholar 

  89. Gluhoi, A. C., Mărginean, P. & Stănescu, U. Effect of supports on the activity of nickel catalysts in acetonitrile hydrogenation. Appl. Catal. A 294, 208–214 (2005).

    CAS  Article  Google Scholar 

  90. Iwasa, N., Yoshikawa, M. & Arai, M. Selective hydrogenation of acetonitrile to ethylamine using palladium-based alloy catalysts. Phys. Chem. Chem. Phys. 4, 5414–5420 (2002).

    CAS  Article  Google Scholar 

  91. Verhaak, M. J. F. M., van Dillen, A. J. & Geus, J. W. The selective hydrogenation of acetonitrile on supported nickel catalysts. Catal. Lett. 26, 37–53 (1994).

    CAS  Article  Google Scholar 

  92. Li, H., Wu, Y., Luo, H., Wang, M. & Xu, Y. Liquid phase hydrogenation of acetonitrile to ethylamine over the Co–B amorphous alloy catalyst. J. Catal. 214, 15–25 (2003).

    CAS  Article  Google Scholar 

  93. Braos-García, P., García-Sancho, C., Infantes-Molina, A., Rodríguez-Castellón, E. & Jiménez-López, A. Bimetallic Ru/Ni supported catalysts for the gas phase hydrogenation of acetonitrile. Appl. Catal. A 381, 132–144 (2010).

    Article  CAS  Google Scholar 

  94. Xia, R. et al. Electrochemical reduction of acetonitrile to ethylamine. Nat. Commun. 12, 1949 (2021). This work demonstrates the key factors behind electrochemical acetonitrile hydrogenation.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Zhang, D. et al. Highly efficient electrochemical hydrogenation of acetonitrile to ethylamine for primary amine synthesis and promising hydrogen storage. Chem. Catal. 1, 393–406 (2021).

    Article  Google Scholar 

  96. Zhang, Y. & Kornienko, N. C≡N triple bond cleavage via trans-membrane hydrogenation. Chem. Catal. https://doi.org/10.1016/j.checat.2022.02.005 (2022).

    Article  PubMed  Google Scholar 

  97. Brotzel, F., Chu, Y. C. & Mayr, H. Nucleophilicities of primary and secondary amines in water. J. Org. Chem. 72, 3679–3688 (2007).

    CAS  PubMed  Article  Google Scholar 

  98. Tauster, S. J. Strong metal–support interactions. Acc. Chem. Res. 20, 389–394 (1987).

    CAS  Article  Google Scholar 

  99. Möller, T. et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ. Sci. 14, 5995–6006 (2021).

    Article  Google Scholar 

  100. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    CAS  Article  Google Scholar 

  101. Gorte, R. J. Temperature-programmed desorption for the characterization of oxide catalysts. Catal. Today 28, 405–414 (1996).

    CAS  Article  Google Scholar 

  102. Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    CAS  Article  Google Scholar 

  103. Heidary, N., Ly, K. H. & Kornienko, N. Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy. Nano Lett. 19, 4817–4826 (2019).

    CAS  PubMed  Article  Google Scholar 

  104. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    CAS  Article  Google Scholar 

  105. Lu, X. et al. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).

    CAS  PubMed  Article  Google Scholar 

  106. Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).

    Article  CAS  Google Scholar 

  107. Zhu, Y., Wang, J., Chu, H., Chu, Y.-C. & Chen, H. M. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett. 5, 1281–1291 (2020).

    CAS  Article  Google Scholar 

  108. Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

    CAS  Article  Google Scholar 

  110. Scholten, F., Nguyen, K.-L. C., Bruce, J. P., Heyde, M. & Roldan Cuenya, B. Identifying structure–selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angew. Chem. Int. Ed 60, 19169–19175 (2021).

    CAS  Article  Google Scholar 

  111. Jung, W. & Hwang, Y. J. Material strategies in the electrochemical nitrate reduction reaction to ammonia production. Mater. Chem. Front. 5, 6803–6823 (2021).

    CAS  Article  Google Scholar 

  112. Wang, H., Zhu, Q.-L., Zou, R. & Xu, Q. Metal–organic frameworks for energy applications. Chem 2, 52–80 (2017).

    CAS  Article  Google Scholar 

  113. Zhang, H., Nai, J., Yu, L. & Lou, X. W. Metal–organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77–107 (2017).

    CAS  Article  Google Scholar 

  114. Bullock, R. M., Das, A. K. & Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem. Eur. J. 23, 7626–7641 (2017).

    CAS  PubMed  Article  Google Scholar 

  115. Kuznetsov, D. A. et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2, 225–244 (2018).

    CAS  Article  Google Scholar 

  116. Kornienko, N. Enhancing catalysis through substitute-driven redox tuning. Joule 2, 207–209 (2018).

    CAS  Article  Google Scholar 

  117. Pedersen, A. et al. Dual-metal atom electrocatalysts: theory, synthesis, characterization, and applications. Adv. Energy Mater. 12, 2102715 (2022).

    CAS  Article  Google Scholar 

  118. Li, J., Zhang, Y. & Kornienko, N. Heterogeneous electrocatalytic reduction of CO2 promoted by secondary coordination sphere effects. N. J. Chem. 44, 4246–4252 (2020).

    Article  Google Scholar 

  119. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    CAS  Article  Google Scholar 

  120. Nichols, A. W. & Machan, C. W. Secondary-sphere effects in molecular electrocatalytic CO2 reduction. Front. Chem. 7, 397 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    CAS  PubMed  Article  Google Scholar 

  122. Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

    CAS  PubMed  Article  Google Scholar 

  124. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    CAS  Article  Google Scholar 

  125. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  PubMed  Article  Google Scholar 

  126. Wang, M. et al. Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat. Commun. 12, 3198 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Liu, S. et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 4, 322–331 (2021).

    CAS  Article  Google Scholar 

  128. Dunn, W. W., Aikawa, Y. & Bard, A. J. Heterogeneous photosynthetic production of amino acids at platinum/titanium dioxide suspensions by near ultraviolet light. J. Am. Chem. Soc. 103, 6893–6897 (1981).

    CAS  Article  Google Scholar 

  129. Liu, K. et al. Electrooxidative para-selective C–H/N–H cross-coupling with hydrogen evolution to synthesize triarylamine derivatives. Nat. Commun. 10, 639 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. Bagherzadeh Mostaghimi, A. H., Al-Attas, T. A., Kibria, M. G. & Siahrostami, S. A review on electrocatalytic oxidation of methane to oxygenates. J. Mater. Chem. A 8, 15575–15590 (2020).

    CAS  Article  Google Scholar 

  131. Zhang, H., Li, C., Lu, Q., Cheng, M.-J. & Goddard, W. A. Selective activation of propane using intermediates generated during water oxidation. J. Am. Chem. Soc. 143, 3967–3974 (2021).

    CAS  PubMed  Article  Google Scholar 

  132. Siahrostami, S., Li, G.-L., Viswanathan, V. & Nørskov, J. K. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 8, 1157–1160 (2017).

    CAS  PubMed  Article  Google Scholar 

  133. Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2, 377–380 (2019).

    CAS  Article  Google Scholar 

  134. New York State Energy Research and Development Authority. Hydrogen Factsheet. Hydrogen Production–Steam Methane Reforming (SMR) (NYSERDA, 2005).

  135. Muradov, N. in Compendium of Hydrogen Energy (eds Subramani, V., Basile, A. & Nejat Veziroğlu, T.) 489–522 (Woodhead Publishing, 2015).

  136. Parikh, J., Biswas, C. R. D., Singh, C. & Singh, V. Natural gas requirement by fertilizer sector in India. Energy 34, 954–961 (2009).

    CAS  Article  Google Scholar 

  137. Lan, R., Tao, S. & Irvine, J. T. S. A direct urea fuel cell — power from fertiliser and waste. Energy Environ. Sci. 3, 438–441 (2010).

    CAS  Article  Google Scholar 

  138. Schmidt, O. et al. Future cost and performance of water electrolysis: an expert elicitation study. Int. J. Hydrog. Energy 42, 30470–30492 (2017).

    CAS  Article  Google Scholar 

  139. Boggs, B. K., King, R. L. & Botte, G. G. Urea electrolysis: direct hydrogen production from urine. Chem. Commun. 4859–4861 (2009).

  140. Hu, X., Zhu, J., Li, J. & Wu, Q. Urea electrooxidation: current development and understanding of Ni-based catalysts. ChemElectroChem 7, 3211–3228 (2020).

    CAS  Article  Google Scholar 

  141. Greenblatt, J. B., Miller, D. J., Ager, J. W., Houle, F. A. & Sharp, I. D. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2, 381–420 (2018).

    CAS  Article  Google Scholar 

  142. Ramdin, M. et al. Electroreduction of CO2/CO to C2 products: process modeling, downstream separation, system integration, and economic analysis. Ind. Eng. Chem. Res. 60, 17862–17880 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. Ohya, H. & Sourirajan, S. Reverse osmosis separation of urea in aqueous solutions using porous cellulose acetate membranes. Ind. Eng. Chem. Process. Des. Dev. 8, 131–142 (1969).

    CAS  Article  Google Scholar 

  144. Hou, L. et al. Separation of organic liquid mixture by flexible nanofibrous membranes with precisely tunable wettability. NPG Asia Mater. 8, e334–e334 (2016).

    CAS  Article  Google Scholar 

  145. Schmelz, W. J., Hochman, G. & Miller, K. G. Total cost of carbon capture and storage implemented at a regional scale: northeastern and midwestern United States. Interf. Focus. 10, 20190065 (2020).

    Article  Google Scholar 

  146. Jiang, Y. et al. Techno-economic comparison of various process configurations for post-combustion carbon capture using a single-component water-lean solvent. Int. J. Greenh. Gas. Control. 106, 103279 (2021).

    CAS  Article  Google Scholar 

  147. Rosca, V., Duca, M., de Groot, M. T. & Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009).

    CAS  PubMed  Article  Google Scholar 

  148. Quinn, R. DTN retail fertilizer trends. Great American Crop https://greatamericancrop.com/news-resources/article/2021/12/15/dtn-retail-fertilizer-trends (2021).

Download references

Acknowledgements

The authors acknowledge a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2019-05927) and an American Chemical Society Petroleum Research Fund (ACS PRF) New Directions Grant (65093-ND5).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Nikolay Kornienko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Feng Jiao, who co-reviewed with Rong Xia, Marta Costa Figueiredo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Latest FOB International Fertilizer Prices: https://africafertilizer.org/international-prices/

Methyl Amine Price Trend and Forecast: https://www.chemanalyst.com/Pricing-data/methylamine-1178

NOAA Trends in Atmospheric Carbon Dioxide: https://gml.noaa.gov/ccgg/trends/

Glossary

Electrochemical nitrogen reduction reaction

The cathodic reduction of solubilized N2 to NH3. This process requires three electrons per NH3 molecule.

Electrochemical CO2 reduction reaction

The cathodic reduction of CO2 to various carbon-based products. C1 products such as CO and HCOOH are generally the easiest to produce and require only 2e but are less valuable than C2 products such as C2H4 or CH3CH2OH.

Reversible hydrogen electrode

(RHE). A frequently used electrochemical potential scale in which the H+/H2 potential is set to 0 V and the H2O/O2 potential is consequently always 1.23 V.

Selectivity

A measure of the production rate of the desired products divided by that of the total products; can be measured on a per-mole or per-electron basis.

H-cell

Three-electrode setup in which the counter electrode is placed in a separate chamber separated by an ion-permeable membrane to prevent the re-oxidation or reduction of reaction products.

Gas diffusion electrode

Electrode configuration comprising hydrophobic, gas-permeable fibres on which a compact conductive carbon layer loaded with the catalyst is situated; enables high current densities to be obtained with poorly soluble gaseous reactants.

Faradaic efficiency

(FE). The selectivity, on a per-electron basis, of a catalytic system towards a particular reaction product as a function of the total number of electrons that have passed through the circuit; it is often given as a percentage value.

Temperature-programmed desorption

(TPD). Technique that monitors the desorption of species from a surface as the temperature is gradually increased; useful in comparing the relative binding energies of reactants on different catalysts.

Activity

A measure of a catalyst’s turnover rate under a given set of conditions. Most relevant to electrochemical systems are the electrolyte and applied voltage, whereas in thermochemical systems, temperature and pressure are the primary metrics.

Nitrogenase

Enzyme that reduces N2 to NH3 in nature.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Y., Kuruvinashetti, K. et al. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat Rev Chem 6, 303–319 (2022). https://doi.org/10.1038/s41570-022-00379-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00379-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing