Abstract
Controlling the activity of proteins with azobenzene photoswitches is a potent tool for manipulating their biological function. With the help of light, it is possible to change binding affinities, control allostery or manipulate complex biological processes, for example. Additionally, owing to their intrinsically fast photoisomerization, azobenzene photoswitches can serve as triggers that initiate out-of-equilibrium processes. Such switching of the activity initiates a cascade of conformational events that can be accessed with time-resolved methods. In this Review, we show how the potency of azobenzene photoswitching can be combined with transient spectroscopic techniques to disclose the order of events and experimentally observe biomolecular interactions in real time. This strategy will further our understanding of how a protein can accommodate, adapt and readjust its structure to answer an incoming signal, revealing more of the dynamical character of proteins.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).
Dyson, H. J. & Wright, P. E. Equilibrium NMR studies of unfolded and partially folded proteins. Nat. Struct. Biol. 5, 499–503 (1998).
Bernado, P. & Blackledge, M. Proteins in dynamic equilibrium. Nature 468, 1046–1048 (2010).
Elber, R. & Karplus, M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc. 112, 9161–9175 (1990).
Palmer, A. G. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640 (2004).
Mittermaier, A. & Kay, L. E. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).
Kay, L. E. NMR studies of protein structure and dynamics. J. Magn. Reson. 173, 193–207 (2005).
Olsson, M. H., Parson, W. W. & Warshel, A. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem. Rev. 106, 1737–1756 (2006).
Benkovic, S. J. & Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 301, 1196–1202 (2003).
Csermely, P., Palotai, R. & Nussinov, R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35, 539–546 (2010).
Swain, J. F. & Gierasch, L. M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol. 16, 102–108 (2006).
Tsai, C. J., del Sol, A. & Nussinov, R. Allostery: absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 378, 1–11 (2008).
Smock, R. G. & Gierasch, L. M. Sending signals dynamically. Science 324, 198–203 (2009).
Tsai, C. J. & Nussinov, R. A unified view of “how allostery works”. PLoS Comput. Biol. 10, e1003394 (2014).
Hilser, V. J., Wrabl, J. O. & Motlagh, H. N. Structural and energetic basis of allostery. Annu. Rev. Biophys. 41, 585–609 (2012).
Schotte, F. et al. Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947 (2003).
Knapp, J. E., Pahl, R., Šrajer, V. & Royer, W. E. Allosteric action in real time: time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Proc. Natl Acad. Sci. USA 103, 7649–7654 (2006).
Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–496 (2013).
Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser. Science 361, eaat0094 (2018).
Standfuss, J. Membrane protein dynamics studied by X-ray lasers — or why only time will tell. Curr. Opin. Struct. Biol. 57, 63–71 (2019).
Skopintsev, P. et al. Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 583, 314–318 (2020).
Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).
Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266, 422–424 (1994).
Zinth, W. & Wachtveitl, J. The first picoseconds in bacterial photosynthesis-ultrafast electron transfer for the efficient conversion of light energy. ChemPhysChem 6, 871–880 (2005).
Palczewski, K. G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 743–767 (2006).
Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).
Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).
Hegemann, P. Algal sensory photoreceptors. Annu. Rev. Plant. Biol. 59, 167–189 (2008).
Rockwell, N. C. & Lagarias, J. C. Phytochrome diversification in cyanobacteria and eukaryotic algae. Curr. Opin. Plant. Biol. 37, 87–93 (2017).
Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).
Cammarata, M., Levantino, M., Wulff, M. & Cupane, A. Unveiling the timescale of the R-T transition in human hemoglobin. J. Mol. Biol. 400, 951–962 (2010).
Ellis-Davies, G. C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).
Causgrove, T. P. & Dyer, R. B. Nonequilibrium protein folding dynamics: laser induced pH-jump studies of the helix–coil transition. Chem. Phys. 323, 2–10 (2006).
Donten, M. L. et al. pH-Jump induced leucine zipper folding beyond the diffusion limit. J. Phys. Chem. B 119, 1425–1432 (2015).
Thompson, P. A., Eaton, W. A. & Hofrichter, J. Laser temperature jump study of the helix–coil kinetics of an alanine peptide interpreted with a ‘kinetic zipper’ model. Biochemistry 36, 9200–9210 (1997).
Callender, R. H., Dyer, R. B., Gilmanshin, R. & Woodruff, W. H. Fast events in protein folding: the time evolution of primary processes. Annu. Rev. Phys. Chem. 49, 173–202 (1998).
Yang, W. Y. & Gruebele, M. Folding at the speed limit. Nature 423, 193–197 (2003).
Hauser, K., Krejtschi, C., Huang, R., Wu, L. & Keiderling, T. A. Site-specific relaxation kinetics of a tryptophan zipper hairpin peptide using temperature-jump IR spectroscopy and isotopic labeling. J. Am. Chem. Soc. 130, 2984–2992 (2008).
Crespi, S., Simeth, N. A. & König, B. Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem. 3, 133–146 (2019).
Blanco-Lomas, M., Samanta, S., Campos, P. J., Woolley, G. A. & Sampedro, D. Reversible photocontrol of peptide conformation with a rhodopsin-like photoswitch. J. Am. Chem. Soc. 134, 6960–6963 (2012).
Szymański, W. et al. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 113, 6114–6178 (2013).
Willner, I., Rubin, S. & Riklin, A. Photoregulation of papain activity through anchoring photochromic azo groups to the enzyme backbone. J. Am. Chem. Soc. 113, 3321–3325 (1991).
James, D., Burns, D. C. & Woolley, G. Kinetic characterization of ribonuclease S mutants containing photoisomerizable phenylazophenylalanine residues. Protein Eng. Des. Sel. 14, 983–991 (2001).
Liu, D., Karanicolas, J., Yu, C., Zhang, Z. & Woolley, G. A. Site-specific incorporation of photoisomerizable azobenzene groups into ribonuclease S. Bioorg. Med. Chem. Lett. 7, 2677–2680 (1997).
Hamachi, I., Hiraoka, T., Yamada, Y. & Shinkai, S. Photoswitching of the enzymatic activity of semisynthetic ribonuclease S′ bearing phenylazophenylalanine at a specific site. Chem. Lett. 27, 537–538 (1998).
Yamada, M. D., Nakajima, Y., Maeda, H. & Maruta, S. Photocontrol of kinesin ATPase activity using an azobenzene derivative. J. Biochem. 142, 691–698 (2007).
Schierling, B. et al. Controlling the enzymatic activity of a restriction enzyme by light. Proc. Natl Acad. Sci. USA 107, 1361–1366 (2010).
Ritterson, R. S., Kuchenbecker, K. M., Michalik, M. & Kortemme, T. Design of a photoswitchable cadherin. J. Am. Chem. Soc. 135, 12516–12519 (2013).
Buchli, B. et al. Kinetic response of a photoperturbed allosteric protein. Proc. Natl Acad. Sci. USA 110, 11725–11730 (2013).
Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 402–411 (2015).
Hoersch, D. Engineering a light-controlled F 1 ATPase using structure-based protein design. PeerJ 4, e2286 (2016).
Blacklock, K. M., Yachnin, B. J., Woolley, G. A. & Khare, S. D. Computational design of a photocontrolled cytosine deaminase. J. Am. Chem. Soc. 140, 14–17 (2018).
Bozovic, O., Jankovic, B. & Hamm, P. Sensing the allosteric force. Nat. Commun. 11, 5841 (2020).
Bozovic, O. et al. The speed of allosteric signaling within a single-domain protein. J. Phys. Chem. Lett. 12, 4262–4267 (2021).
Jankovic, B. et al. Sequence of events during peptide unbinding from rnase s: a complete experimental description. J. Phys. Chem. Lett. 12, 5201–5207 (2021).
Guerrero, L. et al. Photochemical regulation of DNA-binding specificity of MyoD. Angew. Chem. Int. Ed. 44, 7778–7782 (2005).
Guerrero, L., Smart, O. S., Woolley, G. A. & Allemann, R. K. Photocontrol of DNA binding specificity of a miniature engrailed homeodomain. J. Am. Chem. Soc. 127, 15624–15629 (2005).
Woolley, G. A. et al. Reversible photocontrol of DNA binding by a designed GCN4-bZIP protein. Biochemistry 45, 6075–6084 (2006).
Kneissl, S., Loveridge, E. J., Williams, C., Crump, M. P. & Allemann, R. K. Photocontrollable peptide-based switches target the anti-apoptotic protein Bcl-x L. ChemBioChem 9, 3046–3054 (2008).
Zhang, F., Timm, K. A., Arndt, K. M. & Woolley, G. A. Photocontrol of coiled-coil proteins in living cells. Angew. Chem. Int. Ed. 49, 3943–3946 (2010).
Nevola, L. et al. Light-regulated stapled peptides to inhibit protein-protein interactions involved in clathrin-mediated endocytosis. Angew. Chem. Int. Ed. 52, 7704–7708 (2013).
Martín-Quirós, A. et al. Absence of a stable secondary structure is not a limitation for photoswitchable inhibitors of β-arrestin/β-adaptin 2 protein–protein interaction. Chem. Biol. 22, 31–37 (2015).
Babalhavaeji, A. & Woolley, G. A. Modular design of optically controlled protein affinity reagents. Chem. Commun. 54, 1591–1594 (2018).
Albert, L. et al. Modulating protein–protein interactions with visible-light-responsive peptide backbone photoswitches. ChemBioChem 20, 1417–1429 (2019).
Jankovic, B. et al. Photocontrolling protein–peptide interactions: from minimal perturbation to complete unbinding. J. Am. Chem. Soc. 141, 10702–10710 (2019).
Myrhammar, A., Rosik, D. & Karlström, A. E. Photocontrolled reversible binding between the protein A-derived Z domain and immunoglobulin G. Bioconjug. Chem. 31, 622–630 (2020).
Bozovic, O. et al. Real-time observation of ligand-induced allosteric transitions in a PDZ domain. Proc. Natl Acad. Sci. USA 117, 26031–26039 (2020).
Day, K. et al. Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptides. J. Mater. Chem. B 8, 7413–7427 (2020).
Jankovic, B., Bozovic, O. & Hamm, P. Intrinsic dynamics of protein–peptide unbinding. Biochemistry 60, 1755–1763 (2021).
Beharry, A. A. & Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011).
Borisenko, V. & Woolley, G. A. Reversibility of conformational switching in light-sensitive peptides. J. Photochem. Photobiol. A 173, 21–28 (2005).
Nägele, T., Hoche, R., Zinth, W. & Wachtveitl, J. Femtosecond photoisomerization of cis-azobenzene. Chem. Phys. Lett. 272, 489–495 (1997).
Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).
Dong, M. et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 139, 13483–13486 (2017).
Zhang, Z., Burns, D. C., Kumita, J. R., Smart, O. S. & Woolley, G. A. A water-soluble azobenzene cross-linker for photocontrol of peptide conformation. Bioconjugate Chem. 14, 824–829 (2003).
Sadovski, O., Beharry, A. A., Zhang, F. & Woolley, G. A. Spectral tuning of azobenzene photoswitches for biological applications. Angew. Chem. Int. Ed. 48, 1484–1486 (2009).
Broichhagen, J., Frank, J. A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).
Ankenbruck, N., Courtney, T., Naro, Y. & Deiters, A. Optochemical control of biological processes in cells and animals. Angew. Chem. Int. Ed. 57, 2768–2798 (2018).
Zhu, M. & Zhou, H. Azobenzene-based small molecular photoswitches for protein modulation. Org. Biomol. Chem. 16, 8434–8445 (2018).
Hüll, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018).
Albert, L. & Vázquez, O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem. Commun. 55, 10192–10213 (2019).
Paoletti, P., Ellis-Davies, G. C. & Mourot, A. Optical control of neuronal ion channels and receptors. Nat. Rev. Neurosci. 20, 514–532 (2019).
Peddie, V. & Abell, A. D. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. J. Photochem. Photobiol. C 40, 1–20 (2019).
Beharry, A. A., Wong, L., Tropepe, V. & Woolley, G. A. Fluorescence imaging of azobenzene photoswitching in vivo. Angew. Chem. Int. Ed. 50, 1325–1327 (2011).
Behrendt, R. et al. Photomodulation of the conformation of cyclic peptides with azobenzene moieties in the peptide backbone. Angew. Chem. Int. Ed. 38, 2771–2774 (1999).
Spörlein, S. et al. Ultrafast spectroscopy reveals subnanosecond peptide conformational dynamics and validates molecular dynamics simulation. Proc. Natl Acad. Sci. USA 99, 7998–8002 (2002).
Bredenbeck, J. et al. Picosecond conformational transition and equilibration of a cyclic peptide. Proc. Natl Acad. Sci. USA 100, 6452–6457 (2003).
Aemissegger, A., Krautler, V., van Gunsteren, W. F. & Hilvert, D. A photoinducible beta-hairpin. J. Am. Chem. Soc. 127, 2929–2936 (2005).
Rehm, S., Lenz, M. O., Mensch, S., Schwalbe, H. & Wachtveitl, J. Ultrafast spectroscopy of a photoswitchable 30-amino acid de novo synthesized peptide. Chem. Phys. 323, 28–35 (2005).
Schrader, T. E. et al. Light-triggered β-hairpin folding and unfolding. Proc. Natl Acad. Sci. USA 104, 15729–15734 (2007).
Rampp, M. S. et al. Time-resolved infrared studies of the unfolding of a light triggered β-hairpin peptide. Chem. Phys. 512, 116–121 (2018).
Kumita, J. R., Smart, O. S. & Woolley, G. A. Photo-control of helix content in a short peptide. Proc. Natl Acad. Sci. USA 97, 3803–3808 (2000).
Flint, D. G., Kumita, J. R., Smart, O. S. & Woolley, G. A. Using an azobenzene cross-linker to either increase or decrease peptide helix content upon trans-to-cis photoisomerization. Chem. Biol. 9, 391–397 (2002).
Woolley, G. A. Photocontrolling peptide alpha helices. Acc. Chem. Res. 38, 486–493 (2005).
Chen, E., Kumita, J. R., Woolley, G. A. & Kliger, D. S. The kinetics of helix unfolding of an azobenzene cross-linked peptide probed by nanosecond time-resolved optical rotatory dispersion. J. Am. Chem. Soc. 125, 12443–12449 (2003).
Bredenbeck, J., Helbing, J., Kumita, J. R., Woolley, G. A. & Hamm, P. α-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy. Proc. Natl Acad. Sci. USA 102, 2379–2384 (2005).
Ihalainen, J. A. et al. Folding and unfolding of a photoswitchable peptide from picoseconds to microseconds. Proc. Natl Acad. Sci. USA 104, 5383–5388 (2007).
Ihalainen, J. A. et al. α-Helix folding in the presence of structural constraints. Proc. Natl Acad. Sci. USA 105, 9588–9593 (2008).
Zhang, F. et al. Structure-based approach to the photocontrol of protein folding. J. Am. Chem. Soc. 131, 2283–2289 (2009).
Waldauer, S. A., Stucki-Buchli, B., Frey, L. & Hamm, P. Effect of viscogens on the kinetic response of a photoperturbed allosteric protein. J. Chem. Phys. 141, 22D514 (2014).
Lee, H.-J. & Zheng, J. J. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun. Signal. 8, 8 (2010).
Ivarsson, Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett. 586, 2638–2647 (2012).
Morais Cabral, J. H. et al. Crystal structure of a PDZ domain. Nature 382, 649–652 (1996).
Basdevant, N., Weinstein, H. & Ceruso, M. Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study. J. Am. Chem. Soc. 128, 12766–12777 (2006).
Münz, M., Hein, J. & Biggin, P. C. The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput. Biol. 8, e1002749 (2012).
Gerek, Z. N., Keskin, O. & Ozkan, S. B. Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior. Proteins 77, 796–811 (2009).
Tonikian, R. et al. A specificity map for the PDZ domain family. PLoS Biol. 6, 2043–2059 (2008).
te Velthuis, A. J., Sakalis, P. A., Fowler, D. A. & Bagowski, C. P. Genome-wide analysis of PDZ domain binding reveals inherent functional overlap within the PDZ interaction network. PLoS ONE 6, e16047 (2011).
Petit, C. M., Zhang, J., Sapienza, P. J., Fuentes, E. J. & Lee, A. L. Hidden dynamic allostery in a PDZ domain. Proc. Natl Acad. Sci. USA 106, 18249–18254 (2009).
Fuentes, E. J., Gilmore, S. A., Mauldin, R. V. & Lee, A. L. Evaluation of energetic and dynamic coupling networks in a PDZ domain protein. J. Mol. Biol. 364, 337–351 (2006).
Li, J., Callaway, D. J. E. & Bu, Z. Ezrin induces long-range interdomain allostery in the scaffolding protein NHERF1. J. Mol. Biol. 392, 166–180 (2009).
Fuentes, E. J., Der, C. J. & Lee, A. L. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J. Mol. Biol. 335, 1105–1115 (2004).
Richards, F. M. On the enzymic activity of subtilisin-modified ribonuclease. Proc. Natl Acad. Sci. USA 44, 162–166 (1958).
Roberts, G. C. K., Dennis, E. A., Mwadow, D. H., Cohen, J. S. & Oleg, J. The mechanism of action of ribonuclease. Proc. Natl Acad. Sci. USA 62, 1151–1158 (1969).
Richards, F. M. & Vithayathil, P. J. The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J. Biol. Chem. 234, 1459–1465 (1959).
Wlodawer, A. & Sjolin, L. Hydrogen exchange in RNase A: neutron diffraction study. Proc. Natl Acad. Sci. USA 79, 1418–1422 (1982).
Goldberg, J. M. & Baldwin, R. L. A specific transition state for S-peptide combining with folded S-protein and then refolding. Proc. Natl Acad. Sci. USA 96, 2019–2024 (1999).
Bachmann, A., Wildemann, D., Praetorius, F., Fischer, G. & Kiefhaber, T. Mapping backbone and side-chain interactions in the transition state of a coupled protein folding and binding reaction. Proc. Natl Acad. Sci. USA 108, 3952–3957 (2011).
Luitz, M. P., Bomblies, R. & Zacharias, M. Comparative molecular dynamics analysis of RNase-S complex formation. Biophys. J. 113, 1466–1474 (2017).
Schreier, A. A. & Baldwin, R. L. Mechanism of dissociation of s-peptide from ribonuclease. Biochemistry 16, 4203–4209 (1977).
Hamm, P., Ohline, S. M. & Zinth, W. Vibrational cooling after ultrafast photoisomerization of azobenzene measured by femtosecond infrared spectroscopy. J. Chem. Phys. 106, 519–529 (1997).
Baumann, T. et al. Site-resolved observation of vibrational energy transfer using a genetically encoded ultrafast heater. Angew. Chem. Int. Ed. 58, 2899–2903 (2019).
Barth, A. & Zscherp, C. What vibrations tell us about proteins. Quart. Rev. Biophys. 35, 369–430 (2002).
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).
Dill, K. A. & Chan, H. S. From levinthal to pathways to funnels: the “new view” of protein folding kinetics. Nat. Struct. Biol. 4, 10–19 (1997).
Stock, G. & Hamm, P. A nonequilibrium approach to allosteric communication. Phil. Trans. R. Soc. B 373, 20170187 (2018).
Buchenberg, S., Sittel, F. & Stock, G. Time-resolved observation of protein allosteric communication. Proc. Natl Acad. Sci. USA 114, E6804–E6811 (2017).
Buhrke, D., Oppelt, K. T., Heckmeier, P. J., Fernandez-Teran, R. & Hamm, P. Nanosecond protein dynamics in a red/green cyanobacteriochrome revealed by transient IR spectroscopy. J. Chem. Phys. 153, 245101 (2020).
Doyle, D. A. et al. Crystal structures of a complexed and peptide-free membrane protein- binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076 (1996).
Ballif, B. A., Carey, G. R., Sunyaev, S. R. & Gygi, S. P. Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J. Proteome Res. 7, 311–318 (2008).
Zhang, J., Petit, C. M., King, D. S. & Lee, A. L. Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK). J. Biol. Chem. 286, 41776–41785 (2011).
Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).
Morando, M. A. et al. Conformational selection and induced fit mechanisms in the binding of an anticancer drug to the c-Src kinase. Sci. Rep. 6, 24439 (2016).
Vogt, A. D. & DiCera, E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 41, 5894–5902 (2012).
Gianni, S., Dogan, J. & Jemth, P. Distinguishing induced fit from conformational selection. Biophys. Chem. 189, 33–39 (2014).
Hammes, G. G., Chang, Y.-C. & Oas, T. G. Conformational selection or induced fit: a flux description of reaction mechanism. Proc. Natl Acad. Sci. USA 106, 13737–13741 (2009).
Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).
Häusser, M. Optogenetics: the age of light. Nat. Methods 11, 1012–1014 (2014).
Hoppmann, C. et al. Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew. Chem. Int. Ed. 53, 3932–3936 (2014).
Hoppmann, C., Maslennikov, I., Choe, S. & Wang, L. In situ formation of an azo bridge on proteins controllable by visible light. J. Am. Chem. Soc. 137, 11218–11221 (2015).
Koziol, K. L., Johnson, P. J. M., Stucki-Buchli, B., Waldauer, S. A. & Hamm, P. Fast infrared spectroscopy of protein dynamics: advancing sensitivity and selectivity. Curr. Opin. Struct. Biol. 34, 1–6 (2015).
Murphy, R. E., Cook, F. H. & Sakai, H. Time-resolved Fourier spectroscopy. J. Opt. Soc. Am. 65, 600–604 (1975).
Uhmann, W., Becker, A., Taran, C. & Siebert, F. Time-resolved FT-IR absorption-spectroscopy using a step-scan interferometer. Appl. Spectrosc. 45, 390–397 (1991).
Gerwert, K. Molecular reaction mechanisms of proteins monitored by time-resolved FT-IR difference. Biol. Chem. 380, 931–935 (1999).
Radu, I., Schleeger, M., Bolwien, C. & Heberle, J. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. Photochem. Photobiol. Sci. 8, 1517–1528 (2009).
Ritter, E. et al. Time-resolved infrared spectroscopic techniques as applied to channel rhodopsin. Front. Mol. Biosci. 2, 38 (2015).
Zhang, L., Tian, G., Li, J. & Yu, B. Applications of absorption spectroscopy using quantum cascade lasers. Appl. Spectrosc. 68, 1095–1107 (2014).
Schultz, B. J., Mohrmann, H., Lorenz-Fonfria, V. A. & Heberle, J. Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10 ns to 1 s. Spectrochim. Acta A 188, 666–674 (2018).
Stritt, P., Jawurek, M. & Hauser, K. Application of tunable quantum cascade lasers to monitor dynamics of bacteriorhodopsin in the mid-IR spectral range. Biomed. Spectrosc. Imaging 9, 55–61 (2020).
Klocke, J. L. et al. Single-shot sub-microsecond mid-infrared spectroscopy on protein reactions with quantum cascade laser frequency combs. Anal. Chem. 90, 10494–10500 (2018).
Hamm, P., Kaindl, R. A. & Stenger, J. Noise suppression in femtosecond mid-infrared light sources. Opt. Lett. 25, 1798–1800 (2000).
Bredenbeck, J., Helbing, J. & Hamm, P. Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy. Rev. Sci. Instrum. 75, 4462–4466 (2004).
Greetham, G. M. et al. A 100 kHz time-resolved multiple-probe femtosecond to second infrared absorption spectrometer. Appl. Spectrosc. 70, 645–653 (2016).
Rau, H. Spectroscopic properties of organic azo compounds. Angew. Chem. Int. Ed. Engl. 12, 224–235 (1973).
Hobson, M. P. & Lasenby, A. N. The entropic prior for distributions with positive and negative values. Mon. Not. R. Astron. Soc. 298, 905–908 (1998).
Kumar, A. T. N., Zhu, L., Christian, J. F., Demidov, A. A. & Champion, P. M. On the rate distribution analysis of kinetic data using the maximum entropy method: applications to myoglobin relaxation on the nanosecond and femtosecond timescales. J. Phys. Chem. B 105, 7847–7856 (2001).
Lórenz-Fonfría, V. A. & Kandori, H. Transformation of time-resolved spectra to lifetime-resolved spectra by maximum entropy inversion of the Laplace transform. Appl. Spectrosc. 60, 407–417 (2006).
Shaw, D. E. et al. Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–346 (2010).
Bowman, G. R., Pande, V. S. & Noe, F. An Introduction to Markov State Models (Springer, 2013).
Pande, V. S., Beauchamp, K. & Bowman, G. R. Everything you wanted to know about Markov state models but were afraid to ask. Methods 52, 99–105 (2010).
Prinz, J.-H. et al. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011).
Sengupta, U. & Strodel, B. Markov models for the elucidation of allosteric regulation. Phil. Trans. R. Soc. B 373, 20170178 (2018).
Acknowledgements
The authors thank their co-workers in this project, in particular, B. Buchli, S. Waldauer, R. Walser, O. Zerbe, R. Pfister, K. Koziol, P. J. M. Johnson, C. Zanobini, J. Ruf and D. Buhrke, as well as the groups of G. Stock, A. Caflisch and B. Schuler for their numerous contributions. The authors also thank A. Woolley, who got them started in an initial phase of the project. The authors’ work has been supported by a European Research Council (ERC) Advanced Investigator Grant (DYNALLO) and the Swiss National Science Foundation (SNF) through the NCCR MUST and grant numbers 200021_165789/1 and 200020B_188694/1.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks J. Wachtveitl, who co-reviewed with C. Slavov; and L. Chen for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bozovic, O., Jankovic, B. & Hamm, P. Using azobenzene photocontrol to set proteins in motion. Nat Rev Chem 6, 112–124 (2022). https://doi.org/10.1038/s41570-021-00338-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-021-00338-6
This article is cited by
-
Azobenzene-based ultrathin peptoid nanoribbons for the potential on highly efficient artificial light-harvesting
Science China Chemistry (2024)
-
Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography
Nature Communications (2023)