Abstract
Plasmon-assisted chemistry is the result of a complex interplay between electromagnetic near fields, heat and charge transfer on the nanoscale. The disentanglement of their roles is non-trivial. Therefore, a thorough knowledge of the chemical, structural and spectral properties of the plasmonic/molecular system being used is required. Specific techniques are needed to fully characterize optical near fields, temperature and hot carriers with spatial, energetic and/or temporal resolution. The timescales for all relevant physical and chemical processes can range from a few femtoseconds to milliseconds, which necessitates the use of time-resolved techniques for monitoring the underlying dynamics. In this Review, we focus on experimental techniques to tackle these challenges. We further outline the difficulties when going from the ensemble level to single-particle measurements. Finally, a thorough understanding of plasmon-assisted chemistry also requires a substantial joint experimental and theoretical effort.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley-VCH, 2010).
Ravelli, D., Dondi, D., Fagnoni, M. & Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 38, 1999–2011 (2009).
Zhou, P., Yu, J. & Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014).
White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).
Zhang, Z. et al. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. 29, 1606688 (2017).
Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).
Ueno, K., Oshikiri, T., Sun, Q., Shi, X. & Misawa, H. Solid-state plasmonic solar cells. Chem. Rev. 118, 2955–2993 (2018).
Naldoni, A., Shalaev, V. M. & Brongersma, M. L. Applying plasmonics to a sustainable future. Science 356, 908–909 (2017).
Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). This is a seminal review on plasmon-induced chemical energy production.
Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).
Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).
Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017).
Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).
Cushing, S. K. & Wu, N. Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7, 666–675 (2016).
Meng, X. et al. Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28, 6781–6803 (2016).
Zhang, Y. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018). This is a comprehensive review covering the latest advances in plasmonic catalysis.
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014).
Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).
Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).
Zhang, Z., Zhang, C., Zheng, H. & Xu, H. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 52, 2506–2515 (2019).
Kim, M., Lin, M., Son, J., Xu, H. & Nam, J.-M. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv. Opt. Mater. 5, 1700004 (2017).
Xie, W. & Schlücker, S. Surface-enhanced Raman spectroscopic detection of molecular chemo- and plasmo-catalysis on noble metal nanoparticles. Chem. Commun. 54, 2326–2336 (2018).
Camargo, P. H. & Cortés, E. Plasmonic Catalysis (Wiley, 2021). This is the first book on plasmonic catalysis, covering all aspects of this emerging field.
Jauffred, L., Samadi, A., Klingberg, H., Bendix, P. M. & Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019).
Baffou, G., Cichos, F. & Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020).
Wilson, A. J. & Jain, P. K. Light-induced voltages in catalysis by plasmonic nanostructures. Acc. Chem. Res. 53, 1773–1781 (2020).
Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018). A detailed study about the activation energy in plasmonic catalysis.
Gargiulo, J., Berté, R., Li, Y., Maier, S. A. & Cortés, E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. 52, 2525–2535 (2019).
Cortés, E. Activating plasmonic chemistry. Science 362, 28–29 (2018).
Bourgeois, B. B., Swearer, D. F. & Dionne, J. A. in Plasmonic Catalysis (eds Camargo, P. H. & Cortés, E.) 37–69 (Wiley, 2021).
Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).
Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).
Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).
Huang, Y.-F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. 53, 2353–2357 (2014).
Qian, K. et al. Surface plasmon-driven water reduction: gold nanoparticle size matters. J. Am. Chem. Soc. 136, 9842–9845 (2014).
Zhang, P., Wang, T. & Gong, J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 5328–5342 (2015).
Yan, L., Wang, F. & Meng, S. Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles. ACS Nano 10, 5452–5458 (2016).
Liu, B. et al. Ligand-assisted co-assembly approach toward mesoporous hybrid catalysts of transition-metal oxides and noble metals: photochemical water splitting. Angew. Chem. 54, 9061–9065 (2015).
Warren, S. C. & Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012).
Ueno, K., Oshikiri, T. & Misawa, H. Plasmon-induced water splitting using metallic-nanoparticle-loaded photocatalysts and photoelectrodes. ChemPhysChem 17, 199–215 (2016).
Kim, Y., Smith, J. G. & Jain, P. K. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 10, 763–769 (2018). A demonstration of multi-electron processes assisted by plasmonic nanoparticles.
Yu, S., Wilson, A. J., Kumari, G., Zhang, X. & Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2, 2058–2070 (2017).
Yu, S., Wilson, A. J., Heo, J. & Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 18, 2189–2194 (2018).
DuChene, J. S., Tagliabue, G., Welch, A. J., Cheng, W.-H. & Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018).
DuChene, J. S. et al. Optical excitation of a nanoparticle Cu/p-NiO photocathode improves reaction selectivity for CO2 reduction in aqueous electrolytes. Nano Lett. 20, 2348–2358 (2020).
Creel, E. B. et al. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett. 4, 1098–1105 (2019).
Kim, Y. et al. Surface-plasmon-assisted photoelectrochemical reduction of CO2 and NO3− on nanostructured silver electrodes. Adv. Energy Mater. 8, 1800363 (2018).
Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 8, 27 (2017).
Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Direct pathway to molecular photodissociation on metal surfaces using visible light. J. Am. Chem. Soc. 139, 3115–3121 (2017).
Sarina, S. et al. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 135, 5793–5801 (2013). This article reports the use of hybrid plasmonic-catalytic materials for chemical synthesis with light.
Xiao, Q. et al. Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chem. 16, 4272–4285 (2014).
Xiao, Q. et al. Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to anilines. ACS Catal. 6, 1744–1753 (2016).
Zhai, Y. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 15, 889–895 (2016). A remarkable demonstration of plasmon’s role in the synthesis of nanoprisms.
Kamarudheen, R., Kumari, G. & Baldi, A. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat. Commun. 11, 3957 (2020).
Violi, I. L., Gargiulo, J., Bilderling, C., von, Cortés, E. & Stefani, F. D. Light-induced polarization-directed growth of optically printed gold nanoparticles. Nano Lett. 16, 6529–6533 (2016).
Lindstrom, C. D. & Zhu, X.-Y. Photoinduced electron transfer at molecule–metal interfaces. Chem. Rev. 106, 4281–4300 (2006).
Tatsuma, T., Nishi, H. & Ishida, T. Plasmon-induced charge separation: chemistry and wide applications. Chem. Sci. 8, 3325–3337 (2017).
Cortés, E. Efficiency and bond selectivity in plasmon-induced photochemistry. Adv. Opt. Mater. 5, 1700191 (2017).
Bauer, C., Abid, J.-P., Fermin, D. & Girault, H. H. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. J. Chem. Phys. 120, 9302–9315 (2004).
Bauer, C., Abid, J.-P. & Girault, H. H. Hot adsorbate-induced retardation of the internal thermalization of nonequilibrium electrons in adsorbate-covered metal nanoparticles. J. Phys. Chem. B 110, 4519–4523 (2006).
Douglas-Gallardo, O. A., Berdakin, M. & Sánchez, C. G. Atomistic insights into chemical interface damping of surface plasmon excitations in silver nanoclusters. J. Phys. Chem. C 120, 24389–24399 (2016).
Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).
Foerster, B., Spata, V. A., Carter, E. A., Sönnichsen, C. & Link, S. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv. 5, eaav0704 (2019). In this article, chemical interface damping and the influence of surface chemistry is described.
Kumar, P. V., Rossi, T. P., Kuisma, M., Erhart, P. & Norris, D. J. Direct hot-carrier transfer in plasmonic catalysis. Faraday Discuss. 214, 189–197 (2019).
Seemala, B. et al. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019).
Zhang, Y., Nelson, T., Tretiak, S., Guo, H. & Schatz, G. C. Plasmonic hot-carrier-mediated tunable photochemical reactions. ACS Nano 12, 8415–8422 (2018).
Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 14, 5405–5412 (2014).
Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015). A seminal paper on charge-transfer mechanisms at plasmonic interfaces.
Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).
Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).
Kazuma, E., Lee, M., Jung, J., Trenary, M. & Kim, Y. Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule. Angew. Chem. 59, 7960–7966 (2020).
Baffou, G., Bordacchini, I., Baldi, A. & Quidant, R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 9, 108 (2020). A guideline to rule out the temperature contribution to plasmon-driven processes.
Misewich, Heinz & Newns Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68, 3737–3740 (1992).
Kamarudheen, R., Castellanos, G. W., Kamp, L. P. J., Clercx, H. J. H. & Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon-driven nanoparticle syntheses. ACS Nano 12, 8447–8455 (2018).
Sivan, Y., Baraban, J. H. & Dubi, Y. Experimental practices required to isolate thermal effects in plasmonic photo-catalysis: lessons from recent experiments. OSA Contin. 3, 483–497 (2020).
Hobbs, R. G. et al. Mapping photoemission and hot-electron emission from plasmonic nanoantennas. Nano Lett. 17, 6069–6076 (2017).
Wu, C.-Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).
Zheng, Z., Tachikawa, T. & Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137, 948–957 (2015).
Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).
Tachikawa, T., Yamashita, S. & Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011).
Nah, S. et al. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains. Nat. Photonics 11, 285–288 (2017).
Hamans, R. F., Kamarudheen, R. & Baldi, A. Single particle approaches to plasmon-driven catalysis. Nanomaterials 10, 2377 (2020).
Simoncelli, S., Li, Y., Cortés, E. & Maier, S. A. Imaging plasmon hybridization of fano resonances via hot-electron-mediated absorption mapping. Nano Lett. 18, 3400–3406 (2018). This article reports super-resolution mapping of chemical reactions induced by plasmon decay.
Simoncelli, S. et al. Monitoring plasmonic hot-carrier chemical reactions at the single particle level. Faraday Discuss. 214, 73–87 (2019).
Zou, N. et al. Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy. ACS Nano 12, 5570–5579 (2018).
Tran, V. et al. Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: single-particle experiments and computer simulations. Nanoscale 10, 21721–21731 (2018).
Kirchner, S. R. et al. Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes. J. Phys. Chem. C 122, 6865–6875 (2018).
Dhiman, M. Plasmonic nanocatalysis for solar energy harvesting and sustainable chemistry. J. Mater. Chem. A 8, 10074–10095 (2020).
Gellé, A. et al. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 120, 986–1041 (2020).
Huang, H. J. et al. Review of experimental setups for plasmonic photocatalytic reactions. Catalysts 10, 46 (2020).
Kamarudheen, R., Aalbers, G. J. W., Hamans, R. F., Kamp, L. P. J. & Baldi, A. Distinguishing among all possible activation mechanisms of a plasmon-driven chemical reaction. ACS Energy Lett. 5, 2605–2613 (2020). Decoding the reaction pathways in plasmon-assisted chemistry is described in this article.
Sun, Y. & Tang, Z. Photocatalytic hot-carrier chemistry. MRS Bull. 45, 20–25 (2020).
Mascaretti, L. & Naldoni, A. Hot electron and thermal effects in plasmonic photocatalysis. J. Appl. Phys. 128, 41101 (2020).
Li, S. et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 33, e2000086 (2021).
Li, X., Everitt, H. O. & Liu, J. Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Res. 13, 1268–1280 (2020).
Zhan, C., Moskovits, M. & Tian, Z.-Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020).
Schlögl, R. Heterogeneous catalysis. Angew. Chem. 54, 3465–3520 (2015).
Eames, C., Eames, R. & Boeke, K. Power of Ten (Pyramid Films, 1978).
Gieseking, R. L., Ratner, M. A. & Schatz, G. C. in Frontiers of Plasmon Enhanced Spectroscopy Vol. 1 (eds Ozaki, Y., Schatz, G. C., Graham, D. & Itoh, T.) Vol. 1245 1–22 (American Chemical Society, 2016).
Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5, 96–111 (2016). A theoretical description of possible decay channels of excited plasmons.
Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018).
Govorov, A. O., Zhang, H., Demir, H. V. & Gun’ko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 9, 85–101 (2014).
Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).
Hartland, G. V. Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006).
Ueno, K. et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 130, 6928–6929 (2008).
Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015). A remarkable discussion on plasmon excitation and decay.
Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).
Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770–774 (2015).
Long, R. & Prezhdo, O. V. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 136, 4343–4354 (2014).
Bernardi, M., Mustafa, J., Neaton, J. B. & Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6, 7044 (2015).
Besteiro, L. V. et al. The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today 27, 120–145 (2019).
Cortés, E. et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017). A demonstration of localized reactivity in plasmonic nanostructures.
Bracco, G. & Holst, B. Surface Science Techniques (Springer, 2013).
Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. 53, 4756–4795 (2014).
Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).
Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).
Jeanmaire, D. L. & van Duyne, R. P. Surface Raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).
Huang, Y.-F. et al. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010).
Wu, D.-Y. et al. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: A DFT study. J. Phys. Chem. C 113, 18212–18222 (2009).
Zhao, L.-B., Chen, J.-L., Zhang, M., Wu, D.-Y. & Tian, Z.-Q. Theoretical study on electroreduction of p-nitrothiophenol on silver and gold electrode surfaces. J. Phys. Chem. C 119, 4949–4958 (2015).
Brandt, N. C., Keller, E. L. & Frontiera, R. R. Ultrafast surface-enhanced Raman probing of the role of hot electrons in plasmon-driven chemistry. J. Phys. Chem. Lett. 7, 3179–3185 (2016).
Brooks, J. L., Warkentin, C. L., Saha, D., Keller, E. L. & Frontiera, R. R. Toward a mechanistic understanding of plasmon-mediated photocatalysis. Nanophotonics 7, 1697–1724 (2018).
Xie, W., Herrmann, C., Kömpe, K., Haase, M. & Schlücker, S. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc. 133, 19302–19305 (2011). A seminal paper on bimetallic plasmonic assemblies for catalysis and SERS.
Joseph, V. et al. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering. Angew. Chem. 51, 7592–7596 (2012).
Xie, W., Grzeschik, R. & Schlücker, S. Metal nanoparticle-catalyzed reduction using borohydride in aqueous media: a kinetic analysis of the surface reaction by microfluidic SERS. Angew. Chem. 55, 13729–13733 (2016).
Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I. & Cortie, M. B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).
Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).
Chu, M.-W. et al. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett. 9, 399–404 (2009).
N’Gom, M. et al. Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Phys. Rev. B 80, 113411 (2009).
Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. & Botton, G. A. Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett. 11, 1499–1504 (2011).
Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).
Rossouw, D. & Botton, G. A. Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys. Rev. Lett. 110, 66801 (2013).
Cherqui, C., Thakkar, N., Li, G., Camden, J. P. & Masiello, D. J. Characterizing localized surface plasmons using electron energy-loss spectroscopy. Annu. Rev. Phys. Chem. 67, 331–357 (2016).
Wu, Y., Li, G. & Camden, J. P. Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. 118, 2994–3031 (2018).
Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).
Domke, K. F. & Pettinger, B. In situ discrimination between axially complexed and ligand-free co porphyrin on Au(111) with tip-enhanced Raman spectroscopy. ChemPhysChem 10, 1794–1798 (2009).
Wang, X. et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 46, 4020–4041 (2017).
Huang, T.-X. et al. Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime. Nanoscale 10, 4398–4405 (2018).
Zhang, K. et al. Low-background tip-enhanced Raman spectroscopy enabled by a plasmon thin-film waveguide probe. Anal. Chem. 93, 7699–7706 (2021).
Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. 52, 5940–5954 (2013).
van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).
Zhang, Z. et al. Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5, 3249–3252 (2013).
Zhang, Z., Sun, M., Ruan, P., Zheng, H. & Xu, H. Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5, 4151–4155 (2013).
Szczerbin´ski, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett. 18, 6740–6749 (2018).
Yin, H. et al. Nanoscale surface redox chemistry triggered by plasmon-generated hot carriers. Small 15, e1903674 (2019).
Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).
Kazuma, E. & Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem. 58, 4800–4808 (2019).
Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).
Centrone, A. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 8, 101–126 (2015).
Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).
Kurouski, D., Dazzi, A., Zenobi, R. & Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 49, 3315–3347 (2020).
Wilson, A. J., Devasia, D. & Jain, P. K. Nanoscale optical imaging in chemistry. Chem. Soc. Rev. 49, 6087–6112 (2020).
Bechtel, H. A., Muller, E. A., Olmon, R. L., Martin, M. C. & Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl Acad. Sci. USA 111, 7191–7196 (2014).
Rang, M. et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 8, 3357–3363 (2008).
Cinchetti, M. et al. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett. 95, 47601 (2005).
Schumacher, L. et al. Precision plasmonics with monomers and dimers of spherical gold nanoparticles: nonequilibrium dynamics at the time and space limits. J. Phys. Chem. C 123, 13181–13191 (2019).
Wright, D. et al. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat. Catal. 4, 157–163 (2021). A mechanistic study in which molecular catalysts operating at plasmonic interfaces were monitored.
Huang, L. et al. Synergy between plasmonic and electrocatalytic activation of methanol oxidation on palladium–silver alloy nanotubes. Angew. Chem. 58, 8794–8798 (2019).
Zhang, Y., Guo, W., Zhang, Y. & Wei, W. D. Plasmonic photoelectrochemistry: in view of hot carriers. Adv. Mater. 33, 2006654 (2021).
Xie, W. & Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6, 7570 (2015). The key role of both hot electrons and hot holes in plasmonic catalysis are described here.
Rao, V. G., Aslam, U. & Linic, S. Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions. J. Am. Chem. Soc. 141, 643–647 (2019).
Rodio, M. et al. Experimental evidence for nonthermal contributions to plasmon-enhanced electrochemical oxidation reactions. ACS Catal. 10, 2345–2353 (2020).
Pensa, E. et al. Spectral screening of the energy of hot holes over a particle plasmon resonance. Nano Lett. 19, 1867–1874 (2019). The energy of the generated and extracted plasmonic hot carriers were monitored in this study.
Hoener, B. S. et al. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem 4, 1560–1585 (2018).
Ou, W. et al. Thermal and nonthermal effects in plasmon-mediated electrochemistry at nanostructured Ag electrodes. Angew. Chem. 59, 6790–6793 (2020).
Huang, S.-C. et al. Probing nanoscale spatial distribution of plasmonically excited hot carriers. Nat. Commun. 11, 4211 (2020).
Byers, C. P. et al. Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J. Phys. Chem. B 118, 14047–14055 (2014).
Wonner, K., Evers, M. V. & Tschulik, K. Simultaneous opto- and spectro-electrochemistry: reactions of individual nanoparticles uncovered by dark-field microscopy. J. Am. Chem. Soc. 140, 12658–12661 (2018).
Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008).
Hu, S. et al. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nat. Commun. 11, 2518 (2020).
Cortés, E. et al. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 18034–18037 (2010).
Cortés, E. et al. Strong correlation between molecular configurations and charge-transfer processes probed at the single-molecule level by surface-enhanced Raman scattering. J. Am. Chem. Soc. 135, 2809–2815 (2013).
Wilson, A. J. & Willets, K. A. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Lett. 14, 939–945 (2014).
Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).
Li, J.-F., Rudnev, A., Fu, Y., Bodappa, N. & Wandlowski, T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013).
Zhang, H. et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Commun. 8, 15447 (2017).
Bodappa, N. et al. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 141, 12192–12196 (2019).
Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).
Dix, S. T. & Linic, S. In-operando surface-sensitive probing of electrochemical reactions on nanoparticle electrocatalysts: Spectroscopic characterization of reaction intermediates and elementary steps of oxygen reduction reaction on Pt. J. Catal. 396, 32–39 (2021).
Martín Sabanés, N., Ohto, T., Andrienko, D., Nagata, Y. & Domke, K. F. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew. Chem. 56, 9796–9801 (2017).
Pfisterer, J. H. K., Baghernejad, M., Giuzio, G. & Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10, 5702 (2019).
Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).
Bao, Y.-F. et al. Atomic force microscopy based top-illumination electrochemical tip-enhanced Raman spectroscopy. Anal. Chem. 92, 12548–12555 (2020).
Huang, S.-C. et al. Electrochemical tip-enhanced Raman spectroscopy: an in situ nanospectroscopy for electrochemistry. Annu. Rev. Phys. Chem. 72, 213–234 (2021).
Yu, Y., Sundaresan, V. & Willets, K. A. Hot carriers versus thermal effects: resolving the enhancement mechanisms for plasmon-mediated photoelectrochemical reactions. J. Phys. Chem. C 122, 5040–5048 (2018).
Yu, Y., Wijesekara, K. D., Xi, X. & Willets, K. A. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano 13, 3629–3637 (2019).
Corson, E. R. et al. In situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 142, 11750–11762 (2020).
Alonso-González, P. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 3, 684 (2012).
Yi, J., You, E.-M., Ding, S.-Y. & Tian, Z.-Q. Unveiling the molecule–plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl Sci. Rev. 7, 1228–1238 (2020).
Liu, Z., Li, Y., Xu, Q., Wang, H. & Liu, W.-T. Coherent vibrational spectroscopy of electrochemical interfaces with plasmonic nanogratings. J. Phys. Chem. Lett. 11, 243–248 (2020).
Liu, W.-T. & Shen, Y. R. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc. Natl Acad. Sci. USA 111, 1293–1297 (2014).
Wallentine, S., Bandaranayake, S., Biswas, S. & Baker, L. R. Plasmon-resonant vibrational sum frequency generation of electrochemical interfaces: direct observation of carbon dioxide electroreduction on gold. J. Phys. Chem. A 124, 8057–8064 (2020).
Weeraman, C., Yatawara, A. K., Bordenyuk, A. N. & Benderskii, A. V. Effect of nanoscale geometry on molecular conformation: vibrational sum-frequency generation of alkanethiols on gold nanoparticles. J. Am. Chem. Soc. 128, 14244–14245 (2006).
Pluchery, O., Humbert, C., Valamanesh, M., Lacaze, E. & Busson, B. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys. Chem. Chem. Phys. 11, 7729–7737 (2009).
Dalstein, L. et al. Revealing the interplay between adsorbed molecular layers and gold nanoparticles by linear and nonlinear optical properties. J. Phys. Chem. C 119, 17146–17155 (2015).
Linke, M. et al. Plasmonic effects of Au nanoparticles on the vibrational sum frequency spectrum of 4-nitrothiophenol. J. Phys. Chem. C 123, 24234–24242 (2019).
Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020).
Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 11304 (2014).
Cushing, S. K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).
Li, J. et al. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3, 47–51 (2013).
Meng, F., Cushing, S. K., Li, J., Hao, S. & Wu, N. Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal. 5, 1949–1955 (2015).
Cushing, S. K. et al. Controlling plasmon-induced resonance energy transfer and hot electron injection processes in metal@TiO2 core–shell nanoparticles. J. Phys. Chem. C 119, 16239–16244 (2015).
Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011). A seminal paper on hot-carrier extraction from plasmonic antennas.
Zheng, B. Y. et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6, 7797 (2015).
Lee, H. et al. Graphene–semiconductor catalytic nanodiodes for quantitative detection of hot electrons induced by a chemical reaction. Nano Lett. 16, 1650–1656 (2016).
Tagliabue, G. et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 19, 1312–1318 (2020). Optimizing the extraction of carriers from plasmonic interfaces.
Matsushita, R. & Kiguchi, M. Surface enhanced Raman scattering of a single molecular junction. Phys. Chem. Chem. Phys. 17, 21254–21260 (2015).
Choi, H.-K. et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J. Am. Chem. Soc. 138, 4673–4684 (2016).
Li, G.-C., Zhang, Q., Maier, S. A. & Lei, D. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 7, 1865–1889 (2018).
Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
Nijs, Bde et al. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 8, 994 (2017).
Cortés, E. et al. Challenges in plasmonic catalysis. ACS Nano 14, 16202–16219 (2020). A comprehensive discussion of the current challenges in the field of plasmonic catalysis.
Jain, P. K. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C 123, 24347–24351 (2019).
Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).
Simoncelli, S., Li, Y., Cortés, E. & Maier, S. A. Nanoscale control of molecular self-assembly induced by plasmonic hot-electron dynamics. ACS Nano 12, 2184–2192 (2018).
Baffou, G., Quidant, R. & García de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010).
Baffou, G. Anti-Stokes thermometry in nanoplasmonics. ACS Nano 15, 5785–5792 (2021).
Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013).
Govorov, A. O. et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006).
Dubi, Y., Un, I. W. & Sivan, Y. Thermal effects–an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. 11, 5017–5027 (2020).
Di Wang et al. Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 19, 3796–3803 (2019).
Zhang, X. et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018).
Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018).
Barella, M. et al. In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-Stokes thermometry. ACS Nano 15, 2458–2467 (2021).
Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).
Ostovar, B. et al. Increased intraband transitions in smaller gold nanorods enhance light emission. ACS Nano 14, 15757–15765 (2020).
Cai, Y.-Y. et al. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano 12, 976–985 (2018).
Baffou, G., Kreuzer, M. P., Kulzer, F. & Quidant, R. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009).
Pellegrotti, J. V. et al. Plasmonic photothermal fluorescence modulation for homogeneous biosensing. ACS Sens. 1, 1351–1357 (2016).
Brites, C., Millán, A. & Carlos, L. D. in Including Actinides Vol. 49, 339–427 (Elsevier, 2016).
Holub, M. et al. Single-nanoparticle thermometry with a nanopipette. ACS Nano 14, 7358–7369 (2020).
Jollans, T., Caldarola, M., Sivan, Y. & Orrit, M. Effective electron temperature measurement using time-resolved anti-Stokes photoluminescence. J. Phys. Chem. A 124, 6968–6976 (2020).
Sytwu, K. et al. Driving energetically unfavorable dehydrogenation dynamics with plasmonics. Science 371, 280–283 (2021).
Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810–1811 (2004).
Reineck, P., Brick, D., Mulvaney, P. & Bach, U. Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J. Phys. Chem. Lett. 7, 4137–4141 (2016).
Murdoch, M. et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3, 489–492 (2011).
Wei, Q., Wu, S. & Sun, Y. Quantum-sized metal catalysts for hot-electron-driven chemical transformation. Adv. Mater. 30, e1802082 (2018).
Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M. & Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014).
Hong, J. W., Wi, D. H., Lee, S.-U. & Han, S. W. Metal–semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 138, 15766–15773 (2016).
Lee, S. et al. Core–shell bimetallic nanoparticle trimers for efficient light-to-chemical energy conversion. ACS Energy Lett. 5, 3881–3890 (2020).
Wang, W.-N. et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 134, 11276–11281 (2012).
Kontoleta, E. et al. Using hot electrons and hot holes for simultaneous cocatalyst deposition on plasmonic nanostructures. ACS Appl. Mater. Interfaces 12, 35986–35994 (2020).
Lee, H. et al. Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nat. Commun. 9, 2235 (2018).
Li, H. et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017).
Xie, W. & Schlücker, S. Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep. Prog. Phys. 77, 116502 (2014).
Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).
Gao, W., Hood, Z. D. & Chi, M. Interfaces in heterogeneous catalysts: advancing mechanistic understanding through atomic-scale measurements. Acc. Chem. Res. 50, 787–795 (2017).
Zitolo, A. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017).
Hartman, T., Geitenbeek, R. G., Wondergem, C. S., van der Stam, W. & Weckhuysen, B. M. Operando nanoscale sensors in catalysis: all eyes on catalyst particles. ACS Nano 14, 3725–3735 (2020).
Choi, J. I. J., Kim, T.-S., Kim, D., Lee, S. W. & Park, J. Y. Operando surface characterization on catalytic and energy materials from single crystals to nanoparticles. ACS Nano 14, 16392–16413 (2020).
Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016).
Ruan, D., Xue, J., Fujitsuka, M. & Majima, T. Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C3N4 for photocatalytic H2 production. Chem. Commun. 55, 6014–6017 (2019).
van Turnhout, L., Hattori, Y., Meng, J., Zheng, K. & Sá, J. Direct observation of a plasmon-induced hot electron flow in a multimetallic nanostructure. Nano Lett. 20, 8220–8228 (2020).
Liu, Y., Chen, Q., Cullen, D. A., Xie, Z. & Lian, T. Efficient hot electron transfer from small Au nanoparticles. Nano Lett. 20, 4322–4329 (2020).
Robatjazi, H., Bahauddin, S. M., Doiron, C. & Thomann, I. Direct plasmon-driven photoelectrocatalysis. Nano Lett. 15, 6155–6161 (2015).
Xiao, F.-X., Zeng, Z. & Liu, B. Bridging the gap: electron relay and plasmonic sensitization of metal nanocrystals for metal clusters. J. Am. Chem. Soc. 137, 10735–10744 (2015).
Kaushik, M. & Moores, A. New trends in sustainable nanocatalysis: Emerging use of earth abundant metals. Curr. Opin. Green Sustain. Chem. 7, 39–45 (2017).
Knight, M. W. et al. Aluminum for plasmonics. ACS Nano 8, 834–840 (2014).
Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).
Coccia, E. et al. Hybrid theoretical models for molecular nanoplasmonics. J. Chem. Phys. 153, 200901 (2020).
Luk, H. L., Feist, J., Toppari, J. J. & Groenhof, G. Multiscale molecular dynamics simulations of polaritonic chemistry. J. Chem. Theory Comput. 13, 4324–4335 (2017).
Bonn et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999). A seminal paper on thermal and electronic processes at metal photocatalysts.
Yu, S. & Jain, P. K. Isotope effects in plasmonic photosynthesis. Angew. Chem. 59, 22480–22483 (2020).
Mulvaney, P., Parak, W. J., Caruso, F. & Weiss, P. S. Standardizing nanomaterials. ACS Nano 10, 9763–9764 (2016).
Voiry, D. et al. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 12, 9635–9638 (2018).
Bell, S. E. J. et al. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem. 59, 5454–5462 (2020).
Grzeschik, R. et al. On the overlooked critical role of the pH value on the kinetics of the 4-nitrophenol NaBH4-reduction catalyzed by noble-metal nanoparticles (Pt, Pd, and Au). J. Phys. Chem. C https://doi.org/10.1021/acs.jpcc.9b07114 (2020).
Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).
Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).
Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).
Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).
Salley, D. et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).
Tomko, J. A. et al. Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nat. Nanotechnol. 16, 47–51 (2021).
Acknowledgements
S.A.M. and E.C. acknowledge funding and support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC2089/1-390776260), the Bavarian programme Solar Energies go Hybrid (SolTech) and the Center for NanoScience (CeNS). E.C. acknowledges support from the European Commission through the ERC Starting Grant CATALIGHT (802989). S.A.M. acknowledges the Lee-Lucas Chair in Physics. S.S. acknowledges funding and support from the DFG within the Collaborative Research Center ‘Non-equilibrium dynamics of condensed matter in the time domain’ (CRC 1242, project no. 278162697, project A04) and the project SCHL 594/17-1 (project no. 410889534).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks G. Baffou, G. Tagliabue and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Activation barrier
-
Corresponds to the energy needed for a chemical reaction to occur, since it is the energy difference between the activated complex/transition state and the reactants along the path of lowest energy on the potential energy surface. Referred to as Ea.
- Rate constant
-
A measure for the speed of a chemical reaction (not to be mixed up with the reaction speed dc/dt itself) and it is a constant value for a given reaction temperature. Referred to as k.
- Potential energy surface
-
Describes the potential energy of the system as a function of the positions of the nuclei and is normally used to visualize the relevant reaction coordinates for the progression from reactants via the transition state(s) to products.
- Vibrational pumping
-
Significant increase in the population of higher excited vibrational states that may even exceed that of the vibrational ground state — such a non-equilibrium situation is, therefore, different from a thermal equilibrium described by the Boltzmann statistics.
- Superlinear dependency
-
In the case of plasmon-assisted reactions, it means that, upon increasing the power of the incident light, the corresponding reaction rate grows in a nonlinear fashion, i.e. faster than linear.
- Electron-beam lithography
-
A method frequently used in microconductor and semiconductor technology for structuring surfaces using electron-sensitive films.
- Haber–Bosch process
-
Main industrial production process for the large-scale synthesis of ammonia from nitrogen and hydrogen at ca. 200 bar and ca. 450 °C using iron-based catalysts. Ammonia is a basic compound for the synthesis of many important chemicals, with relevance for fertilizers, plastics and synthetic fibres.
- Wave vector
-
Describes the propagation direction of light as an electromagnetic wave and its value is inversely proportional to the wavelength.
- Quantum cascade laser
-
Semiconductor-based lasers relying on intersubband transitions, normally emitting in the infrared spectral region. Laser-based infrared spectroscopy offers several advantages over conventional Fourier transform infrared spectroscopy using incoherent thermal electromagnetic radiation.
- Optical parametric oscillator
-
By means of second-order nonlinear optical interaction, an optical parametric oscillator converts an input laser wave with a given frequency into two output waves of lower frequency. In this laser, the optical gain is produced in a parametric crystal rather than by a population inversion; tunability is achieved by orienting the nonlinear crystal with respect to the axis of an optical resonator. Therefore, optical parametric oscillators are widely exploited in modern laser spectroscopy.
- Ohmic contacts
-
A common junction between a metal and a semiconductor with low electrical resistance, frequently employed in semiconductor physics/technology.
- Schottky barriers
-
At a semiconductor–metal interface, the Schottky barrier is the energy difference between the valence (or conduction) band edge of the semiconductor and the Fermi energy of the metal.
- Tunnel barriers
-
In this context, describes the potential barrier formed between two metals separated by a thin insulator, with the system acting as a tunnel junction that the electronic wave packet can tunnel through.
Rights and permissions
About this article
Cite this article
Cortés, E., Grzeschik, R., Maier, S.A. et al. Experimental characterization techniques for plasmon-assisted chemistry. Nat Rev Chem 6, 259–274 (2022). https://doi.org/10.1038/s41570-022-00368-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-022-00368-8