Abstract
Azobenzenes are archetypal molecules that have a central role in fundamental and applied research. Over the course of almost two centuries, the area of azobenzenes has witnessed great achievements; azobenzenes have evolved from simple dyes to ‘little engines’ and have become ubiquitous in many aspects of our lives, ranging from textiles, cosmetics, food and medicine to energy and photonics. Despite their long history, azobenzenes continue to arouse academic interest, while being intensively produced for industrial purposes, owing to their rich chemistry, versatile and straightforward design, robust photoswitching process and biodegradability. The development of azobenzenes has stimulated the production of new coloured and light-responsive materials with various applications, and their use continues to expand towards new high-tech applications. In this Review, we highlight the latest achievements in the synthesis of red-light-responsive azobenzenes and the emerging application areas of photopharmacology, photoswitchable adhesives and biodegradable materials for drug delivery. We show how the synthetic versatility and adaptive properties of azobenzenes continue to inspire new research directions, with limits imposed only by one’s imagination.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mitscherlich, E. Ueber das Stickstoffbenzid. Ann. Pharm. 12, 311–314 (1834).
Bafana, A., Devi, S. S. & Chakrabarti, T. Azo dyes: past, present and the future. Environ. Rev. 19, 350–371 (2011).
Hartley, G. S. The cis-form of azobenzene. Nature 140, 281–281 (1937).
Beharry, A. A. & Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011).
Jerca, F. A. et al. in Polymer and Photonic Materials Towards Biomedical Breakthroughs (eds Van Hoorick, J. et al.) 3–47 (Springer, 2018).
Besson, E., Mehdi, A., Lerner, D. A., Reyé, C. & Corriu, R. J. P. Photoresponsive ordered hybrid materials containing a bridged azobenzene group. J. Mater. Chem. 15, 803–809 (2005).
Khayyami, A. & Karppinen, M. Reversible photoswitching function in atomic/molecular-layer-deposited ZnO:azobenzene superlattice thin films. Chem. Mater. 30, 5904–5911 (2018).
Kanj, A. B., Müller, K. & Heinke, L. Stimuli-responsive metal-organic frameworks with photoswitchable azobenzene side groups. Macromol. Rapid Commun. 39, 1700239 (2018).
Benkhaya, S., M’Rabet, S. & El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6, e03271 (2020).
Brzozowski, L. & Sargent, E. H. Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci. Mater. Electron. 12, 483–489 (2001).
He, J. et al. All-optical reversible control of integrated resonant cavity by a self-assembled azobenzene monolayer. Opt. Express 28, 22462–22477 (2020).
Yager, K. G. & Barrett, C. J. in Smart Light-Responsive Materials (eds Zhao, Y. & Ikeda, T.) 1–46 (Wiley, 2009).
Russew, M.-M. & Hecht, S. Photoswitches: from molecules to materials. Adv. Mater. 22, 3348–3360 (2010).
Pietsch, C., Hoogenboom, R. & Schubert, U. S. Soluble polymeric dual sensor for temperature and pH value. Angew. Chem. Int. Ed. 48, 5653–5656 (2009).
Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Photoresponsive polymers on the move. Chem 3, 533–536 (2017).
Jerca, V. V. & Hoogenboom, R. Photocontrol in complex polymeric materials: fact or illusion? Angew. Chem. Int. Ed. 57, 7945–7947 (2018).
Cabré, G. et al. Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nat. Commun. 10, 907 (2019).
Chi, X. et al. Azobenzene-bridged expanded “Texas-sized” box: a dual-responsive receptor for aryl dianion encapsulation. J. Am. Chem. Soc. 141, 6468–6472 (2019).
Chu, Z. et al. Supramolecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 141, 1949–1960 (2019).
Galanti, A. et al. A new class of rigid multi(azobenzene) switches featuring electronic decoupling: unravelling the isomerization in individual photochromes. J. Am. Chem. Soc. 141, 9273–9283 (2019).
Maier, M. S. et al. Oxidative approach enables efficient access to cyclic azobenzenes. J. Am. Chem. Soc. 141, 17295–17304 (2019).
Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).
Bléger, D., Schwarz, J., Brouwer, A. M. & Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc. 134, 20597–20600 (2012).
Siewertsen, R. et al. Highly efficient reversible Z–E photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands. J. Am. Chem. Soc. 131, 15594–15595 (2009).
Donthamsetti, P. C. et al. Genetically targeted optical control of an endogenous G protein-coupled receptor. J. Am. Chem. Soc. 141, 11522–11530 (2019).
Leippe, P. et al. Transformation of receptor tyrosine kinases into glutamate receptors and photoreceptors. Angew. Chem. Int. Ed. 59, 6720–6723 (2020).
Morstein, J. et al. Optical control of sphingosine-1-phosphate formation and function. Nat. Chem. Biol. 15, 623–631 (2019).
Lv, J.-a et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016).
Saydjari, A. K., Weis, P. & Wu, S. Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 7, 1601622 (2017).
Zhou, H. et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 9, 145–151 (2017).
Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).
Crespi, S., Simeth, N. A. & König, B. Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem. 3, 133–146 (2019).
Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4176 (2002).
Yesodha, S. K., Sadashiva Pillai, C. K. & Tsutsumi, N. Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog. Polym. Sci. 29, 45–74 (2004).
Baroncini, M. & Bergamini, G. Azobenzene: a photoactive building block for supramolecular architectures. Chem. Rec. 17, 700–712 (2017).
Baroncini, M., Groppi, J., Corra, S., Silvi, S. & Credi, A. Light-responsive (supra)molecular architectures: recent advances. Adv. Opt. Mater. 7, 1900392 (2019).
Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).
Rau, H. in Photoreactive Organic Thin Films (eds Sekkat, Z. & Knoll, W.) 3–47 (Academic Press, 2002).
Knoll, H. in CRC Handbook of Organic Photochemistry and Photobiology (eds Horspool, W. M. & Lenci, F.) (CRC Press, 2003).
Ladányi, V. et al. Azobenzene photoisomerization quantum yields in methanol redetermined. Photochem. Photobiol. Sci. 16, 1757–1761 (2017).
Vetráková, Ľ. et al. The absorption spectrum of cis-azobenzene. Photochem. Photobiol. Sci. 16, 1749–1756 (2017).
Jaumann, E. A. et al. A combined optical and EPR spectroscopy study: azobenzene-based biradicals as reversible molecular photoswitches. Phys. Chem. Chem. Phys. 19, 17263–17269 (2017).
Jerca, F. A. et al. Novel aspects regarding the photochemistry of azo-derivatives substituted with strong acceptor groups. J. Phys. Chem. C 119, 10538–10549 (2015).
Spiridon, M. C., Jerca, F. A., Jerca, V. V., Vasilescu, D. S. & Vuluga, D. M. 2-Oxazoline based photo-responsive azo-polymers. Synthesis, characterization and isomerization kinetics. Eur. Polym. J. 49, 452–463 (2013).
Moldt, T. et al. Differing isomerization kinetics of azobenzene-functionalized self-assembled monolayers in ambient air and in vacuum. Langmuir 32, 10795–10801 (2016).
Pesce, L., Perego, C., Grommet, A. B., Klajn, R. & Pavan, G. M. Molecular factors controlling the isomerization of azobenzenes in the cavity of a flexible coordination cage. J. Am. Chem. Soc. 142, 9792–9802 (2020).
Haberhauer, G. & Kallweit, C. A bridged azobenzene derivative as a reversible, light-induced chirality switch. Angew. Chem. Int. Ed. 49, 2418–2421 (2010).
Quick, M. et al. Photoisomerization dynamics and pathways of trans- and cis-azobenzene in solution from broadband femtosecond spectroscopies and calculations. J. Phys. Chem. B 118, 8756–8771 (2014).
Otolski, C. J., Raj, A. M., Ramamurthy, V. & Elles, C. G. Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes. Chem. Sci. 11, 9513–9523 (2020).
Conti, I., Garavelli, M. & Orlandi, G. The different photoisomerization efficiency of azobenzene in the lowest nπ* and ππ* singlets: the role of a phantom state. J. Am. Chem. Soc. 130, 5216–5230 (2008).
Rau, H. & Lueddecke, E. On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. J. Am. Chem. Soc. 104, 1616–1620 (1982).
Schultz, T. et al. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc. 125, 8098–8099 (2003).
Lednev, I. K., Ye, T.-Q., Abbott, L. C., Hester, R. E. & Moore, J. N. Photoisomerization of a capped azobenzene in solution probed by ultrafast time-resolved electronic absorption spectroscopy. J. Phys. Chem. A 102, 9161–9166 (1998).
Lednev, I. K. et al. Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength. Chem. Phys. Lett. 290, 68–74 (1998).
Fujino, T. & Tahara, T. Picosecond time-resolved Raman study of trans-azobenzene. J. Phys. Chem. A 104, 4203–4210 (2000).
Chang, C.-W., Lu, Y.-C., Wang, T.-T. & Diau, E. W.-G. Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study. J. Am. Chem. Soc. 126, 10109–10118 (2004).
Tavadze, P. et al. A machine-driven hunt for global reaction coordinates of azobenzene photoisomerization. J. Am. Chem. Soc. 140, 285–290 (2018).
Tan, E. M. M. et al. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy. Nat. Commun. 6, 5860 (2015).
Casellas, J., Bearpark, M. J. & Reguero, M. Excited-state decay in the photoisomerisation of azobenzene: a new balance between mechanisms. ChemPhysChem 17, 3068–3079 (2016).
Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L. & Orlandi, G. On the mechanism of the cis–trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. J. Am. Chem. Soc. 126, 3234–3243 (2004).
Nenov, A. et al. UV-light-induced vibrational coherences: the key to understand Kasha rule violation in trans-azobenzene. J. Phys. Chem. Lett. 9, 1534–1541 (2018).
Aleotti, F. et al. Multidimensional potential energy surfaces resolved at the RASPT2 level for accurate photoinduced isomerization dynamics of azobenzene. J. Chem. Theory Comput. 15, 6813–6823 (2019).
Yu, J. K., Bannwarth, C., Liang, R., Hohenstein, E. G. & Martínez, T. J. Nonadiabatic dynamics simulation of the wavelength-dependent photochemistry of azobenzene excited to the nπ* and ππ* excited states. J. Am. Chem. Soc. 142, 20680–20690 (2020).
Ciminelli, C., Granucci, G. & Persico, M. Are azobenzenophanes rotation-restricted? J. Chem. Phys. 123, 174317 (2005).
Nonnenberg, C., Gaub, H. & Frank, I. First-principles simulation of the photoreaction of a capped azobenzene: the rotational pathway is feasible. ChemPhysChem 7, 1455–1461 (2006).
Böckmann, M., Doltsinis, N. L. & Marx, D. Unraveling a chemically enhanced photoswitch: bridged azobenzene. Angew. Chem. Int. Ed. 49, 3382–3384 (2010).
Siewertsen, R., Schönborn, J. B., Hartke, B., Renth, F. & Temps, F. Superior Z → E and E → Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm. Phys. Chem. Chem. Phys. 13, 1054–1063 (2011).
Jerca, V. V. et al. Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups. Opt. Mater. 48, 160–164 (2015).
Dokić, J. et al. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. J. Phys. Chem. A 113, 6763–6773 (2009).
García-Amorós, J. & Velasco, D. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem. 8, 1003–1017 (2012).
Garcia-Amorós, J. et al. Activation volumes for cis-to-trans isomerisation reactions of azophenols: a clear mechanistic indicator? Phys. Chem. Chem. Phys. 20, 1286–1292 (2018).
Garcia-Amorós, J., Sánchez-Ferrer, A., Massad, W. A., Nonell, S. & Velasco, D. Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes. Phys. Chem. Chem. Phys. 12, 13238–13242 (2010).
Garcia-Amorós, J., Díaz-Lobo, M., Nonell, S. & Velasco, D. Fastest thermal isomerization of an azobenzene for nanosecond photoswitching applications under physiological conditions. Angew. Chem. Int. Ed. 51, 12820–12823 (2012).
Garcia-Amorós, J. et al. Picosecond switchable azo dyes. Chem. Eur. J. 25, 7726–7732 (2019).
Garcia-Amorós, J., Bučinskas, A., Reig, M., Nonell, S. & Velasco, D. Fastest molecular photochromic switches based on nanosecond isomerizing benzothiazolium azophenolic salts. J. Mater. Chem. C 2, 474–480 (2014).
Joshi, N. K., Fuyuki, M. & Wada, A. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene. J. Phys. Chem. B 118, 1891–1899 (2014).
Yan, K., Chen, M., Zhou, S. & Wu, L. Self-assembly of upconversion nanoclusters with an amphiphilic copolymer for near-infrared- and temperature-triggered drug release. RSC Adv. 6, 85293–85302 (2016).
Yao, C. et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 28, 9341–9348 (2016).
Liu, J., Bu, W., Pan, L. & Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013).
Zhao, T. et al. Near-infrared triggered decomposition of nanocapsules with high tumor accumulation and stimuli responsive fast elimination. Angew. Chem. Int. Ed. 57, 2611–2615 (2018).
Mandl, G. A., Rojas-Gutierrez, P. A. & Capobianco, J. A. A NIR-responsive azobenzene-based supramolecular hydrogel using upconverting nanoparticles. Chem. Commun. 54, 5847–5850 (2018).
Jalani, G., Tam, V., Vetrone, F. & Cerruti, M. Seeing, targeting and delivering with upconverting nanoparticles. J. Am. Chem. Soc. 140, 10923–10931 (2018).
Wu, S., Blinco, J. P. & Barner-Kowollik, C. Near-infrared photoinduced reactions assisted by upconverting nanoparticles. Chem. Eur. J. 23, 8325–8332 (2017).
Rumi, M. & Perry, J. W. Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photon. 2, 451–518 (2010).
Breukers, R. D., Janssens, S., Raymond, S. G., Bhuiyan, M. D. H. & Kay, A. J. Synthesis and characterization of strongly two photon absorbing and photoswitchable azo molecules. Dyes Pigm. 112, 17–23 (2015).
Magennis, S. W., Mackay, F. S., Jones, A. C., Tait, K. M. & Sadler, P. J. Two-photon-induced photoisomerization of an azo dye. Chem. Mater. 17, 2059–2062 (2005).
Carroll, E. C. et al. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc. Natl Acad. Sci. USA 112, E776–E785 (2015).
Izquierdo-Serra, M. et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J. Am. Chem. Soc. 136, 8693–8701 (2014).
Gascón-Moya, M. et al. An optimized glutamate receptor photoswitch with sensitized azobenzene isomerization. J. Org. Chem. 80, 9915–9925 (2015).
Jerca, F. A. et al. Simultaneous two and three photon resonant enhancement of third-order NLO susceptibility in an azo-dye functionalized polymer film. Phys. Chem. Chem. Phys. 15, 7060–7063 (2013).
Nicolescu, F. A., Jerca, V. V., Vuluga, D. M. & Vasilescu, D. S. Synthesis and characterization of side-chain poly(methacrylate)s bearing new azo-moieties. Polym. Bull. 65, 905–916 (2010).
Samanta, S., Qin, C., Lough, A. J. & Woolley, G. A. Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative. Angew. Chem. Int. Ed. 51, 6452–6455 (2012).
Moormann, W. et al. Efficient conversion of light to chemical energy: directional, chiral photoswitches with very high quantum yields. Angew. Chem. Int. Ed. 59, 15081–15086 (2020).
Hammerich, M. et al. Heterodiazocines: synthesis and photochromic properties, trans to cis switching within the bio-optical window. J. Am. Chem. Soc. 138, 13111–13114 (2016).
Schehr, M. et al. 2-Azo-, 2-diazocine-thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: limitations and pitfalls of the photoswitchable inhibitor approach. Photochem. Photobiol. Sci. 18, 1398–1407 (2019).
Lentes, P. et al. Nitrogen bridged diazocines: photochromes switching within the near-infrared region with high quantum yields in organic solvents and in water. J. Am. Chem. Soc. 141, 13592–13600 (2019).
Sadovski, O., Beharry, A. A., Zhang, F. & Woolley, G. A. spectral tuning of azobenzene photoswitches for biological applications. Angew. Chem. Int. Ed. 48, 1484–1486 (2009).
Konrad, D. B. et al. Computational design and synthesis of a deeply red-shifted and bistable azobenzene. J. Am. Chem. Soc. 142, 6538–6547 (2020).
Beharry, A. A., Sadovski, O. & Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011).
Samanta, S., McCormick, T. M., Schmidt, S. K., Seferos, D. S. & Woolley, G. A. Robust visible light photoswitching with ortho-thiol substituted azobenzenes. Chem. Commun. 49, 10314–10316 (2013).
Samanta, S. et al. Photoswitching azo compounds in vivo with red light. J. Am. Chem. Soc. 135, 9777–9784 (2013).
Wu, D., Dong, M., Collins, C. V., Babalhavaeji, A. & Woolley, G. A. A red-light azobenzene di-maleimide photoswitch: pros and cons. Adv. Opt. Mater. 4, 1402–1409 (2016).
Knie, C. et al. ortho-Fluoroazobenzenes: visible light switches with very long-lived Z isomers. Chem. Eur. J. 20, 16492–16501 (2014).
Dong, M., Babalhavaeji, A., Hansen, M. J., Kálmán, L. & Woolley, G. A. Red, far-red, and near infrared photoswitches based on azonium ions. Chem. Commun. 51, 12981–12984 (2015).
Dong, M. et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 139, 13483–13486 (2017).
Samanta, S., Babalhavaeji, A., Dong, M.-X. & Woolley, G. A. Photoswitching of ortho-substituted azonium ions by red light in whole blood. Angew. Chem. Int. Ed. 52, 14127–14130 (2013).
Konrad, D. B., Frank, J. A. & Trauner, D. Synthesis of redshifted azobenzene photoswitches by late-stage functionalization. Chem. Eur. J. 22, 4364–4368 (2016).
Hansen, M. J., Lerch, M. M., Szymanski, W. & Feringa, B. L. Direct and versatile synthesis of red-shifted azobenzenes. Angew. Chem. Int. Ed. 55, 13514–13518 (2016).
Lameijer, L. N. et al. General principles for the design of visible-light-responsive photoswitches: tetra-ortho-chloro-azobenzenes. Angew. Chem. Int. Ed. 9, 21663–21670 (2020).
Velema, W. A., Szymanski, W. & Feringa, B. L. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136, 2178–2191 (2014).
Lerch, M. M., Hansen, M. J., van Dam, G. M., Szymanski, W. & Feringa, B. L. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 55, 10978–10999 (2016).
Mart, R. J. & Allemann, R. K. Azobenzene photocontrol of peptides and proteins. Chem. Commun. 52, 12262–12277 (2016).
Leippe, P. & Frank, J. A. Designing azobenzene-based tools for controlling neurotransmission. Curr. Opin. Struct. Biol. 57, 23–30 (2019).
Morstein, J., Awale, M., Reymond, J.-L. & Trauner, D. Mapping the azolog space enables the optical control of new biological targets. ACS Cent. Sci. 5, 607–618 (2019).
Hoorens, M. W. H. & Szymanski, W. Reversible, spatial and temporal control over protein activity using light. Trends Biochem. Sci. 43, 567–575 (2018).
Schoenberger, M., Damijonaitis, A., Zhang, Z., Nagel, D. & Trauner, D. Development of a new photochromic ion channel blocker via azologization of fomocaine. ACS Chem. Neurosci. 5, 514–518 (2014).
Broichhagen, J., Frank, J. A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).
Myakishev-Rempel, M. et al. A preliminary study of the safety of red light phototherapy of tissues harboring cancer. Photomed. Laser Surg. 30, 551–558 (2012).
Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).
Volgraf, M. et al. Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J. Am. Chem. Soc. 129, 260–261 (2007).
Fortin, D. L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008).
Banghart, M. R. et al. Photochromic blockers of voltage-gated potassium channels. Angew. Chem. Int. Ed. 48, 9097–9101 (2009).
Mourot, A. et al. Tuning photochromic ion channel blockers. ACS Chem. Neurosci. 2, 536–543 (2011).
Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282 (2012).
Mourot, A., Tochitsky, I. & Kramer, R. H. Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches. Front. Mol. Neurosci. 6, 5 (2013).
Tochitsky, I. et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81, 800–813 (2014).
Velema, W. A. et al. Ciprofloxacin–photoswitch conjugates: a facile strategy for photopharmacology. Bioconjugate Chem. 26, 2592–2597 (2015).
Rovira, X. et al. OptoGluNAM4.1, a photoswitchable allosteric antagonist for real-time control of mGlu4 receptor activity. Cell Chem. Biol. 23, 929–934 (2016).
Tochitsky, I. et al. How azobenzene photoswitches restore visual responses to the blind retina. Neuron 92, 100–113 (2016).
Laprell, L. et al. Photopharmacological control of bipolar cells restores visual function in blind mice. J. Clin. Investig. 127, 2598–2611 (2017).
Wegener, M., Hansen, M. J., Driessen, A. J. M., Szymanski, W. & Feringa, B. L. Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 139, 17979–17986 (2017).
Bossi, S. et al. A light-controlled allosteric modulator unveils a role for mGlu4 receptors during early stages of ischemia in the rodent cerebellar cortex. Front. Cell Neurosci. 12, 449 (2018).
Trads, J. B. et al. Sign inversion in photopharmacology: incorporation of cyclic azobenzenes in photoswitchable potassium channel blockers and openers. Angew. Chem. Int. Ed. 58, 15421–15428 (2019).
Frank, J. A. et al. In vivo photopharmacology enabled by multifunctional fibers. ACS Chem. Neurosci. 11, 3802–3813 (2020).
Hinnah, K. et al. Photohormones enable optical control of the peroxisome proliferator-activated receptor γ (PPARγ). J. Med. Chem. 63, 10908–10920 (2020).
Morstein, J. et al. Optical control of the nuclear bile acid receptor FXR with a photohormone. Chem. Sci. 11, 429–434 (2020).
Broichhagen, J. et al. Allosteric optical control of a class B G-protein-coupled receptor. Angew. Chem. Int. Ed. 55, 5865–5868 (2016).
DiFrancesco, M. L. et al. Neuronal firing modulation by a membrane-targeted photoswitch. Nat. Nanotechnol. 15, 296–306 (2020).
Paoletti, P., Ellis-Davies, G. C. R. & Mourot, A. Optical control of neuronal ion channels and receptors. Nat. Rev. Neurosci. 20, 514–532 (2019).
Broichhagen, J., Jurastow, I., Iwan, K., Kummer, W. & Trauner, D. Optical control of acetylcholinesterase with a tacrine switch. Angew. Chem. Int. Ed. 53, 7657–7660 (2014).
Stein, M., Breit, A., Fehrentz, T., Gudermann, T. & Trauner, D. Optical control of TRPV1 channels. Angew. Chem. Int. Ed. 52, 9845–9848 (2013).
Schönberger, M. & Trauner, D. A photochromic agonist for μ-opioid receptors. Angew. Chem. Int. Ed. 53, 3264–3267 (2014).
Mehta, Z. B. et al. Remote control of glucose homeostasis in vivo using photopharmacology. Sci. Rep. 7, 291 (2017).
Broichhagen, J. et al. A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem. Commun. 51, 6018–6021 (2015).
Broichhagen, J. et al. Optical control of insulin release using a photoswitchable sulfonylurea. Nat. Commun. 5, 5116 (2014).
Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015).
Engdahl, A. J. et al. Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Org. Lett. 17, 4546–4549 (2015).
Sheldon, J. E., Dcona, M. M., Lyons, C. E., Hackett, J. C. & Hartman, M. C. T. Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Org. Biomol. Chem. 14, 40–49 (2016).
An, Y. et al. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Front. Chem. Sci. Eng. 14, 880–888 (2020).
Szymanski, W., Ourailidou, M. E., Velema, W. A., Dekker, F. J. & Feringa, B. L. Light-controlled histone deacetylase (HDAC) inhibitors: towards photopharmacological chemotherapy. Chem. Eur. J. 21, 16517–16524 (2015).
Kisselev, A. F. & Groettrup, M. Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr. Opin. Chem. Biol. 23, 16–22 (2014).
Hansen, M. J. et al. Proteasome inhibitors with photocontrolled activity. ChemBioChem 15, 2053–2057 (2014).
Gronemeyer, H., Gustafsson, J.-Å. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–964 (2004).
Velema, W. A. et al. Optical control of antibacterial activity. Nat. Chem. 5, 924–928 (2013).
Hansen, M. J., Hille, J. I. C., Szymanski, W., Driessen, A. J. M. & Feringa, B. L. Easily accessible, highly potent, photocontrolled modulators of bacterial communication. Chem 5, 1293–1301 (2019).
Croll, A. B., Hosseini, N. & Bartlett, M. D. Switchable adhesives for multifunctional interfaces. Adv. Mater. Technol. 4, 1900193 (2019).
Hohl, D. K. & Weder, C. (De)bonding on demand with optically switchable adhesives. Adv. Opt. Mater. 7, 1900230 (2019).
Vapaavuori, J., Laventure, A., Bazuin, C. G., Lebel, O. & Pellerin, C. Submolecular plasticization induced by photons in azobenzene materials. J. Am. Chem. Soc. 137, 13510–13517 (2015).
Akiyama, H. & Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 24, 2353–2356 (2012).
Akiyama, H. et al. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives. ACS Appl. Mater. Interfaces 6, 7933–7941 (2014).
Zhou, Y. et al. Light-switchable polymer adhesive based on photoinduced reversible solid-to-liquid transitions. ACS Macro Lett. 8, 968–972 (2019).
Ito, S., Yamashita, A., Akiyama, H., Kihara, H. & Yoshida, M. Azobenzene-based (meth)acrylates: controlled radical polymerization, photoresponsive solid–liquid phase transition behavior, and application to reworkable adhesives. Macromolecules 51, 3243–3253 (2018).
Hoshino, M. et al. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 136, 9158–9164 (2014).
Weis, P. et al. Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers. Chem. Eur. J. 25, 10946–10953 (2019).
Ito, S. et al. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl. Mater. Interfaces 10, 32649–32658 (2018).
Zha, R. H. et al. Photoswitchable nanomaterials based on hierarchically organized siloxane oligomers. Adv. Funct. Mater. 28, 1703952 (2018).
Wu, Z. et al. Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives. J. Am. Chem. Soc. 141, 7385–7390 (2019).
Takashima, Y. & Harada, A. Functioning via host–guest interactions. J. Incl. Phenom. Macrocycl. Chem. 87, 313–330 (2017).
Qu, D.-H., Wang, Q.-C., Zhang, Q.-W., Ma, X. & Tian, H. Photoresponsive host–guest functional systems. Chem. Rev. 115, 7543–7588 (2015).
Yamaguchi, H. et al. Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 3, 603 (2012).
Takashima, Y. et al. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition. Macromol. Rapid Commun. 35, 1646–1652 (2014).
Roling, O., Stricker, L., Voskuhl, J., Lamping, S. & Ravoo, B. J. Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chem. Commun. 52, 1964–1966 (2016).
Williams, P. E., Walsh-Korb, Z., Jones, S. T., Lan, Y. & Scherman, O. A. Stress dissipation in cucurbit[8]uril ternary complex small molecule adhesives. Langmuir 34, 13104–13109 (2018).
Liu, J., Tan, C. S. Y. & Scherman, O. A. Dynamic interfacial adhesion through cucurbit[n]uril molecular recognition. Angew. Chem. Int. Ed. 57, 8854–8858 (2018).
Bragger, J. L. et al. Investigations into the azo reducing activity of a common colonic microorganism. Int. J. Pharm. 157, 61–71 (1997).
Stingley, R. L., Zou, W., Heinze, T. M., Chen, H. & Cerniglia, C. E. Metabolism of azo dyes by human skin microbiota. J. Med. Microbiol. 59, 108–114 (2010).
Pandey, A., Singh, P. & Iyengar, L. Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegradation 59, 73–84 (2007).
Domagk, G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch. Med. Wochenschr. 61, 250–253 (1935).
Fuller, A. T. Is p-aminobenzenesulphonamide the active agent in prontosil therapy? Lancet 229, 194–198 (1937).
Hoult, J. R. S. Pharmacological and biochemical actions of sulphasalazine. Drugs 32, 18–26 (1986).
Roldo, M. et al. Azo compounds in colon-specific drug delivery. Expert Opin. Drug. Deliv. 4, 547–560 (2007).
Chung, K.-T. Azo dyes and human health: a review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 34, 233–261 (2016).
Schacht, E. et al. Polymers for colon specific drug delivery. J. Control. Rel. 39, 327–338 (1996).
Saphier, S. & Karton, Y. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation. J. Pharm. Sci. 99, 804–815 (2010).
Van Den Mooter, G., Maris, B., Samyn, C., Augustijns, P. & Kinget, R. Use of azo polymers for colon-specific drug delivery. J. Pharm. Sci. 86, 1321–1327 (1997).
Gao, S.-Q., Lu, Z.-R., Petri, B., Kopečková, P. & Kopeček, J. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. J. Control. Rel. 110, 323–331 (2006).
Sharma, R., Rawal, R. K., Malhotra, M., Sharma, A. K. & Bhardwaj, T. R. Design, synthesis and ex-vivo release studies of colon-specific polyphosphazene–anticancer drug conjugates. Bioorg. Med. Chem. 22, 1104–1114 (2014).
Samyn, C., Kalala, W., Van den Mooter, G. & Kinget, R. Synthesis and in vitro biodegradation of poly(ether-ester) azo polymers designed for colon targeting. Int. J. Pharm. 121, 211–216 (1995).
Rao, J. & Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc. 135, 14056–14059 (2013).
Eom, T., Yoo, W., Kim, S. & Khan, A. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials 185, 333–347 (2018).
Yang, Y.-Y., Grammel, M., Raghavan, A. S., Charron, G. & Hang, H. C. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Chem. Biol. 17, 1212–1222 (2010).
Lei, H. et al. Bioactivatable reductive cleavage of azobenzene for controlling functional dumbbell oligodeoxynucleotides. Bioorg. Chem. 91, 103106 (2019).
Wong, A. D., Prinzen, A. L. & Gillies, E. R. Poly(ester amide)s with pendant azobenzenes: multi-responsive self-immolative moieties for modulating polymer assemblies. Polym. Chem. 7, 1871–1881 (2016).
Leriche, G., Budin, G., Brino, L. & Wagner, A. Optimization of the azobenzene scaffold for reductive cleavage by dithionite; development of an azobenzene cleavable linker for proteomic applications. Eur. J. Org. Chem. 2010, 4360–4364 (2010).
Gonzaga, R. V. et al. Perspectives about self-immolative drug delivery systems. J. Pharm. Sci. 109, 3262–3281 (2020).
Wong, A. D., Güngör, T. M. & Gillies, E. R. Multiresponsive azobenzene end-cap for self-immolative polymers. ACS Macro Lett. 3, 1191–1195 (2014).
Eom, T. et al. An activatable anticancer polymer–drug conjugate based on the self-immolative azobenzene motif. J. Mater. Chem. B 5, 4574–4578 (2017).
Offenloch, J. T. et al. Degradable fluorescent single-chain nanoparticles based on metathesis polymers. Chem. Commun. 53, 775–778 (2017).
Brøndsted, H. & Kopeček, J. I. Hydrogels for site-specific oral drug delivery: synthesis and characterization. Biomaterials 12, 584–592 (1991).
Yeh, P.-Y., Berenson, M. M., Samowitz, W. S., Kopečková, P. & Kopecek, J. Site-specific drug delivery and penetration enhancement in the gastrointestinal tract. J. Control. Rel. 36, 109–124 (1995).
Ghandehari, H., Kopečková, P. & Kopecek, J. In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials 18, 861–872 (1997).
Mutlu, H., Geiselhart, C. M. & Barner-Kowollik, C. Untapped potential for debonding on demand: the wonderful world of azo-compounds. Mater. Horiz. 5, 162–183 (2018).
Noble, A. III. Zur Geschichte des Azobenzols und des Benzidins. Justus Liebigs Ann. Chem. 98, 253–256 (1856).
Zollinger, H. Color chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments 166 (Wiley, 2003).
Bieth, J., Vratsanos, S. M., Wassermann, N. & Erlanger, B. F. Photoregulation of biological activity by photocromic reagents, II. Inhibitors of acetylcholinesterase. Proc. Natl Acad. Sci. USA 64, 1103–1106 (1969).
Sackmann, E. Photochemically induced reversible color changes in cholesteric liquid crystals. J. Am. Chem. Soc. 93, 7088–7090 (1971).
Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13, 2037–2057 (2003).
Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev. 100, 1847–1874 (2000).
Viswanathan, K. N. et al. Surface relief structures on azo polymer films. J. Mater. Chem. 9, 1941–1955 (1999).
Charra, F., Kajzar, F., Nunzi, J. M., Raimond, P. & Idiart, E. Light-induced second-harmonic generation in azo-dye polymers. Opt. Lett. 18, 941–943 (1993).
Shinkai, S., Ogawa, T., Nakaji, T., Kusano, Y. & Manabe, O. Photocontrolled extraction ability of azobenzene-bridged azacrown ether. Tetrahedron Lett. 20, 4569–4572 (1979).
Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).
Corra, S., Curcio, M., Baroncini, M., Silvi, S. & Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, 1906064 (2020).
Xu, W.-C., Sun, S. & Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 58, 9712–9740 (2019).
Nam, S. & Renganathan, V. Non-enzymatic reduction of azo dyes by NADH. Chemosphere 40, 351–357 (2000).
Griess, P. Vorläufige Notiz über die einwirkung von salpetriger säure auf amidinitro- und aminitrophenylsäure. Ann. Chem. Pharm. 106, 123–125 (1858).
Mills, C. XCIII. — Some new azo-compounds. J. Chem. Soc. Trans. 67, 925–933 (1895).
Hutchins, R. O., Lamson, D. W., Rua, L., Milewski, C. & Maryanoff, B. Reduction of aromatic nitro compounds with sodium borohydride in dimethyl sulfoxide or sulfolane. Synthesis of azo or azoxy derivatives. J. Org. Chem. 36, 803–806 (1971).
Ortiz, B., Villanueva, P. & Walls, F. Silver(II) oxide as a reagent. Reactions with aromatic amines and miscellaneous related compounds. J. Org. Chem. 37, 2748–2750 (1972).
Wallach, O. & Belli, L. Ueber die Umwandlung von Azoxybenzol in Oxyazobenzol. Ber. Dtsch. Chem. Ges. 13, 525–527 (1880).
Merino, E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev. 40, 3835–3853 (2011).
Hamon, F., Djedaini-Pilard, F., Barbot, F. & Len, C. Azobenzenes — synthesis and carbohydrate applications. Tetrahedron 65, 10105–10123 (2009).
Acknowledgements
F.A.J. and V.V.J. acknowledge the Romanian Ministry of Research, Innovation and Digitalization, CNCS/CCCDI–UEFISCDI, project numbers PN-III-P1-1.1-TE-2019-0538 and PN-III-P1-1.1-TE-2019-1696 within PNCDI III, for financial support. R.H. thanks FWO Flanders and Ghent University for continuous financial support.
Author information
Authors and Affiliations
Contributions
F.A.J and V.V.J. contributed to the researching of data for the article, discussion of content and writing. R.H. contributed to the discussion of content, writing and editing of the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks E. Gillies and S. Crespi for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jerca, F.A., Jerca, V.V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat Rev Chem 6, 51–69 (2022). https://doi.org/10.1038/s41570-021-00334-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-021-00334-w
This article is cited by
-
Bioinspired electronics for intelligent soft robots
Nature Reviews Electrical Engineering (2024)
-
Hydrogen bonding to the electron accepting group controls the absorption spectrum of a push–pull stilbene adsorbed on amorphous silica
Communications Physics (2024)
-
Photoswitchable optoelectronic properties of 2D MoSe2/diarylethene hybrid structures
Scientific Reports (2024)
-
Multiple regulation of dynamic wrinkles based on conjugated copolymer network
Science China Materials (2024)
-
Photocontrolled chiral supramolecular assembly of azobenzene amphiphiles in aqueous media
Polymer Journal (2023)