Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Natural product anticipation through synthesis

An Author Correction to this article was published on 22 February 2022

This article has been updated

Abstract

Natural product synthesis remains one of the most vibrant and intellectually rewarding areas of chemistry, although the justifications for pursuing it have evolved over time. In the early years, the emphasis lay on structure elucidation and confirmation through synthesis, as exemplified by celebrated studies on cocaine, morphine, strychnine and chlorophyll. This was followed by a phase where the sheer demonstration that highly complex molecules could be recreated in the laboratory in a rational manner was enough to justify the economic expense and intellectual agonies of a synthesis. Since then, syntheses of natural products have served as platforms for the demonstration of elegant strategies, for inventing new methodology ‘on the fly’ or to demonstrate the usefulness and scope of methods established with simpler molecules. We now add another aspect that we find fascinating, viz. ‘natural product anticipation’. In this Review, we survey cases where the synthesis of a compound in the laboratory has preceded its isolation from nature. The focus of our Review lies on examples where this anticipation of a natural product has triggered a successful search or where synthesis and isolation have occurred independently. Finally, we highlight cases where a potential natural product structure has been suggested as a result of synthetic endeavours but not yet confirmed by isolation, inviting further collaborations between synthetic and natural product chemists.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Notable examples of ‘unwitting’ natural product anticipation7,8,9,10,11,12,13,14,15,16,17,18,19,20.
Fig. 2: Anticipation of caryophyllene-derived meroterpenoids from Psidium guajava.
Fig. 3: Anticipation of incarvilleatone, mesitylene and nagelamide E.
Fig. 4: Anticipation of exiguamine B.
Fig. 5: Anticipation of ‘missing’ dimeric natural products.
Fig. 6: Anticipation of 14-methylelysiapyrone A and psychotriadine.
Fig. 7: Anticipation of phototridachiahydropyrone and atrop-abyssomicin C.
Fig. 8: Additional examples for anticipated natural products and suspected natural products awaiting confirmation.

Change history

References

  1. Nicolaou, K. C. & Snyder, S. A. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed. 44, 1012–1044 (2005).

    Article  CAS  Google Scholar 

  2. Brown, P. D. & Lawrence, A. L. The importance of asking “how and why?” in natural product structure elucidation. Nat. Prod. Rep. 34, 1193–1202 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sheehan, J. C. & Henery-Logan, K. R. The total synthesis of penicillin V. J. Am. Chem. Soc. 79, 1262–1263 (1957).

    Article  CAS  Google Scholar 

  4. Kuttruff, C. A., Eastgate, M. D. & Baran, P. S. Natural product synthesis in the age of scalability. Nat. Prod. Rep. 31, 419–432 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Baran, P. S. Natural product total synthesis: as exciting as ever and here to stay. J. Am. Chem. Soc. 140, 4751–4755 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Trauner, D. Finding function and form. Nat. Prod. Rep. 31, 411–413 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Gabriel, S. & Pinkus, G. Zur Kenntniss der Amidoketone. Ber. Dtsch. Chem. Ges. 26, 2197–2209 (1893).

    Article  CAS  Google Scholar 

  8. Gabriel, S. & Colman, J. Zur Kenntniss des Amidoacetons. Ber. Dtsch. Chem. Ges. 35, 3805–3811 (1902).

    Article  CAS  Google Scholar 

  9. Elliott, W. H. Amino-acetone: its isolation and role in metabolism. Nature 183, 1051–1052 (1959).

    Article  CAS  PubMed  Google Scholar 

  10. Willstätter, R. Synthese der Hygrinsäure. Ber. Dtsch. Chem. Ges. 33, 1160–1166 (1900).

    Article  Google Scholar 

  11. Fischer, E. & Abderhalden, E. Ober die verdauung einiger Eiweißkörper durch Pankreasfermente. Biol. Chem. 39, 81–94 (1903).

    CAS  Google Scholar 

  12. Willstätter, R. From My Life: The Memoirs of Richard Willstätter (Plunkett Lake, 2016).

  13. Falk, H., Hoornaert, G., Isenring, H.-P. & Eschenmoser, A. Über Enolderivate der Chlorophyllreihe. Darstellung von 132,173-Cyclophäophorbid-enolen. Vorläufige Mitteilung. Helv. Chim. Acta 58, 2347–2357 (1975).

    Article  CAS  Google Scholar 

  14. Karuso, P. et al. 132,173-Cyclopheophorbide enol, the first porphyrin isolated from a sponge. Tetrahedron Lett. 27, 2177–2178 (1986).

    Article  CAS  Google Scholar 

  15. Ocampo, R., Sachs, J. P. & Repeta, D. J. Isolation and structure determination of the unstable 132, 173-Cyclopheophorbide a enol from recent sediments. Geochim. Cosmochim. Acta 63, 3743–3749 (1999).

    Article  CAS  Google Scholar 

  16. Bell, R. A. & Ireland, R. E. The construction of the C/D ring system present in the diterpenoid alkaloids atisine and garryfoline. Tetrahedron Lett. 4, 269–273 (1963).

    Article  Google Scholar 

  17. Church, R. F., Ireland, R. E. & Marshall, J. A. The stereospecific total synthesis of d1-8β-carbomethoxy-13-oxopodocarpane, a degradation product of phyllocladene. Tetrahedron Lett. 1, 1–4 (1960).

    Article  Google Scholar 

  18. Zalkow, L. H. & Girotra, N. N. The synthesis of 5a,8,8-trimethyl-3, 10a-ethanoperhydrophenanthrene. Terpenes. VII. J. Org. Chem. 28, 2037–2039 (1963).

    Article  CAS  Google Scholar 

  19. Zalkow, L. H. & Girotra, N. N. Studies in the synthesis of atisine. Terpenes. X. J. Org. Chem. 29, 1299–1302 (1964).

    Article  CAS  Google Scholar 

  20. Kapadi, A. H., Sobti, R. R. & Dev, S. The diterpenoids of Erythroxylon monogynum — V atisirene, isoatisirene and devadarene. Tetrahedron Lett. 6, 2729–2735 (1965).

    Article  Google Scholar 

  21. Bonneau, N. et al. An unprecedented blue chromophore found in nature using a “chemistry first” and molecular networking approach: discovery of dactylocyanines A–H. Chem. Eur. J. 23, 14454–14461 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Fox Ramos, A. E. et al. CANPA: computer-assisted natural products anticipation. Anal. Chem. 91, 11247–11252 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lawrence, A. L. et al. A short biomimetic synthesis of the meroterpenoids guajadial and psidial A. Org. Lett. 12, 1676–1679 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, X.-L., Hsieh, K.-L. & Liu, J.-K. Guajadial: an unusual meroterpenoid from guava leaves psidium guajava. Org. Lett. 9, 5135–5138 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Collado, I. G., Hanson, J. R. & Macías-Sánchez, A. J. Recent advances in the chemistry of caryophyllene. Nat. Prod. Rep. 15, 187–204 (1998).

    Article  CAS  Google Scholar 

  27. Fu, H.-Z., Luo, Y.-M., Li, C.-J., Yang, J.-Z. & Zhang, D.-M. Psidials A–C, three unusual meroterpenoids from the leaves of Psidium guajava L. Org. Lett. 12, 656–659 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Tang, G.-H. et al. Psiguajadials A–K: unusual Psidium meroterpenoids as phosphodiesterase-4 inhibitors from the leaves of Psidium guajava. Sci. Rep. 7, 1047 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ning, S., Liu, Z., Wang, Z., Liao, M. & Xie, Z. Biomimetic synthesis of psiguajdianone guided discovery of the meroterpenoids from Psidium guajava. Org. Lett. 21, 8700–8704 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Y.-Q., Shen, Y.-H., Su, Y.-Q., Kong, L.-Y. & Zhang, W.-D. Incarviditone: a novel cytotoxic benzofuranone dimer from Incarvillea delavayi Bureau et Franchet. Chem. Biodivers. 6, 779–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, P. D., Willis, A. C., Sherburn, M. S. & Lawrence, A. L. Total synthesis of incarviditone and incarvilleatone. Org. Lett. 14, 4537–4539 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Gao, Y.-P. et al. Incarvilleatone, a new cyclohexylethanoid dimer from Incarvillea younghusbandii and its inhibition against nitric oxide (NO) release. Org. Lett. 14, 1954–1957 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Novak, A. J. E. & Trauner, D. Reflections on racemic natural products. Trends Chem. 2, 1052–1065 (2020).

    Article  CAS  Google Scholar 

  34. Kakinuma, K., Hanson, C. A. & Rinehart, K. L. Spectinabilin, a new nitro-containing metabolite isolated from Streptomyces spectabilis. Tetrahedron 32, 217–222 (1976).

    Article  CAS  Google Scholar 

  35. Takahashi, K., Tsuda, E. & Kurosawa, K. SNF4435C and D, novel imimmosuppressants produced by a strain of Streptomyces spectabilis. II. Structure elucidation. J. Antibiot. 54, 548–553 (2001).

    Article  CAS  Google Scholar 

  36. Kurosawa, K., Takahashi, K. & Tsuda, E. SNF4435C and D, novel immunosuppressants produced by a strain of Streptomyces spectabilis. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 54, 541–547 (2001).

    Article  CAS  Google Scholar 

  37. Beaudry, C. M. & Trauner, D. Total synthesis of (−)-SNF4435 C and (+)-SNF4435 D. Org. Lett. 7, 4475–4477 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Müller, M. et al. Photochemical origin of the immunosuppressive SNF4435C/D and formation of orinocin through “polyene splicing”. Angew. Chem. Int. Ed. 45, 7835–7838 (2006).

    Article  Google Scholar 

  39. Lindel, T. Chemistry and biology of the pyrrole–imidazole alkaloids. Alkaloids Chem. Biol. 77, 117–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Baran, P. S., O’Malley, D. P. & Zografos, A. L. Sceptrin as a potential biosynthetic precursor to complex pyrrole–imidazole alkaloids: the total synthesis of ageliferin. Angew. Chem. Int. Ed. 43, 2674–2677 (2004).

    Article  CAS  Google Scholar 

  41. Northrop, B. H., O’Malley, D. P., Zografos, A. L., Baran, P. S. & Houk, K. N. Mechanism of the vinylcyclobutane rearrangement of sceptrin to ageliferin and nagelamide E. Angew. Chem. Int. Ed. 45, 4126–4130 (2006).

    Article  CAS  Google Scholar 

  42. Endo, T. et al. Nagelamides A–H, new dimeric bromopyrrole alkaloids from marine sponge Agelas species. J. Nat. Prod. 67, 1262–1267 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Brastianos, H. C. et al. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J. Am. Chem. Soc. 128, 16046–16047 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Sofiyev, V., Lumb, J., Volgraf, M. & Trauner, D. Total synthesis of exiguamines A and B inspired by catecholamine chemistry. Chem. Eur. J. 18, 4999–5005 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Volgraf, M. et al. Biomimetic synthesis of the IDO inhibitors exiguamine A and B. Nat. Chem. Biol. 4, 535–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Minato, H. & Horibe, I. Structure and stereochemistry of Xanthumin, a stereoisomer of Xanthinin. J. Chem. Soc. Resumed 1965, 7009–7017 (1965).

    Article  Google Scholar 

  47. Ahmed, A. A., Mahmoud, A. A. & El-Gamal, A. A. A xanthanolide diol and a dimeric xanthanolide from Xanthium species. Planta Med. 65, 470–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Nour, A. M. M. et al. The antiprotozoal activity of sixteen asteraceae species native to Sudan and bioactivity-guided isolation of xanthanolides from Xanthium brasilicum. Planta Med. 75, 1363–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, L. et al. Cytotoxic sesquiterpene lactones from aerial parts of Xanthium sibiricum. Planta Med. 79, 661–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Feng, J. et al. Enantioselective and collective total syntheses of xanthanolides. Angew. Chem. Int. Ed. 56, 16323–16327 (2017).

    Article  CAS  Google Scholar 

  51. Ren, W. et al. Enantioselective and collective syntheses of xanthanolides involving a controllable dyotropic rearrangement of cis-β-lactones. Angew. Chem. Int. Ed. 51, 6984–6988 (2012).

    Article  CAS  Google Scholar 

  52. Shang, H. et al. Biomimetic synthesis: discovery of xanthanolide dimers. Angew. Chem. Int. Ed. 53, 14494–14498 (2014).

    Article  CAS  Google Scholar 

  53. Brady, S. F., Singh, M. P., Janso, J. E. & Clardy, J. Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Org. Lett. 2, 4047–4049 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Jadulco, R. et al. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J. Nat. Prod. 65, 730–733 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Ejiri, H., Sankawa, U. & Shibata, S. Graciliformin and its acetates in Cladonia graciliformis. Phytochemistry 14, 277–279 (1975).

    Article  CAS  Google Scholar 

  56. Yamazaki, H., Koyama, N., Ōmura, S. & Tomoda, H. New rugulosins, anti-MRSA antibiotics, produced by Penicillium radicum FKI-3765-2. Org. Lett. 12, 1572–1575 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Ogihara, Y., Kobayashi, N. M. & Shibata, S. Further studies on the bianthraquinones of Penicillium islandicum Sopp. Tetrahedron Lett. 9, 1881–1886 (1968).

    Article  Google Scholar 

  58. Nicolaou, K. C., Lim, Y. H., Papageorgiou, C. D. & Piper, J. L. Total synthesis of (+)-rugulosin and (+)-2,2′-epi-cytoskyrin A through cascade reactions. Angew. Chem. Int. Ed. 44, 7917–7921 (2005).

    Article  CAS  Google Scholar 

  59. Nicolaou, K. C., Lim, Y. H., Piper, J. L. & Papageorgiou, C. D. Total syntheses of 2,2′-epi-cytoskyrin A, rugulosin, and the alleged structure of rugulin. J. Am. Chem. Soc. 129, 4001–4013 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Agusta, A., Ohashi, K. & Shibuya, H. Bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp. Chem. Pharm. Bull. 54, 579–582 (2006).

    Article  CAS  Google Scholar 

  61. Manzo, E. et al. New γ-pyrone propionates from the Indian Ocean sacoglossan Placobranchus ocellatus. Tetrahedron Lett. 46, 465–468 (2005).

    Article  CAS  Google Scholar 

  62. Cueto, M., D’Croz, L., Maté, J. L., San-Martín, A. & Darias, J. Elysiapyrones from Elysia Diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo[4.2.0]octane core? Org. Lett. 7, 415–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Miller, A. K. & Trauner, D. Mining the tetraene manifold: total synthesis of complex pyrones from Placobranchus ocellatus. Angew. Chem. Int. Ed. 44, 4602–4606 (2005).

    Article  CAS  Google Scholar 

  64. Wu, Q. et al. Complex polypropionates from a South China Sea photosynthetic mollusk: isolation and biomimetic synthesis highlighting novel rearrangements. Angew. Chem. Int. Ed. 59, 12105–12112 (2020).

    Article  CAS  Google Scholar 

  65. Eccles, R. G. Calycanthine. Drug. Circular Chem. Gaz. 32, 65 (1888).

    Google Scholar 

  66. Steven, A. & Overman, L. E. Total synthesis of complex cyclotryptamine alkaloids: stereocontrolled construction of quaternary carbon stereocenters. Angew. Chem. Int. Ed. 46, 5488–5508 (2007).

    Article  CAS  Google Scholar 

  67. Schmidt, M. A. & Movassaghi, M. New strategies for the synthesis of hexahydropyrroloindole alkaloids inspired by biosynthetic hypotheses. Synlett 2008, 313–324 (2008).

    Article  Google Scholar 

  68. Trost, B. M. & Osipov, M. Recent advances on the total syntheses of the communesin alkaloids and perophoramidine. Chem. Weinh. Bergstr. Ger. 21, 16318–16343 (2015).

    CAS  Google Scholar 

  69. Xu, J.-B. & Cheng, K.-J. Studies on the alkaloids of the calycanthaceae and their syntheses. Molecules 20, 6715–6738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. May, J. A. & Stoltz, B. The structural and synthetic implications of the biosynthesis of the calycanthaceous alkaloids, the communesins, and nomofungin. Tetrahedron 62, 5262–5271 (2006).

    Article  CAS  Google Scholar 

  71. Dotson, J. J., Bachman, J. L., Garcia-Garibay, M. A. & Garg, N. K. Discovery and total synthesis of a bis(cyclotryptamine) alkaloid bearing the elusive piperidinoindoline scaffold. J. Am. Chem. Soc. 142, 11685–11690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hall, E. S., McCapra, F. & Scott, A. I. Biogenetic-type synthesis of the calycanthaceous alkaloids. Tetrahedron 23, 4131–4141 (1967).

    Article  CAS  PubMed  Google Scholar 

  73. Gavagnin, M., Mollo, E., Cimino, G. & Ortea, J. A new γ-dihydropyrone-propionate from the Caribbean sacoglossan Tridachia crispata. Tetrahedron Lett. 37, 4259–4262 (1996).

    Article  CAS  Google Scholar 

  74. Sharma, P., Lygo, B., Lewis, W. & Moses, J. E. Biomimetic synthesis and structural reassignment of the tridachiahydropyrones. J. Am. Chem. Soc. 131, 5966–5972 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Gavagnin, M., Mollo, E. & Cimino, G. Is phototridachiahydropyrone a true natural product? Rev. Bras. Farmacogn. 25, 588–591 (2015).

    Article  CAS  Google Scholar 

  76. Bister, B. et al. Abyssomicin C — A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed. 43, 2574–2576 (2004).

    Article  CAS  Google Scholar 

  77. Nicolaou, K. C. & Harrison, S. T. Total synthesis of abyssomicin C, atrop-abyssomicin C, and abyssomicin D: implications for natural origins of atrop-abyssomicin C. J. Am. Chem. Soc. 129, 429–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Nicolaou, K. C. & Harrison, S. T. Total synthesis of abyssomicin C and atrop-abyssomicin C. Angew. Chem. Int. Ed. 45, 3256–3260 (2006).

    Article  CAS  Google Scholar 

  79. Keller, S. et al. Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J. Antibiot. 60, 391–394 (2007).

    Article  CAS  Google Scholar 

  80. Ellerbrock, P., Armanino, N., Ilg, M. K., Webster, R. & Trauner, D. An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nat. Chem. 7, 879–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Yan, Z. et al. Fused multicyclic polyketides with a two-spiro-carbon skeleton from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002. RSC Adv. 10, 28560–28566 (2020).

    Article  CAS  Google Scholar 

  82. Greshock, T. J. & Williams, R. M. Improved biomimetic total synthesis of d,l-stephacidin A. Org. Lett. 9, 4255–4258 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Qin, W.-F. et al. Total synthesis of (−)-depyranoversicolamide B. Chem. Commun. 51, 16143–16146 (2015).

    Article  CAS  Google Scholar 

  84. Xu, X., Zhang, X., Nong, X., Wang, J. & Qi, S. Brevianamides and mycophenolic acid derivatives from the deep-sea-derived fungus Penicillium brevicompactum DFFSCS025. Mar. Drugs 15, 43 (2017).

    Article  PubMed Central  Google Scholar 

  85. Crombie, L. & Ponsford, R. Synthesis of (±)-deoxybruceol. Chem. Commun. Lond. 1968, 368a (1968).

    Google Scholar 

  86. Crombie, L. & Ponsford, R. Pyridine-catalysed condensation of citral with phloroglucinols, a novel reaction leading to tetracyclic bis-ethers and chromenes. Two-step synthesis of (±)-deoxybruceol. J. Chem. Soc. C Org. 1971, 788–795 (1971).

    Article  Google Scholar 

  87. Ghisalberti, E. L. et al. Structural studies in the bruceol system. J. Chem. Soc. Perkin Trans. 2, 583–589 (1981).

    Article  Google Scholar 

  88. Day, A. J., Sumby, C. J. & George, J. H. Biomimetic synthetic studies on the bruceol family of meroterpenoid natural products. J. Org. Chem. 85, 2103–2117 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Harada, N. et al. Total synthesis, absolute configuration, and later isolation of (−)-prehalenaquinone, a putative biosynthetic precursor to the marine natural products: halenaquinone and xestoquinone. J. Org. Chem. 59, 6606–6613 (1994).

    Article  CAS  Google Scholar 

  90. Matsuura, B. S., Kölle, P., Trauner, D., de Vivie-Riedle, R. & Meier, R. Unravelling photochemical relationships among natural products from Aplysia dactylomela. ACS Cent. Sci. 3, 39–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Kotammagari, T. K., Gonnade, R. G. & Bhattacharya, A. K. Biomimetic total synthesis of angiopterlactone B and other potential natural products. Org. Lett. 19, 3564–3567 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Nicolaou, K. C., Sanchini, S., Wu, T. R. & Sarlah, D. Total synthesis and structural revision of biyouyanagin B. Chem. Eur. J. 16, 7678–7682 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Löbermann, F., Mayer, P. & Trauner, D. Biomimetic synthesis of (−)-pycnanthuquinone C through the Diels–Alder reaction of a vinyl quinone. Angew. Chem. Int. Ed. 49, 6199–6202 (2010).

    Article  Google Scholar 

  94. Ma, D., Liu, Y. & Wang, Z. Biomimetic total synthesis of (±)-homodimericin A. Angew. Chem. Int. Ed. 56, 7886–7889 (2017).

    Article  CAS  Google Scholar 

  95. Stichnoth, D. et al. Photochemical formation of intricarene. Nat. Commun. 5, 5597 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Brown, P. D. & Lawrence, A. L. Total synthesis of millingtonine. Angew. Chem. Int. Ed. 128, 8421–8425 (2016).

    Article  Google Scholar 

  97. Brown, P. D., Willis, A. C., Sherburn, M. S. & Lawrence, A. L. Total synthesis and structural revision of the alkaloid incargranine B. Angew. Chem. 125, 13515–13517 (2013).

    Article  Google Scholar 

  98. Purgett, T. J., Dyer, M. W., Bickel, B., McNeely, J. & Porco, J. A. Gold(I)-mediated cycloisomerization/cycloaddition enables bioinspired syntheses of neonectrolides B–E and analogues. J. Am. Chem. Soc. 141, 15135–15144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Novak, A. J. E., Grigglestone, C. E. & Trauner, D. A biomimetic synthesis elucidates the origin of preuisolactone A. J. Am. Chem. Soc. 141, 15515–15518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, H., Korotkov, A., Chapman, C. W., Eastman, A. & Wu, J. Enantioselective formal syntheses of 11 nuphar alkaloids and discovery of potent apoptotic monomeric analogues. Angew. Chem. Int. Ed. 55, 3509–3513 (2016).

    Article  CAS  Google Scholar 

  101. Breunig, M., Yuan, P. & Gaich, T. An unexpected transannular [4+2] cycloaddition during the total synthesis of (+)-norcembrene 5. Angew. Chem. Int. Ed. 59, 5521–5525 (2020).

    Article  CAS  Google Scholar 

  102. Nicolaou, K. C., Chen, Q., Li, R., Anami, Y. & Tsuchikama, K. Total synthesis of the monomeric unit of lomaiviticin A. J. Am. Chem. Soc. 142, 20201–20207 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Zheng, K., Shen, D., Zhang, B. & Hong, R. Landscape of lankacidin biomimetic synthesis: structural revisions and biogenetic implications. J. Org. Chem. 85, 13818–13836 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Su, S., Seiple, I. B., Young, I. S. & Baran, P. S. Total syntheses of (±)-massadine and massadine chloride. J. Am. Chem. Soc. 130, 16490–16491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Strych, S. et al. Biomimetic total synthesis of santalin Y. Angew. Chem. Int. Ed. 54, 5079–5083 (2015).

    Article  CAS  Google Scholar 

  106. Gao, Y. et al. Isolation and biomimetic synthesis of (±)-guajadial B, a novel meroterpenoid from Psidium guajava. Org. Lett. 14, 5936–5939 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Yang, B. et al. Asymmetric total synthesis and biosynthetic implications of perovskones, hydrangenone, and hydrangenone B. J. Am. Chem. Soc. 143, 6370–6375 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Long, X., Wu, H., Ding, Y., Qu, C. & Deng, J. Biosynthetically inspired divergent syntheses of merocytochalasans. Chem 7, 212–223 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.E.H. thanks New York University for a MacCracken fellowship. The authors thank B. S. Matsuura for helpful discussions. The authors thank B. S. Matsuura, A. J. E. Novak and K.-P. Rühmann for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Dirk Trauner or Andrew L. Lawrence.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks J. George and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hetzler, B.E., Trauner, D. & Lawrence, A.L. Natural product anticipation through synthesis. Nat Rev Chem 6, 170–181 (2022). https://doi.org/10.1038/s41570-021-00345-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00345-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing