Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances and opportunities in the exciting world of azobenzenes

Abstract

Azobenzenes are archetypal molecules that have a central role in fundamental and applied research. Over the course of almost two centuries, the area of azobenzenes has witnessed great achievements; azobenzenes have evolved from simple dyes to ‘little engines’ and have become ubiquitous in many aspects of our lives, ranging from textiles, cosmetics, food and medicine to energy and photonics. Despite their long history, azobenzenes continue to arouse academic interest, while being intensively produced for industrial purposes, owing to their rich chemistry, versatile and straightforward design, robust photoswitching process and biodegradability. The development of azobenzenes has stimulated the production of new coloured and light-responsive materials with various applications, and their use continues to expand towards new high-tech applications. In this Review, we highlight the latest achievements in the synthesis of red-light-responsive azobenzenes and the emerging application areas of photopharmacology, photoswitchable adhesives and biodegradable materials for drug delivery. We show how the synthetic versatility and adaptive properties of azobenzenes continue to inspire new research directions, with limits imposed only by one’s imagination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of azobenzenes from common dyes to ‘little engines’.
Fig. 2: Photoisomerization mechanism of azobenzene.
Fig. 3: Strategies for the synthesis of red-light-photoresponsive azobenzenes.
Fig. 4: Azologization and azo extension of bioactive molecules.
Fig. 5: Strategies for glueing different surfaces.
Fig. 6: Degradation of azobenzenes under the action of reducing agents.

Similar content being viewed by others

References

  1. Mitscherlich, E. Ueber das Stickstoffbenzid. Ann. Pharm. 12, 311–314 (1834).

    Article  Google Scholar 

  2. Bafana, A., Devi, S. S. & Chakrabarti, T. Azo dyes: past, present and the future. Environ. Rev. 19, 350–371 (2011).

    Article  CAS  Google Scholar 

  3. Hartley, G. S. The cis-form of azobenzene. Nature 140, 281–281 (1937).

    Article  CAS  Google Scholar 

  4. Beharry, A. A. & Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Jerca, F. A. et al. in Polymer and Photonic Materials Towards Biomedical Breakthroughs (eds Van Hoorick, J. et al.) 3–47 (Springer, 2018).

  6. Besson, E., Mehdi, A., Lerner, D. A., Reyé, C. & Corriu, R. J. P. Photoresponsive ordered hybrid materials containing a bridged azobenzene group. J. Mater. Chem. 15, 803–809 (2005).

    Article  CAS  Google Scholar 

  7. Khayyami, A. & Karppinen, M. Reversible photoswitching function in atomic/molecular-layer-deposited ZnO:azobenzene superlattice thin films. Chem. Mater. 30, 5904–5911 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanj, A. B., Müller, K. & Heinke, L. Stimuli-responsive metal-organic frameworks with photoswitchable azobenzene side groups. Macromol. Rapid Commun. 39, 1700239 (2018).

    Article  Google Scholar 

  9. Benkhaya, S., M’Rabet, S. & El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6, e03271 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brzozowski, L. & Sargent, E. H. Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci. Mater. Electron. 12, 483–489 (2001).

    Article  CAS  Google Scholar 

  11. He, J. et al. All-optical reversible control of integrated resonant cavity by a self-assembled azobenzene monolayer. Opt. Express 28, 22462–22477 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Yager, K. G. & Barrett, C. J. in Smart Light-Responsive Materials (eds Zhao, Y. & Ikeda, T.) 1–46 (Wiley, 2009).

  13. Russew, M.-M. & Hecht, S. Photoswitches: from molecules to materials. Adv. Mater. 22, 3348–3360 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Pietsch, C., Hoogenboom, R. & Schubert, U. S. Soluble polymeric dual sensor for temperature and pH value. Angew. Chem. Int. Ed. 48, 5653–5656 (2009).

    Article  CAS  Google Scholar 

  15. Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Photoresponsive polymers on the move. Chem 3, 533–536 (2017).

    Article  CAS  Google Scholar 

  16. Jerca, V. V. & Hoogenboom, R. Photocontrol in complex polymeric materials: fact or illusion? Angew. Chem. Int. Ed. 57, 7945–7947 (2018).

    Article  CAS  Google Scholar 

  17. Cabré, G. et al. Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nat. Commun. 10, 907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chi, X. et al. Azobenzene-bridged expanded “Texas-sized” box: a dual-responsive receptor for aryl dianion encapsulation. J. Am. Chem. Soc. 141, 6468–6472 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Chu, Z. et al. Supramolecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 141, 1949–1960 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Galanti, A. et al. A new class of rigid multi(azobenzene) switches featuring electronic decoupling: unravelling the isomerization in individual photochromes. J. Am. Chem. Soc. 141, 9273–9283 (2019).

    Article  PubMed  Google Scholar 

  21. Maier, M. S. et al. Oxidative approach enables efficient access to cyclic azobenzenes. J. Am. Chem. Soc. 141, 17295–17304 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Bléger, D., Schwarz, J., Brouwer, A. M. & Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc. 134, 20597–20600 (2012).

    Article  PubMed  Google Scholar 

  24. Siewertsen, R. et al. Highly efficient reversible ZE photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands. J. Am. Chem. Soc. 131, 15594–15595 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Donthamsetti, P. C. et al. Genetically targeted optical control of an endogenous G protein-coupled receptor. J. Am. Chem. Soc. 141, 11522–11530 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leippe, P. et al. Transformation of receptor tyrosine kinases into glutamate receptors and photoreceptors. Angew. Chem. Int. Ed. 59, 6720–6723 (2020).

    Article  CAS  Google Scholar 

  27. Morstein, J. et al. Optical control of sphingosine-1-phosphate formation and function. Nat. Chem. Biol. 15, 623–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv, J.-a et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Saydjari, A. K., Weis, P. & Wu, S. Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 7, 1601622 (2017).

    Article  Google Scholar 

  30. Zhou, H. et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 9, 145–151 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crespi, S., Simeth, N. A. & König, B. Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem. 3, 133–146 (2019).

    Article  CAS  Google Scholar 

  33. Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4176 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Yesodha, S. K., Sadashiva Pillai, C. K. & Tsutsumi, N. Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog. Polym. Sci. 29, 45–74 (2004).

    Article  CAS  Google Scholar 

  35. Baroncini, M. & Bergamini, G. Azobenzene: a photoactive building block for supramolecular architectures. Chem. Rec. 17, 700–712 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Baroncini, M., Groppi, J., Corra, S., Silvi, S. & Credi, A. Light-responsive (supra)molecular architectures: recent advances. Adv. Opt. Mater. 7, 1900392 (2019).

    Article  Google Scholar 

  37. Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Rau, H. in Photoreactive Organic Thin Films (eds Sekkat, Z. & Knoll, W.) 3–47 (Academic Press, 2002).

  39. Knoll, H. in CRC Handbook of Organic Photochemistry and Photobiology (eds Horspool, W. M. & Lenci, F.) (CRC Press, 2003).

  40. Ladányi, V. et al. Azobenzene photoisomerization quantum yields in methanol redetermined. Photochem. Photobiol. Sci. 16, 1757–1761 (2017).

    Article  PubMed  Google Scholar 

  41. Vetráková, Ľ. et al. The absorption spectrum of cis-azobenzene. Photochem. Photobiol. Sci. 16, 1749–1756 (2017).

    Article  PubMed  Google Scholar 

  42. Jaumann, E. A. et al. A combined optical and EPR spectroscopy study: azobenzene-based biradicals as reversible molecular photoswitches. Phys. Chem. Chem. Phys. 19, 17263–17269 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Jerca, F. A. et al. Novel aspects regarding the photochemistry of azo-derivatives substituted with strong acceptor groups. J. Phys. Chem. C 119, 10538–10549 (2015).

    Article  CAS  Google Scholar 

  44. Spiridon, M. C., Jerca, F. A., Jerca, V. V., Vasilescu, D. S. & Vuluga, D. M. 2-Oxazoline based photo-responsive azo-polymers. Synthesis, characterization and isomerization kinetics. Eur. Polym. J. 49, 452–463 (2013).

    Article  CAS  Google Scholar 

  45. Moldt, T. et al. Differing isomerization kinetics of azobenzene-functionalized self-assembled monolayers in ambient air and in vacuum. Langmuir 32, 10795–10801 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Pesce, L., Perego, C., Grommet, A. B., Klajn, R. & Pavan, G. M. Molecular factors controlling the isomerization of azobenzenes in the cavity of a flexible coordination cage. J. Am. Chem. Soc. 142, 9792–9802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haberhauer, G. & Kallweit, C. A bridged azobenzene derivative as a reversible, light-induced chirality switch. Angew. Chem. Int. Ed. 49, 2418–2421 (2010).

    Article  CAS  Google Scholar 

  48. Quick, M. et al. Photoisomerization dynamics and pathways of trans- and cis-azobenzene in solution from broadband femtosecond spectroscopies and calculations. J. Phys. Chem. B 118, 8756–8771 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Otolski, C. J., Raj, A. M., Ramamurthy, V. & Elles, C. G. Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes. Chem. Sci. 11, 9513–9523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Conti, I., Garavelli, M. & Orlandi, G. The different photoisomerization efficiency of azobenzene in the lowest nπ* and ππ* singlets: the role of a phantom state. J. Am. Chem. Soc. 130, 5216–5230 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Rau, H. & Lueddecke, E. On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. J. Am. Chem. Soc. 104, 1616–1620 (1982).

    Article  CAS  Google Scholar 

  52. Schultz, T. et al. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc. 125, 8098–8099 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Lednev, I. K., Ye, T.-Q., Abbott, L. C., Hester, R. E. & Moore, J. N. Photoisomerization of a capped azobenzene in solution probed by ultrafast time-resolved electronic absorption spectroscopy. J. Phys. Chem. A 102, 9161–9166 (1998).

    Article  CAS  Google Scholar 

  54. Lednev, I. K. et al. Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength. Chem. Phys. Lett. 290, 68–74 (1998).

    Article  CAS  Google Scholar 

  55. Fujino, T. & Tahara, T. Picosecond time-resolved Raman study of trans-azobenzene. J. Phys. Chem. A 104, 4203–4210 (2000).

    Article  CAS  Google Scholar 

  56. Chang, C.-W., Lu, Y.-C., Wang, T.-T. & Diau, E. W.-G. Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study. J. Am. Chem. Soc. 126, 10109–10118 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Tavadze, P. et al. A machine-driven hunt for global reaction coordinates of azobenzene photoisomerization. J. Am. Chem. Soc. 140, 285–290 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Tan, E. M. M. et al. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy. Nat. Commun. 6, 5860 (2015).

    Article  PubMed  Google Scholar 

  59. Casellas, J., Bearpark, M. J. & Reguero, M. Excited-state decay in the photoisomerisation of azobenzene: a new balance between mechanisms. ChemPhysChem 17, 3068–3079 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L. & Orlandi, G. On the mechanism of the cis–trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. J. Am. Chem. Soc. 126, 3234–3243 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Nenov, A. et al. UV-light-induced vibrational coherences: the key to understand Kasha rule violation in trans-azobenzene. J. Phys. Chem. Lett. 9, 1534–1541 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Aleotti, F. et al. Multidimensional potential energy surfaces resolved at the RASPT2 level for accurate photoinduced isomerization dynamics of azobenzene. J. Chem. Theory Comput. 15, 6813–6823 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, J. K., Bannwarth, C., Liang, R., Hohenstein, E. G. & Martínez, T. J. Nonadiabatic dynamics simulation of the wavelength-dependent photochemistry of azobenzene excited to the nπ* and ππ* excited states. J. Am. Chem. Soc. 142, 20680–20690 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Ciminelli, C., Granucci, G. & Persico, M. Are azobenzenophanes rotation-restricted? J. Chem. Phys. 123, 174317 (2005).

    Article  PubMed  Google Scholar 

  65. Nonnenberg, C., Gaub, H. & Frank, I. First-principles simulation of the photoreaction of a capped azobenzene: the rotational pathway is feasible. ChemPhysChem 7, 1455–1461 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Böckmann, M., Doltsinis, N. L. & Marx, D. Unraveling a chemically enhanced photoswitch: bridged azobenzene. Angew. Chem. Int. Ed. 49, 3382–3384 (2010).

    Article  Google Scholar 

  67. Siewertsen, R., Schönborn, J. B., Hartke, B., Renth, F. & Temps, F. Superior ZE and EZ photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm. Phys. Chem. Chem. Phys. 13, 1054–1063 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Jerca, V. V. et al. Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups. Opt. Mater. 48, 160–164 (2015).

    Article  CAS  Google Scholar 

  69. Dokić, J. et al. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. J. Phys. Chem. A 113, 6763–6773 (2009).

    Article  PubMed  Google Scholar 

  70. García-Amorós, J. & Velasco, D. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem. 8, 1003–1017 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Garcia-Amorós, J. et al. Activation volumes for cis-to-trans isomerisation reactions of azophenols: a clear mechanistic indicator? Phys. Chem. Chem. Phys. 20, 1286–1292 (2018).

    Article  PubMed  Google Scholar 

  72. Garcia-Amorós, J., Sánchez-Ferrer, A., Massad, W. A., Nonell, S. & Velasco, D. Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes. Phys. Chem. Chem. Phys. 12, 13238–13242 (2010).

    Article  PubMed  Google Scholar 

  73. Garcia-Amorós, J., Díaz-Lobo, M., Nonell, S. & Velasco, D. Fastest thermal isomerization of an azobenzene for nanosecond photoswitching applications under physiological conditions. Angew. Chem. Int. Ed. 51, 12820–12823 (2012).

    Article  Google Scholar 

  74. Garcia-Amorós, J. et al. Picosecond switchable azo dyes. Chem. Eur. J. 25, 7726–7732 (2019).

    Article  PubMed  Google Scholar 

  75. Garcia-Amorós, J., Bučinskas, A., Reig, M., Nonell, S. & Velasco, D. Fastest molecular photochromic switches based on nanosecond isomerizing benzothiazolium azophenolic salts. J. Mater. Chem. C 2, 474–480 (2014).

    Article  Google Scholar 

  76. Joshi, N. K., Fuyuki, M. & Wada, A. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene. J. Phys. Chem. B 118, 1891–1899 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Yan, K., Chen, M., Zhou, S. & Wu, L. Self-assembly of upconversion nanoclusters with an amphiphilic copolymer for near-infrared- and temperature-triggered drug release. RSC Adv. 6, 85293–85302 (2016).

    Article  CAS  Google Scholar 

  78. Yao, C. et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 28, 9341–9348 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, J., Bu, W., Pan, L. & Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013).

    Article  CAS  Google Scholar 

  80. Zhao, T. et al. Near-infrared triggered decomposition of nanocapsules with high tumor accumulation and stimuli responsive fast elimination. Angew. Chem. Int. Ed. 57, 2611–2615 (2018).

    Article  CAS  Google Scholar 

  81. Mandl, G. A., Rojas-Gutierrez, P. A. & Capobianco, J. A. A NIR-responsive azobenzene-based supramolecular hydrogel using upconverting nanoparticles. Chem. Commun. 54, 5847–5850 (2018).

    Article  CAS  Google Scholar 

  82. Jalani, G., Tam, V., Vetrone, F. & Cerruti, M. Seeing, targeting and delivering with upconverting nanoparticles. J. Am. Chem. Soc. 140, 10923–10931 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Wu, S., Blinco, J. P. & Barner-Kowollik, C. Near-infrared photoinduced reactions assisted by upconverting nanoparticles. Chem. Eur. J. 23, 8325–8332 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Rumi, M. & Perry, J. W. Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photon. 2, 451–518 (2010).

    Article  CAS  Google Scholar 

  85. Breukers, R. D., Janssens, S., Raymond, S. G., Bhuiyan, M. D. H. & Kay, A. J. Synthesis and characterization of strongly two photon absorbing and photoswitchable azo molecules. Dyes Pigm. 112, 17–23 (2015).

    Article  CAS  Google Scholar 

  86. Magennis, S. W., Mackay, F. S., Jones, A. C., Tait, K. M. & Sadler, P. J. Two-photon-induced photoisomerization of an azo dye. Chem. Mater. 17, 2059–2062 (2005).

    Article  CAS  Google Scholar 

  87. Carroll, E. C. et al. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc. Natl Acad. Sci. USA 112, E776–E785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Izquierdo-Serra, M. et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J. Am. Chem. Soc. 136, 8693–8701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gascón-Moya, M. et al. An optimized glutamate receptor photoswitch with sensitized azobenzene isomerization. J. Org. Chem. 80, 9915–9925 (2015).

    Article  PubMed  Google Scholar 

  90. Jerca, F. A. et al. Simultaneous two and three photon resonant enhancement of third-order NLO susceptibility in an azo-dye functionalized polymer film. Phys. Chem. Chem. Phys. 15, 7060–7063 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Nicolescu, F. A., Jerca, V. V., Vuluga, D. M. & Vasilescu, D. S. Synthesis and characterization of side-chain poly(methacrylate)s bearing new azo-moieties. Polym. Bull. 65, 905–916 (2010).

    Article  CAS  Google Scholar 

  92. Samanta, S., Qin, C., Lough, A. J. & Woolley, G. A. Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative. Angew. Chem. Int. Ed. 51, 6452–6455 (2012).

    Article  CAS  Google Scholar 

  93. Moormann, W. et al. Efficient conversion of light to chemical energy: directional, chiral photoswitches with very high quantum yields. Angew. Chem. Int. Ed. 59, 15081–15086 (2020).

    Article  CAS  Google Scholar 

  94. Hammerich, M. et al. Heterodiazocines: synthesis and photochromic properties, trans to cis switching within the bio-optical window. J. Am. Chem. Soc. 138, 13111–13114 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Schehr, M. et al. 2-Azo-, 2-diazocine-thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: limitations and pitfalls of the photoswitchable inhibitor approach. Photochem. Photobiol. Sci. 18, 1398–1407 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Lentes, P. et al. Nitrogen bridged diazocines: photochromes switching within the near-infrared region with high quantum yields in organic solvents and in water. J. Am. Chem. Soc. 141, 13592–13600 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Sadovski, O., Beharry, A. A., Zhang, F. & Woolley, G. A. spectral tuning of azobenzene photoswitches for biological applications. Angew. Chem. Int. Ed. 48, 1484–1486 (2009).

    Article  CAS  Google Scholar 

  98. Konrad, D. B. et al. Computational design and synthesis of a deeply red-shifted and bistable azobenzene. J. Am. Chem. Soc. 142, 6538–6547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Beharry, A. A., Sadovski, O. & Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Samanta, S., McCormick, T. M., Schmidt, S. K., Seferos, D. S. & Woolley, G. A. Robust visible light photoswitching with ortho-thiol substituted azobenzenes. Chem. Commun. 49, 10314–10316 (2013).

    Article  CAS  Google Scholar 

  101. Samanta, S. et al. Photoswitching azo compounds in vivo with red light. J. Am. Chem. Soc. 135, 9777–9784 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Wu, D., Dong, M., Collins, C. V., Babalhavaeji, A. & Woolley, G. A. A red-light azobenzene di-maleimide photoswitch: pros and cons. Adv. Opt. Mater. 4, 1402–1409 (2016).

    Article  CAS  Google Scholar 

  103. Knie, C. et al. ortho-Fluoroazobenzenes: visible light switches with very long-lived Z isomers. Chem. Eur. J. 20, 16492–16501 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Dong, M., Babalhavaeji, A., Hansen, M. J., Kálmán, L. & Woolley, G. A. Red, far-red, and near infrared photoswitches based on azonium ions. Chem. Commun. 51, 12981–12984 (2015).

    Article  CAS  Google Scholar 

  105. Dong, M. et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 139, 13483–13486 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Samanta, S., Babalhavaeji, A., Dong, M.-X. & Woolley, G. A. Photoswitching of ortho-substituted azonium ions by red light in whole blood. Angew. Chem. Int. Ed. 52, 14127–14130 (2013).

    Article  CAS  Google Scholar 

  107. Konrad, D. B., Frank, J. A. & Trauner, D. Synthesis of redshifted azobenzene photoswitches by late-stage functionalization. Chem. Eur. J. 22, 4364–4368 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Hansen, M. J., Lerch, M. M., Szymanski, W. & Feringa, B. L. Direct and versatile synthesis of red-shifted azobenzenes. Angew. Chem. Int. Ed. 55, 13514–13518 (2016).

    Article  CAS  Google Scholar 

  109. Lameijer, L. N. et al. General principles for the design of visible-light-responsive photoswitches: tetra-ortho-chloro-azobenzenes. Angew. Chem. Int. Ed. 9, 21663–21670 (2020).

    Article  Google Scholar 

  110. Velema, W. A., Szymanski, W. & Feringa, B. L. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136, 2178–2191 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Lerch, M. M., Hansen, M. J., van Dam, G. M., Szymanski, W. & Feringa, B. L. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 55, 10978–10999 (2016).

    Article  CAS  Google Scholar 

  112. Mart, R. J. & Allemann, R. K. Azobenzene photocontrol of peptides and proteins. Chem. Commun. 52, 12262–12277 (2016).

    Article  CAS  Google Scholar 

  113. Leippe, P. & Frank, J. A. Designing azobenzene-based tools for controlling neurotransmission. Curr. Opin. Struct. Biol. 57, 23–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Morstein, J., Awale, M., Reymond, J.-L. & Trauner, D. Mapping the azolog space enables the optical control of new biological targets. ACS Cent. Sci. 5, 607–618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hoorens, M. W. H. & Szymanski, W. Reversible, spatial and temporal control over protein activity using light. Trends Biochem. Sci. 43, 567–575 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Schoenberger, M., Damijonaitis, A., Zhang, Z., Nagel, D. & Trauner, D. Development of a new photochromic ion channel blocker via azologization of fomocaine. ACS Chem. Neurosci. 5, 514–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Broichhagen, J., Frank, J. A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Myakishev-Rempel, M. et al. A preliminary study of the safety of red light phototherapy of tissues harboring cancer. Photomed. Laser Surg. 30, 551–558 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Volgraf, M. et al. Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J. Am. Chem. Soc. 129, 260–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Fortin, D. L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Banghart, M. R. et al. Photochromic blockers of voltage-gated potassium channels. Angew. Chem. Int. Ed. 48, 9097–9101 (2009).

    Article  CAS  Google Scholar 

  123. Mourot, A. et al. Tuning photochromic ion channel blockers. ACS Chem. Neurosci. 2, 536–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mourot, A., Tochitsky, I. & Kramer, R. H. Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches. Front. Mol. Neurosci. 6, 5 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tochitsky, I. et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81, 800–813 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Velema, W. A. et al. Ciprofloxacin–photoswitch conjugates: a facile strategy for photopharmacology. Bioconjugate Chem. 26, 2592–2597 (2015).

    Article  CAS  Google Scholar 

  128. Rovira, X. et al. OptoGluNAM4.1, a photoswitchable allosteric antagonist for real-time control of mGlu4 receptor activity. Cell Chem. Biol. 23, 929–934 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Tochitsky, I. et al. How azobenzene photoswitches restore visual responses to the blind retina. Neuron 92, 100–113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Laprell, L. et al. Photopharmacological control of bipolar cells restores visual function in blind mice. J. Clin. Investig. 127, 2598–2611 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wegener, M., Hansen, M. J., Driessen, A. J. M., Szymanski, W. & Feringa, B. L. Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 139, 17979–17986 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bossi, S. et al. A light-controlled allosteric modulator unveils a role for mGlu4 receptors during early stages of ischemia in the rodent cerebellar cortex. Front. Cell Neurosci. 12, 449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Trads, J. B. et al. Sign inversion in photopharmacology: incorporation of cyclic azobenzenes in photoswitchable potassium channel blockers and openers. Angew. Chem. Int. Ed. 58, 15421–15428 (2019).

    Article  CAS  Google Scholar 

  134. Frank, J. A. et al. In vivo photopharmacology enabled by multifunctional fibers. ACS Chem. Neurosci. 11, 3802–3813 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Hinnah, K. et al. Photohormones enable optical control of the peroxisome proliferator-activated receptor γ (PPARγ). J. Med. Chem. 63, 10908–10920 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Morstein, J. et al. Optical control of the nuclear bile acid receptor FXR with a photohormone. Chem. Sci. 11, 429–434 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Broichhagen, J. et al. Allosteric optical control of a class B G-protein-coupled receptor. Angew. Chem. Int. Ed. 55, 5865–5868 (2016).

    Article  CAS  Google Scholar 

  138. DiFrancesco, M. L. et al. Neuronal firing modulation by a membrane-targeted photoswitch. Nat. Nanotechnol. 15, 296–306 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Paoletti, P., Ellis-Davies, G. C. R. & Mourot, A. Optical control of neuronal ion channels and receptors. Nat. Rev. Neurosci. 20, 514–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Broichhagen, J., Jurastow, I., Iwan, K., Kummer, W. & Trauner, D. Optical control of acetylcholinesterase with a tacrine switch. Angew. Chem. Int. Ed. 53, 7657–7660 (2014).

    Article  CAS  Google Scholar 

  141. Stein, M., Breit, A., Fehrentz, T., Gudermann, T. & Trauner, D. Optical control of TRPV1 channels. Angew. Chem. Int. Ed. 52, 9845–9848 (2013).

    Article  CAS  Google Scholar 

  142. Schönberger, M. & Trauner, D. A photochromic agonist for μ-opioid receptors. Angew. Chem. Int. Ed. 53, 3264–3267 (2014).

    Article  Google Scholar 

  143. Mehta, Z. B. et al. Remote control of glucose homeostasis in vivo using photopharmacology. Sci. Rep. 7, 291 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Broichhagen, J. et al. A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem. Commun. 51, 6018–6021 (2015).

    Article  CAS  Google Scholar 

  145. Broichhagen, J. et al. Optical control of insulin release using a photoswitchable sulfonylurea. Nat. Commun. 5, 5116 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Engdahl, A. J. et al. Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Org. Lett. 17, 4546–4549 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Sheldon, J. E., Dcona, M. M., Lyons, C. E., Hackett, J. C. & Hartman, M. C. T. Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Org. Biomol. Chem. 14, 40–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. An, Y. et al. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Front. Chem. Sci. Eng. 14, 880–888 (2020).

    Article  CAS  Google Scholar 

  150. Szymanski, W., Ourailidou, M. E., Velema, W. A., Dekker, F. J. & Feringa, B. L. Light-controlled histone deacetylase (HDAC) inhibitors: towards photopharmacological chemotherapy. Chem. Eur. J. 21, 16517–16524 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Kisselev, A. F. & Groettrup, M. Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr. Opin. Chem. Biol. 23, 16–22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hansen, M. J. et al. Proteasome inhibitors with photocontrolled activity. ChemBioChem 15, 2053–2057 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Gronemeyer, H., Gustafsson, J.-Å. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Velema, W. A. et al. Optical control of antibacterial activity. Nat. Chem. 5, 924–928 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Hansen, M. J., Hille, J. I. C., Szymanski, W., Driessen, A. J. M. & Feringa, B. L. Easily accessible, highly potent, photocontrolled modulators of bacterial communication. Chem 5, 1293–1301 (2019).

    Article  CAS  Google Scholar 

  156. Croll, A. B., Hosseini, N. & Bartlett, M. D. Switchable adhesives for multifunctional interfaces. Adv. Mater. Technol. 4, 1900193 (2019).

    Article  Google Scholar 

  157. Hohl, D. K. & Weder, C. (De)bonding on demand with optically switchable adhesives. Adv. Opt. Mater. 7, 1900230 (2019).

    Article  Google Scholar 

  158. Vapaavuori, J., Laventure, A., Bazuin, C. G., Lebel, O. & Pellerin, C. Submolecular plasticization induced by photons in azobenzene materials. J. Am. Chem. Soc. 137, 13510–13517 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Akiyama, H. & Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 24, 2353–2356 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Akiyama, H. et al. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives. ACS Appl. Mater. Interfaces 6, 7933–7941 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Zhou, Y. et al. Light-switchable polymer adhesive based on photoinduced reversible solid-to-liquid transitions. ACS Macro Lett. 8, 968–972 (2019).

    Article  CAS  Google Scholar 

  162. Ito, S., Yamashita, A., Akiyama, H., Kihara, H. & Yoshida, M. Azobenzene-based (meth)acrylates: controlled radical polymerization, photoresponsive solid–liquid phase transition behavior, and application to reworkable adhesives. Macromolecules 51, 3243–3253 (2018).

    Article  CAS  Google Scholar 

  163. Hoshino, M. et al. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 136, 9158–9164 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Weis, P. et al. Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers. Chem. Eur. J. 25, 10946–10953 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Ito, S. et al. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl. Mater. Interfaces 10, 32649–32658 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Zha, R. H. et al. Photoswitchable nanomaterials based on hierarchically organized siloxane oligomers. Adv. Funct. Mater. 28, 1703952 (2018).

    Article  Google Scholar 

  167. Wu, Z. et al. Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives. J. Am. Chem. Soc. 141, 7385–7390 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Takashima, Y. & Harada, A. Functioning via host–guest interactions. J. Incl. Phenom. Macrocycl. Chem. 87, 313–330 (2017).

    Article  CAS  Google Scholar 

  169. Qu, D.-H., Wang, Q.-C., Zhang, Q.-W., Ma, X. & Tian, H. Photoresponsive host–guest functional systems. Chem. Rev. 115, 7543–7588 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Yamaguchi, H. et al. Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 3, 603 (2012).

    Article  PubMed  Google Scholar 

  171. Takashima, Y. et al. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition. Macromol. Rapid Commun. 35, 1646–1652 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Roling, O., Stricker, L., Voskuhl, J., Lamping, S. & Ravoo, B. J. Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chem. Commun. 52, 1964–1966 (2016).

    Article  CAS  Google Scholar 

  173. Williams, P. E., Walsh-Korb, Z., Jones, S. T., Lan, Y. & Scherman, O. A. Stress dissipation in cucurbit[8]uril ternary complex small molecule adhesives. Langmuir 34, 13104–13109 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Liu, J., Tan, C. S. Y. & Scherman, O. A. Dynamic interfacial adhesion through cucurbit[n]uril molecular recognition. Angew. Chem. Int. Ed. 57, 8854–8858 (2018).

    Article  CAS  Google Scholar 

  175. Bragger, J. L. et al. Investigations into the azo reducing activity of a common colonic microorganism. Int. J. Pharm. 157, 61–71 (1997).

    Article  CAS  Google Scholar 

  176. Stingley, R. L., Zou, W., Heinze, T. M., Chen, H. & Cerniglia, C. E. Metabolism of azo dyes by human skin microbiota. J. Med. Microbiol. 59, 108–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Pandey, A., Singh, P. & Iyengar, L. Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegradation 59, 73–84 (2007).

    Article  CAS  Google Scholar 

  178. Domagk, G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch. Med. Wochenschr. 61, 250–253 (1935).

    Article  CAS  Google Scholar 

  179. Fuller, A. T. Is p-aminobenzenesulphonamide the active agent in prontosil therapy? Lancet 229, 194–198 (1937).

    Article  Google Scholar 

  180. Hoult, J. R. S. Pharmacological and biochemical actions of sulphasalazine. Drugs 32, 18–26 (1986).

    Article  CAS  PubMed  Google Scholar 

  181. Roldo, M. et al. Azo compounds in colon-specific drug delivery. Expert Opin. Drug. Deliv. 4, 547–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Chung, K.-T. Azo dyes and human health: a review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 34, 233–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Schacht, E. et al. Polymers for colon specific drug delivery. J. Control. Rel. 39, 327–338 (1996).

    Article  CAS  Google Scholar 

  184. Saphier, S. & Karton, Y. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation. J. Pharm. Sci. 99, 804–815 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Van Den Mooter, G., Maris, B., Samyn, C., Augustijns, P. & Kinget, R. Use of azo polymers for colon-specific drug delivery. J. Pharm. Sci. 86, 1321–1327 (1997).

    Article  PubMed  Google Scholar 

  186. Gao, S.-Q., Lu, Z.-R., Petri, B., Kopečková, P. & Kopeček, J. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. J. Control. Rel. 110, 323–331 (2006).

    Article  CAS  Google Scholar 

  187. Sharma, R., Rawal, R. K., Malhotra, M., Sharma, A. K. & Bhardwaj, T. R. Design, synthesis and ex-vivo release studies of colon-specific polyphosphazene–anticancer drug conjugates. Bioorg. Med. Chem. 22, 1104–1114 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Samyn, C., Kalala, W., Van den Mooter, G. & Kinget, R. Synthesis and in vitro biodegradation of poly(ether-ester) azo polymers designed for colon targeting. Int. J. Pharm. 121, 211–216 (1995).

    Article  CAS  Google Scholar 

  189. Rao, J. & Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc. 135, 14056–14059 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Eom, T., Yoo, W., Kim, S. & Khan, A. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials 185, 333–347 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Yang, Y.-Y., Grammel, M., Raghavan, A. S., Charron, G. & Hang, H. C. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Chem. Biol. 17, 1212–1222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lei, H. et al. Bioactivatable reductive cleavage of azobenzene for controlling functional dumbbell oligodeoxynucleotides. Bioorg. Chem. 91, 103106 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Wong, A. D., Prinzen, A. L. & Gillies, E. R. Poly(ester amide)s with pendant azobenzenes: multi-responsive self-immolative moieties for modulating polymer assemblies. Polym. Chem. 7, 1871–1881 (2016).

    Article  CAS  Google Scholar 

  194. Leriche, G., Budin, G., Brino, L. & Wagner, A. Optimization of the azobenzene scaffold for reductive cleavage by dithionite; development of an azobenzene cleavable linker for proteomic applications. Eur. J. Org. Chem. 2010, 4360–4364 (2010).

    Google Scholar 

  195. Gonzaga, R. V. et al. Perspectives about self-immolative drug delivery systems. J. Pharm. Sci. 109, 3262–3281 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Wong, A. D., Güngör, T. M. & Gillies, E. R. Multiresponsive azobenzene end-cap for self-immolative polymers. ACS Macro Lett. 3, 1191–1195 (2014).

    Article  CAS  Google Scholar 

  197. Eom, T. et al. An activatable anticancer polymer–drug conjugate based on the self-immolative azobenzene motif. J. Mater. Chem. B 5, 4574–4578 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Offenloch, J. T. et al. Degradable fluorescent single-chain nanoparticles based on metathesis polymers. Chem. Commun. 53, 775–778 (2017).

    Article  CAS  Google Scholar 

  199. Brøndsted, H. & Kopeček, J. I. Hydrogels for site-specific oral drug delivery: synthesis and characterization. Biomaterials 12, 584–592 (1991).

    Article  PubMed  Google Scholar 

  200. Yeh, P.-Y., Berenson, M. M., Samowitz, W. S., Kopečková, P. & Kopecek, J. Site-specific drug delivery and penetration enhancement in the gastrointestinal tract. J. Control. Rel. 36, 109–124 (1995).

    Article  CAS  Google Scholar 

  201. Ghandehari, H., Kopečková, P. & Kopecek, J. In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials 18, 861–872 (1997).

    Article  CAS  PubMed  Google Scholar 

  202. Mutlu, H., Geiselhart, C. M. & Barner-Kowollik, C. Untapped potential for debonding on demand: the wonderful world of azo-compounds. Mater. Horiz. 5, 162–183 (2018).

    Article  CAS  Google Scholar 

  203. Noble, A. III. Zur Geschichte des Azobenzols und des Benzidins. Justus Liebigs Ann. Chem. 98, 253–256 (1856).

    Article  Google Scholar 

  204. Zollinger, H. Color chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments 166 (Wiley, 2003).

  205. Bieth, J., Vratsanos, S. M., Wassermann, N. & Erlanger, B. F. Photoregulation of biological activity by photocromic reagents, II. Inhibitors of acetylcholinesterase. Proc. Natl Acad. Sci. USA 64, 1103–1106 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sackmann, E. Photochemically induced reversible color changes in cholesteric liquid crystals. J. Am. Chem. Soc. 93, 7088–7090 (1971).

    Article  CAS  Google Scholar 

  207. Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13, 2037–2057 (2003).

    Article  CAS  Google Scholar 

  208. Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev. 100, 1847–1874 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Viswanathan, K. N. et al. Surface relief structures on azo polymer films. J. Mater. Chem. 9, 1941–1955 (1999).

    Article  CAS  Google Scholar 

  210. Charra, F., Kajzar, F., Nunzi, J. M., Raimond, P. & Idiart, E. Light-induced second-harmonic generation in azo-dye polymers. Opt. Lett. 18, 941–943 (1993).

    Article  CAS  PubMed  Google Scholar 

  211. Shinkai, S., Ogawa, T., Nakaji, T., Kusano, Y. & Manabe, O. Photocontrolled extraction ability of azobenzene-bridged azacrown ether. Tetrahedron Lett. 20, 4569–4572 (1979).

    Article  Google Scholar 

  212. Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Corra, S., Curcio, M., Baroncini, M., Silvi, S. & Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, 1906064 (2020).

    Article  CAS  Google Scholar 

  214. Xu, W.-C., Sun, S. & Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 58, 9712–9740 (2019).

    Article  CAS  Google Scholar 

  215. Nam, S. & Renganathan, V. Non-enzymatic reduction of azo dyes by NADH. Chemosphere 40, 351–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  216. Griess, P. Vorläufige Notiz über die einwirkung von salpetriger säure auf amidinitro- und aminitrophenylsäure. Ann. Chem. Pharm. 106, 123–125 (1858).

    Article  Google Scholar 

  217. Mills, C. XCIII. — Some new azo-compounds. J. Chem. Soc. Trans. 67, 925–933 (1895).

    Article  CAS  Google Scholar 

  218. Hutchins, R. O., Lamson, D. W., Rua, L., Milewski, C. & Maryanoff, B. Reduction of aromatic nitro compounds with sodium borohydride in dimethyl sulfoxide or sulfolane. Synthesis of azo or azoxy derivatives. J. Org. Chem. 36, 803–806 (1971).

    Article  CAS  Google Scholar 

  219. Ortiz, B., Villanueva, P. & Walls, F. Silver(II) oxide as a reagent. Reactions with aromatic amines and miscellaneous related compounds. J. Org. Chem. 37, 2748–2750 (1972).

    Article  CAS  Google Scholar 

  220. Wallach, O. & Belli, L. Ueber die Umwandlung von Azoxybenzol in Oxyazobenzol. Ber. Dtsch. Chem. Ges. 13, 525–527 (1880).

    Article  Google Scholar 

  221. Merino, E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev. 40, 3835–3853 (2011).

    Article  CAS  PubMed  Google Scholar 

  222. Hamon, F., Djedaini-Pilard, F., Barbot, F. & Len, C. Azobenzenes — synthesis and carbohydrate applications. Tetrahedron 65, 10105–10123 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.A.J. and V.V.J. acknowledge the Romanian Ministry of Research, Innovation and Digitalization, CNCS/CCCDI–UEFISCDI, project numbers PN-III-P1-1.1-TE-2019-0538 and PN-III-P1-1.1-TE-2019-1696 within PNCDI III, for financial support. R.H. thanks FWO Flanders and Ghent University for continuous financial support.

Author information

Authors and Affiliations

Authors

Contributions

F.A.J and V.V.J. contributed to the researching of data for the article, discussion of content and writing. R.H. contributed to the discussion of content, writing and editing of the manuscript before submission.

Corresponding authors

Correspondence to Valentin Victor Jerca or Richard Hoogenboom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks E. Gillies and S. Crespi for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerca, F.A., Jerca, V.V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat Rev Chem 6, 51–69 (2022). https://doi.org/10.1038/s41570-021-00334-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00334-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing