Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Reconfigurable microfluidics

Abstract

Lab-on-a-chip devices leverage microfluidic technologies to enable chemical and biological processes at small scales. However, existing microfluidic channel networks are typically designed for the implementation of a single function or a well-defined protocol and do not allow the flexibility and real-time experimental decision-making essential to many scientific applications. In this Perspective, we highlight that reconfigurability and programmability of microfluidic platforms can support new functionalities that are beyond the reach of current lab-on-a-chip systems. We describe the ideal fully reconfigurable microfluidic device that can change its shape and function dynamically, which would allow researchers to tune a microscale experiment with the capacity to make real-time decisions. We review existing technologies that can dynamically control microscale flows, suggest additional physical mechanisms that could be leveraged towards the goal of reconfigurable microfluidics and highlight the importance of these efforts for the broad scientific community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key achievements and trends in the development of microfluidic technologies.
Fig. 2: Our vision of a reconfigurable microfluidic platform.
Fig. 3: State of the art in reconfigurable microfluidic systems.
Fig. 4: Potential mechanisms for dynamic manipulation of physical and virtual boundaries.

Similar content being viewed by others

References

  1. Terry, S. C., Jerman, J. H. & Angell, J. B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26, 1880–1886 (1979).

    Article  Google Scholar 

  2. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1, 244–248 (1990).

    Article  CAS  Google Scholar 

  3. Arango, Y., Temiz, Y., Gökçe, O. & Delamarche, E. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics. Sci. Adv. 6, eaay8305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nelson, W. C. & Kim, C. J. Droplet actuation by electrowetting-on-dielectric (EWOD): a review. J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

    Article  CAS  Google Scholar 

  5. Castellanos, A., Ramos, A., González, A., Green, N. G. & Morgan, H. Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D Appl. Phys. 36, 2584 (2003).

    Article  CAS  Google Scholar 

  6. Karbalaei, A., Kumar, R. & Cho, H. J. Thermocapillarity in microfluidics — a review. Micromachines 7, 13 (2016).

    Article  PubMed Central  Google Scholar 

  7. Choi, K., Ng, A. H. C., Fobel, R. & Wheeler, A. R. Digital microfluidics. Annu. Rev. Anal. Chem. 5, 413–440 (2012).

    Article  CAS  Google Scholar 

  8. Fair, R. B. Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluidics 3, 245–281 (2007).

    Article  CAS  Google Scholar 

  9. Vittayarukskul, K. & Lee, A. P. A truly Lego®-like modular microfluidics platform. J. Micromech. Microeng. 27, 035004 (2017).

    Article  Google Scholar 

  10. Yuen, P. K. SmartBuild–A truly plug-n-play modular microfluidic system. Lab Chip 8, 1374–1378 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Hahn, Y. K., Hong, D., Kang, J. H. & Choi, S. A reconfigurable microfluidics platform for microparticle separation and fluid mixing. Micromachines 7, 139 (2016).

    Article  PubMed Central  Google Scholar 

  12. Zhao, B., Moore, J. S. & Beebe, D. J. Surface-directed liquid flow inside microchannels. Science 291, 1023–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Walsh, E. J. et al. Microfluidics with fluid walls. Nat. Commun. 8, 816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Renaudot, R. et al. A programmable and reconfigurable microfluidic chip. Lab Chip 13, 4517–4524 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Vaucher, A. C. et al. Automated extraction of chemical synthesis actions from experimental procedures. Nat. Commun. 11, 3601 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Bédard, A.-C. et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).

    Article  PubMed  Google Scholar 

  19. Perez de Vargas Sansalvador, I. M. et al. Autonomous reagent-based microfluidic pH sensor platform. Sens. Actuators B Chem. 225, 369–376 (2016).

    Article  CAS  Google Scholar 

  20. Guijt, R. M. et al. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection. Electrophoresis 22, 235–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Ivanov, N. A., Kochmann, S. & Krylov, S. N. Visualization of streams of small organic molecules in continuous-flow electrophoresis. Anal. Chem. 92, 2907–2910 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Zare, R. N. & Kim, S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 12, 187–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Anderson, J. & Quake, S. R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006).

    Article  PubMed  Google Scholar 

  25. Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods 6, 147–152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl Acad. Sci. USA 106, 14195–14200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbulovic-Nad, I., Yang, H., Park, P. S. & Wheeler, A. R. Digital microfluidics for cell-based assays. Lab Chip 8, 519–526 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Cho, S. H., Chen, C. H., Tsai, F. S., Godin, J. M. & Lo, Y.-H. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (microFACS). Lab Chip 10, 1567–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Weigel, D. & Doerner, P. Cell–cell interactions: taking cues from the neighbors. Curr. Biol. 6, 10–12 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Fung, C. W., Chan, S. N. & Wu, A. R. Microfluidic single-cell analysis — toward integration and total on-chip analysis. Biomicrofluidics 14, 021502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haghighi, F., Talebpour, Z. & Nezhad, A. S. Towards fully integrated liquid chromatography on a chip: evolution and evaluation. Trends Anal. Chem. 105, 302–337 (2018).

    Article  CAS  Google Scholar 

  34. Yuan, X. & Oleschuk, R. D. Advances in microchip liquid chromatography. Anal. Chem. 90, 283–301 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Wiederschain, G. Y. Handbook of capillary and microchip electrophoresis and associated microtechniques (3rd Edn). Biochem. Mosc. 73, 1350–1350 (2008).

    Article  CAS  Google Scholar 

  36. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T. & Mathies, R. A. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens. Actuators B Chem. 89, 315–323 (2003).

    Article  CAS  Google Scholar 

  38. Jönsson, U. et al. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11, 620–627 (1991).

    PubMed  Google Scholar 

  39. Fu, L.-M., Yang, R.-J., Lee, G.-B. & Pan, Y.-J. Multiple injection techniques for microfluidic sample handling. Electrophoresis 24, 3026–3032 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Schasfoort, R. B. Field-effect flow control for microfabricated fluidic networks. Science 286, 942–945 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lemoff, A. V. & Lee, A. P. An AC magnetohydrodynamic micropump. Sens. Actuators B Chem. 63, 178–185 (2000).

    Article  CAS  Google Scholar 

  42. Bau, H. H., Zhu, J., Qian, S. & Xiang, Y. A magneto-hydrodynamically controlled fluidic network. Sens. Actuators B Chem. 88, 205–216 (2003).

    Article  CAS  Google Scholar 

  43. Banerjee, A., Kreit, E., Liu, Y., Heikenfeld, J. & Papautsky, I. Reconfigurable virtual electrowetting channels. Lab Chip 12, 758–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Dhindsa, M. et al. Virtual electrowetting channels: electronic liquid transport with continuous channel functionality. Lab Chip 10, 832–836 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. D’Eramo, L. et al. Microfluidic actuators based on temperature-responsive hydrogels. Microsyst. Nanoeng. 4, 17069 (2018).

    Article  Google Scholar 

  47. Wada, H., Koike, Y., Yokoyama, Y. & Hayakawa, T. Evaluation of the response characteristics of on-chip gel actuators for various single cell manipulations. IEEE Robot. Autom. Lett. 5, 5205–5212 (2020).

    Article  Google Scholar 

  48. Krishnan, M. & Erickson, D. Optically induced microfluidic reconfiguration. Lab Chip 12, 613–621 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Paratore, F., Bacheva, V., Kaigala, G. V. & Bercovici, M. Dynamic microscale flow patterning using electrical modulation of zeta potential. Proc. Natl Acad. Sci. USA 116, 10258–10263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bacheva, V., Paratore, F., Rubin, S., Kaigala, G. V. & Bercovici, M. Tunable bidirectional electroosmotic flow for diffusion-based separations. Angew. Chem. Int. Ed. 59, 12894–12899 (2020).

    Article  CAS  Google Scholar 

  51. Cooksey, G. A., Sip, C. G. & Folch, A. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9, 417–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Taylor, P. D. & Kaigala, V. G. Reconfigurable microfluidics: real-time shaping of virtual channels through hydrodynamic forces. Lab Chip 20, 1720–1728 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Hadwen, B. et al. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays. Lab Chip 12, 3305–3313 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka, T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40, 820–823 (1978).

    Article  CAS  Google Scholar 

  55. Beebe, D. J. et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc. Natl Acad. Sci. USA 97, 13488–13493 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoffmann, J., Plötner, M., Kuckling, D. & Fischer, W.-J. Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens. Actuators Phys. 77, 139–144 (1999).

    Article  CAS  Google Scholar 

  57. Kuckling, D. et al. Photocrosslinking of thin films of temperature-sensitive polymers. Polym. Adv. Technol. 10, 345–352 (1999).

    Article  CAS  Google Scholar 

  58. Baldi, A., Gu, Y., Loftness, P. E., Siegel, R. A. & Ziaie, B. in Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266) 105–108 (IEEE, 2002).

  59. Mutlu, S. et al. in TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664) Vol. 1 802–805 (IEEE, 2003).

  60. Richter, A., Kuckling, D., Howitz, S., Thomas, G. & Arndt, K. Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J. Microelectromech. Syst. 12, 748–753 (2003).

    Article  Google Scholar 

  61. Richter, A. & Paschew, G. Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv. Mater. 21, 979–983 (2009).

    Article  CAS  Google Scholar 

  62. Li, L., Scheiger, J. M. & Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 31, 1807333 (2019).

    Article  Google Scholar 

  63. Zhang, Y.-Z. et al. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49, 7229–7251 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Prince, E. & Kumacheva, E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat. Rev. Mater. 4, 99–115 (2019).

    Article  Google Scholar 

  66. Goy, C. B., Chaile, R. E. & Madrid, R. E. Microfluidics and hydrogel: A powerful combination. React. Funct. Polym. 145, 104314 (2019).

    Article  CAS  Google Scholar 

  67. Hornbeck, L. J. in Proc. SPIE 1150, Spatial Light Modulators and Applications III 86–103 (International Society for Optics and Photonics, 1990).

  68. Qiu, Y., Lu, Z. & Pei, Q. Refreshable tactile display based on a bistable electroactive polymer and a stretchable serpentine Joule heating electrode. ACS Appl. Mater. Interfaces 10, 24807–24815 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Besse, N., Rosset, S., Zarate, J. J. & Shea, H. Flexible active skin: large reconfigurable arrays of individually addressed shape memory polymer actuators. Adv. Mater. Technol. 2, 1700102 (2017).

    Article  Google Scholar 

  70. Lee, H. S. et al. Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sens. Actuators Phys. 205, 191–198 (2014).

    Article  CAS  Google Scholar 

  71. Marette, A. et al. Flexible zinc–tin oxide thin film transistors operating at 1 kV for integrated switching of dielectric elastomer actuators arrays. Adv. Mater. 29, 1700880 (2017).

    Article  Google Scholar 

  72. Zhao, H. et al. Compact dielectric elastomer linear actuators. Adv. Funct. Mater. 28, 1804328 (2018).

    Article  Google Scholar 

  73. Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Boyko, E., Rubin, S., Gat, A. D. & Bercovici, M. Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip. Phys. Fluids 27, 102001 (2015).

    Article  Google Scholar 

  75. Boyko, E., Eshel, R., Gommed, K., Gat, A. D. & Bercovici, M. Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft actuators. J. Fluid Mech. 862, 732–752 (2019).

    Article  CAS  Google Scholar 

  76. Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications (Academic Press, 1988).

  77. Ramos, A. Electrohydrodynamic pumping in microsystems. J. Phys. Conf. Ser. 301, 012028 (2011).

    Article  Google Scholar 

  78. Herr, A. E. et al. Electroosmotic capillary flow with nonuniform zeta potential. Anal. Chem. 72, 1053–1057 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Squires, T. M. & Bazant, M. Z. Induced-charge electro-osmosis. J. Fluid Mech. 509, 217–252 (2004).

    Article  Google Scholar 

  80. Ajdari, A. Pumping liquids using asymmetric electrode arrays. Phys. Rev. E 61, R45–R48 (2000).

    Article  CAS  Google Scholar 

  81. González, A., Ramos, A., Green, N. G., Castellanos, A. & Morgan, H. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys. Rev. E 61, 4019–4028 (2000).

    Article  Google Scholar 

  82. Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D Appl. Phys. 31, 2338 (1998).

    Article  CAS  Google Scholar 

  83. Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interface Sci. 217, 420–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Ramos, A., Morgan, H., Green, N. G., González, A. & Castellanos, A. Pumping of liquids with traveling-wave electroosmosis. J. Appl. Phys. 97, 084906 (2005).

    Article  Google Scholar 

  85. Salari, A., Navi, M., Lijnse, T. & Dalton, C. AC electrothermal effect in microfluidics: a review. Micromachines 10, 762 (2019).

    Article  PubMed Central  Google Scholar 

  86. Green, N. G., Ramos, A., González, A., Castellanos, A. & Morgan, H. Electric field induced fluid flow on microelectrodes: the effect of illumination. J. Phys. D Appl. Phys. 33, L13 (2000).

    Article  CAS  Google Scholar 

  87. Wang, D., Sigurdson, M. & Meinhart, C. D. Experimental analysis of particle and fluid motion in ac electrokinetics. Exp. Fluids 38, 1–10 (2005).

    Article  Google Scholar 

  88. Sin, M. L. Y., Gau, V., Liao, J. C. & Wong, P. K. Electrothermal fluid manipulation of high-conductivity samples for laboratory automation applications. J. Assoc. Lab. Autom. 15, 426–432 (2010).

    Article  CAS  Google Scholar 

  89. Velarde, M. C. & Kh. Zeytounian, R. Interfacial Phenomena and the Marangoni Effect (Springer, 2002).

  90. Frumkin, V., Gommed, K. & Bercovici, M. Dipolar thermocapillary motor and swimmer. Phys. Rev. Fluids 4, 074002 (2019).

    Article  Google Scholar 

  91. Amador, G. J. et al. Temperature gradients drive bulk flow within microchannel lined by fluid–fluid interfaces. Small 15, 1900472 (2019).

    Article  Google Scholar 

  92. Baier, T., Steffes, C. & Hardt, S. Thermocapillary flow on superhydrophobic surfaces. Phys. Rev. E 82, 037301 (2010).

    Article  Google Scholar 

  93. Rofman, B., Dehe, S., Frumkin, V., Hardt, S. & Bercovici, M. Intermediate states of wetting on hierarchical superhydrophobic surfaces. Langmuir 36, 5517–5523 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Garnier, N., Grigoriev, R. O. & Schatz, M. F. Optical manipulation of microscale fluid flow. Phys. Rev. Lett. 91, 054501 (2003).

    Article  PubMed  Google Scholar 

  95. Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cecchini, M., Girardo, S., Pisignano, D., Cingolani, R. & Beltram, F. Acoustic-counterflow microfluidics by surface acoustic waves. Appl. Phys. Lett. 92, 104103 (2008).

    Article  Google Scholar 

  97. Masini, L. et al. Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays. Lab Chip 10, 1997–2000 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Fallah, M. A. et al. Acoustic driven flow and lattice Boltzmann simulations to study cell adhesion in biofunctionalized μ-fluidic channels with complex geometry. Biomicrofluidics 4, 024106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Homsy, A. et al. A high current density DC magnetohydrodynamic (MHD) micropump. Lab Chip 5, 466–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Qian, S. & Bau, H. H. Magnetohydrodynamic flow of RedOx electrolyte. Phys. Fluids 17, 067105 (2005).

    Article  Google Scholar 

  101. Qian, S. & Bau, H. H. Magneto-hydrodynamics based microfluidics. Mech. Res. Commun. 36, 10–21 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Baigl, D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12, 3637–3653 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Washizu, M. Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE Trans. Ind. Appl. 34, 732–737 (1998).

    Article  CAS  Google Scholar 

  105. Martinez, A. W., Phillips, S. T., Butte, M. J. & Whitesides, G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007).

    Article  CAS  Google Scholar 

  106. Carrell, C. et al. Beyond the lateral flow assay: a review of paper-based microfluidics. Microelectron. Eng. 206, 45–54 (2019).

    Article  CAS  Google Scholar 

  107. Shang, L., Cheng, Y. & Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Gelorme, J. D., Cox, R. J. & Gutierrez, S. A. R. Photoresist composition and printed circuit boards and packages made therewith. US Patent US4882245A (1989).

  109. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Becker, H. & Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Au, A. K., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016).

    Article  CAS  Google Scholar 

  112. Fidalgo, L. M. & Maerkl, S. J. A software-programmable microfluidic device for automated biology. Lab Chip 11, 1612–1619 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Perspective was greatly influenced by many discussions with Prof. H. Shea (EPFL) in the context of a joint research proposal. F.P., V.B. and G.V.K. acknowledge E. Delamarche and H. Riel for their continuous support. The authors thank Prof. S. N. Krylov (York University) for useful discussion and suggestions. They thank I. Pereiro for his help on the preparation of the graphical abstract. Finally, they thank L. Rudin for proofreading the manuscript. This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme, grant agreement 678734 (MetamorphChip). G.V.K. gratefully acknowledges funding from a SNF grant (CRSK-2_190877). F.P. gratefully acknowledges the BRIDGE Proof-of-Concept programme, project number 40B1-0 191549, funded by Innosuisse and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moran Bercovici or Govind V. Kaigala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks E. Verpoorte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paratore, F., Bacheva, V., Bercovici, M. et al. Reconfigurable microfluidics. Nat Rev Chem 6, 70–80 (2022). https://doi.org/10.1038/s41570-021-00343-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00343-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing