Abstract
Protocells at life’s origin are often conceived as bilayer-enclosed precursors of life, whose self-reproduction rests on the early advent of replicating catalytic biopolymers. This Perspective describes an alternative scenario, wherein reproducing nanoscopic lipid micelles with catalytic capabilities were forerunners of biopolymer-containing protocells. This postulate gains considerable support from experiments describing micellar catalysis and autocatalytic proliferation, and, more recently, from reports on cross-catalysis in mixed micelles that lead to life-like steady-state dynamics. Such results, along with evidence for micellar prebiotic compatibility, synergize with predictions of our chemically stringent computer-simulated model, illustrating how mutually catalytic lipid networks may enable micellar compositional reproduction that could underlie primal selection and evolution. Finally, we highlight studies on how endogenously catalysed lipid modifications could guide further protocellular complexification, including micelle to vesicle transition and monomer to biopolymer progression. These portrayals substantiate the possibility that protocellular evolution could have been seeded by pre-RNA lipid assemblies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).
Adamala, K. & Szostak, J. W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 5, 495–501 (2013).
Lancet, D., Zidovetzki, R. & Markovitch, O. Systems protobiology: origin of life in lipid catalytic networks. J. R. Soc. Interface 15, 20180159 (2018).
Ameta, S., Matsubara, Y. J., Chakraborty, N., Krishna, S. & Thutupalli, S. Self-reproduction and Darwinian evolution in autocatalytic chemical reaction systems. Life 11, 308 (2021).
Lopez, A. & Fiore, M. Investigating prebiotic protocells for a comprehensive understanding of the origins of life: a prebiotic systems chemistry perspective. Life 9, 49 (2019).
Mansy, S. S. et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008).
Kauffman, S. A. Autocatalytic sets of proteins. J. Theor. Biol. 119, 1–24 (1986).
Hordijk, W., Shichor, S. & Ashkenasy, G. The influence of modularity, seeding, and product inhibition on peptide autocatalytic network dynamics. ChemPhysChem 19, 2437–2444 (2018).
Xavier, J. C., Hordijk, W., Kauffman, S., Steel, M. & Martin, W. F. Autocatalytic chemical networks at the origin of metabolism. Proc. Biol. Sci. 287, 20192377 (2020).
Wołos, A. et al. Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science 369, eaaw1955 (2020).
Peng, Z., Plum, A. M., Gagrani, P. & Baum, D. A. An ecological framework for the analysis of prebiotic chemical reaction networks. J. Theor. Biol. 507, 110451 (2020).
Serra, R. & Villani, M. Sustainable growth and synchronization in protocell models. Life 9, 68 (2019).
Deacon, T. W. Reciprocal linkage between self-organizing processes is sufficient for self-reproduction and evolvability. Biol. Theory 1, 136–149 (2006).
Adamala, K. P., Engelhart, A. E. & Szostak, J. W. Collaboration between primitive cell membranes and soluble catalysts. Nat. Commun. 7, 11041 (2016).
Matsuo, M. et al. Environment-sensitive intelligent self-reproducing artificial cell with a modification-active lipo-deoxyribozyme. Micromachines 11, 606 (2020).
Rajamani, S. et al. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig. Life Evol. Biosph. 38, 57–74 (2008).
Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3, 775–781 (2011).
Segrè, D., Ben-Eli, D. & Lancet, D. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl Acad. Sci. USA 97, 4112–4117 (2000).
Lancet, D., Segrè, D. & Kahana, A. Twenty years of “lipid world”: a fertile partnership with David Deamer. Life 9, 77 (2019).
Sarkar, S. et al. Prebiological membranes and their role in the emergence of early cellular life. J. Membr. Biol. 253, 589–608 (2020).
Jordan, S. F. et al. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3, 1705–1714 (2019).
Zhang, S. Lipid-like self-assembling peptides. Acc. Chem. Res. 45, 2142–2150 (2012).
Segrè, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. The lipid world. Orig. Life Evol. Biosph. 31, 119–145 (2001).
Guttenberg, N., Virgo, N., Chandru, K., Scharf, C. & Mamajanov, I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Phil. Trans. R. Soc. A 375, 20160347 (2017).
Deamer, D. W. Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317, 792–794 (1985).
Deamer, D. W. & Pashley, R. Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig. Life Evol. Biosph. 19, 21–38 (1989).
Kahana, A., Schmitt-Kopplin, P. & Lancet, D. Enceladus: first observed primordial soup could arbitrate origin-of-life debate. Astrobiology 19, 1263–1278 (2019).
Deamer, D. The role of lipid membranes in life’s origin. Life 7, 5 (2017).
Israelachvili, J. in Intermolecular and Surface Forces (Academic, 1992).
Sakai, T., Miyaki, M., Tajima, H. & Shimizu, M. Precipitate deposition around CMC and vesicle-to-micelle transition of monopotassium monododecyl phosphate in water. J. Phys. Chem. B 116, 11225–11233 (2012).
Deamer, D. & Damer, B. Can life begin on Enceladus? A perspective from hydrothermal chemistry. Astrobiology 17, 834–839 (2017).
Namani, T., Ishikawa, T., Morigaki, K. & Walde, P. Vesicles from docosahexaenoic acid. Colloids Surf. B 54, 118–123 (2007).
Zana, R. in Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles and Lyotropic Phases (ed. Zana, R.) 75–160 (CRC, 2005).
Sammalkorpi, M., Karttunen, M. & Haataja, M. Micelle fission through surface instability and formation of an interdigitating stalk. J. Am. Chem. Soc. 130, 17977–17980 (2008).
Taylor, J., Eghtesadi, S., Points, L., Liu, T. & Cronin, L. Autonomous model protocell division driven by molecular replication. Nat. Commun. 8, 237 (2017).
Bradley, W. L. in Debating Design: From Darwin to DNA (eds Dembski, W. & Ruse, M.) 331–351 (Cambridge Univ. Press, 2004).
Dwars, T., Paetzold, E. & Oehme, G. Reactions in micellar systems. Angew. Chem. Int. Ed. 44, 7174–7199 (2005).
Hardy, M. D. et al. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl Acad. Sci. USA 112, 8187–8192 (2015).
Ren, C., Solís-Muñana, P., Warr, G. G. & Chen, J. L.-Y. Dynamic and modular formation of a synergistic transphosphorylation catalyst. ACS Catal. 10, 8395–8401 (2020).
Fendler, J. H. & Fendler, E. J. in Catalysis in Micellar and Macromolecular Systems (Academic, 1975).
La Sorella, G., Strukul, G. & Scarso, A. Recent advances in catalysis in micellar media. Green Chem. 17, 644–683 (2015).
Serrano-Luginbühl, S., Ruiz-Mirazo, K., Ostaszewski, R., Gallou, F. & Walde, P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat. Rev. Chem. 2, 306–327 (2018).
Grochmal, A., Prout, L., Makin-Taylor, R., Prohens, R. & Tomas, S. Modulation of reactivity in the cavity of liposomes promotes the formation of peptide bonds. J. Am. Chem. Soc. 137, 12269–12275 (2015).
Stano, P. & Luisi, P. L. in Advances in Planar Lipid Bilayers and Liposomes Vol. 7 (ed. Leitmannova Liu, A.) 221–263 (Academic, 2008).
Monnard, P.-A. Catalysis in abiotic structured media: an approach to selective synthesis of biopolymers. Cell. Mol. Life Sci. 62, 520–534 (2005).
Yeung, D. K. J. et al. Organocatalytic 1,3-dipolar cycloaddition reactions of ketones and azides with water as a solvent. Green Chem. 15, 2384–2388 (2013).
Soares, B. et al. Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Phys. Chem. Chem. 19, 1181–1189 (2017).
Zhang, J., Meng, X.-G., Zeng, X.-C. & Yu, X.-Q. Metallomicellar supramolecular systems and their applications in catalytic reactions. Coord. Chem. Rev. 253, 2166–2177 (2009).
Smith, J. D. et al. Micelle-enabled clean and selective sulfonylation of polyfluoroarenes in water under mild conditions. Green Chem. 20, 1784–1790 (2018).
Otto, S., Engberts, J. B. & Kwak, J. C. Million-fold acceleration of a Diels–Alder reaction due to combined Lewis acid and micellar catalysis in water. J. Am. Chem. Soc. 120, 9517–9525 (1998).
Kahana, A., Maslov, S. & Lancet, D. Dynamic lipid aptamers: non-polymeric chemical path to early life. Chem. Soc. Rev. https://doi.org/10.1039/d1cs00633a (2021).
Ihara, Y., Nango, M., Kimura, Y. & Kuroki, N. Multifunctional micellar catalysis as a model of enzyme action. J. Am. Chem. Soc. 105, 1252–1255 (1983).
Bukhryakov, K. V., Almahdali, S. & Rodionov, V. O. Amplification of chirality through self-replication of micellar aggregates in water. Langmuir 31, 2931–2935 (2015).
Kunishima, M., Kikuchi, K., Kawai, Y. & Hioki, K. Substrate-selective dehydrocondensation at the interface of micelles and emulsions of common surfactants. Angew. Chem. Int. Ed. 51, 2080–2083 (2012).
Kellermann, M. et al. The first account of a structurally persistent micelle. Angew. Chem. Int. Ed. 43, 2959–2962 (2004).
Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).
Ortega-Arroyo, J., Bissette, A. J., Kukura, P. & Fletcher, S. P. Visualization of the spontaneous emergence of a complex, dynamic, and autocatalytic system. Proc. Natl Acad. Sci. USA 113, 11122–11126 (2016).
Post, E. A. & Fletcher, S. P. Controlling the kinetics of self-reproducing micelles by catalyst compartmentalization in a biphasic system. J. Org. Chem. 84, 2741–2755 (2019).
Lebedeva, M. A., Palmieri, E., Kukura, P. & Fletcher, S. P. Emergence and rearrangement of dynamic supramolecular aggregates visualized by interferometric scattering microscopy. ACS Nano 14, 11160–11168 (2020).
Sarkar, S., Dagar, S., Verma, A. & Rajamani, S. Compositional heterogeneity confers selective advantage to model protocellular membranes during the origins of cellular life. Sci. Rep. 10, 4483 (2020).
Colomer, I., Borissov, A. & Fletcher, S. P. Selection from a pool of self-assembling lipid replicators. Nat. Commun. 11, 176 (2020).
Post, E. A. & Fletcher, S. P. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chem. Sci. 11, 9434–9442 (2020).
Liu, L. et al. Enzyme-free synthesis of natural phospholipids in water. Nat. Chem. 12, 1029–1034 (2020).
Lojewska, Z. & Loew, L.M. Insertion of amphiphilic molecules into membranes is catalyzed by a high molecular weight non-ionic surfactant. Biochim. Biophys. Acta 899, 104–112 (1987).
Budin, I., Prywes, N., Zhang, N. & Szostak, J. W. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys. J. 107, 1582–1590 (2014).
Wamberg, M. C. et al. Synthesis of lipophilic guanine N-9 derivatives: membrane anchoring of nucleobases tailored to fatty acid vesicles. Bioconjugate Chem. 28, 1893–1905 (2017).
Bell, T. N., Feng, K., Calvin, G., Van Winkle, D. H. & Lenhert, S. Organic composomes as supramolecular aptamers. ACS Omega 5, 27393–27400 (2020).
Okamoto, Y., Kishi, Y., Ishigami, T., Suga, K. & Umakoshi, H. Chiral selective adsorption of ibuprofen on a liposome membrane. J. Phys. Chem. B 120, 2790–2795 (2016).
Pereira de Souza, T. et al. New insights into the growth and transformation of vesicles: a free-flow electrophoresis study. J. Phys. Chem. B 119, 12212–12223 (2015).
Toparlak, Ö. D., Wang, A. & Mansy, S. Population-level membrane diversity triggers growth and division of protocells. JACS Au 1, 560–568 (2020).
Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. 46, 2543–2554 (2017).
Gromski, P. S., Henson, A. B., Granda, J. M. & Cronin, L. How to explore chemical space using algorithms and automation. Nat. Rev. Chem. 3, 119–128 (2019).
Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).
Krishnamurthy, R. Giving rise to life: transition from prebiotic chemistry to protobiology. Acc. Chem. Res. 50, 455–459 (2017).
Kahana, A. & Lancet, D. Protobiotic systems chemistry analyzed by molecular dynamics. Life 9, 38 (2019).
Markovitch, O. & Lancet, D. Multispecies population dynamics of prebiotic compositional assemblies. J. Theor. Biol. 357, 26–34 (2014).
Shenhav, B., Bar-Even, A., Kafri, R. & Lancet, D. Polymer GARD: computer simulation of covalent bond formation in reproducing molecular assemblies. Orig. Life Evol. Biosph. 35, 111–133 (2005).
Cavalier-Smith, T. Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J. Mol. Evol. 53, 555–595 (2001).
Cavalier-Smith, T. in Organelles, Genomes and Eukaryote Phylogeny: An Evolutionary Synthesis in the Age of Genomics (eds Hirt, R. P. & Horner, D. S.) 335–351 (CRC, 2004).
Blobel, G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500 (1980).
Loskot, P., Atitey, K. & Mihaylova, L. Comprehensive review of models and methods for inferences in bio-chemical reaction networks. Front. Genet. 10, 549 (2019).
Andersen, M., Panosetti, C. & Reuter, K. A practical guide to surface kinetic Monte Carlo simulations. Front. Chem. 7, 202 (2019).
Hordijk, W. Evolution of autocatalytic sets in computational models of chemical reaction networks. Orig. Life Evol. Biosph. 46, 233–245 (2016).
Segrè, D., Shenhav, B., Kafri, R. & Lancet, D. The molecular roots of compositional inheritance. J. Theor. Biol. 213, 481–491 (2001).
Sharov, A. A. Coenzyme world model of the origin of life. Biosystems 144, 8–17 (2016).
Segrè, D. & Lancet, D. Composing life. EMBO Rep. 1, 217–222 (2000).
Ravoni, A. Long-term behaviours of autocatalytic sets. J. Theor. Biol. 529, 110860 (2021).
Wong, A. S. Y. & Huck, W. T. S. Grip on complexity in chemical reaction networks. Beilstein J. Org. Chem. 13, 1486–1497 (2017).
Blokhuis, A., Lacoste, D. & Nghe, P. Universal motifs and the diversity of autocatalytic systems. Proc. Natl Acad. Sci. USA 117, 25230–25236 (2020).
Kafri, M., Metzl-Raz, E., Jonas, F. & Barkai, N. Rethinking cell growth models. FEMS Yeast Res. 16, fow081 (2016).
Opaliński, Ł., Veenhuis, M. & Van der Klei, I. J. Peroxisomes: membrane events accompanying peroxisome proliferation. Int. J. Biochem. Cell Biol. 43, 847–851 (2011).
Liu, Y. On the definition of a self-sustaining chemical reaction system and its role in heredity. Biol. Direct 15, 15 (2020).
Vasas, V., Fernando, C., Santos, M., Kauffman, S. & Szathmáry, E. Evolution before genes. Biol. Direct 7, 1 (2012).
Inger, A., Solomon, A., Shenhav, B., Olender, T. & Lancet, D. Mutations and lethality in simulated prebiotic networks. J. Mol. Evol. 69, 568–578 (2009).
Gross, R., Fouxon, I., Lancet, D. & Markovitch, O. Quasispecies in population of compositional assemblies. BMC Evol. Biol. 14, 265 (2014).
Eigen, M., McCaskill, J. & Schuster, P. Molecular quasi-species. J. Phys. Chem. 92, 6881–6891 (1988).
Solà, J., Jimeno, C. & Alfonso, I. Exploiting complexity to implement function in chemical systems. Chem. Commun. 56, 13273–13286 (2020).
Bonfio, C., Russell, D. A., Green, N., Mariani, A. & Sutherland, J. Activation chemistry drives the emergence of functionalized protocells. Chem. Sci. 11, 10688–10697 (2020).
Joshi, M. P., Sawant, A. A. & Rajamani, S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid–amino acid mixture under wet–dry cycles. Chem. Sci. 12, 2970–2978 (2021).
Böhler, C., Hill, A. R. & Orgel, L. E. Catalysis of the oligomerization of O-phospho-serine, aspartic acid, or glutamic acid by cationic micelles. Orig. Life Evol. Biosph. 26, 1–5 (1996).
Gabriel, C. M., Keener, M., Gallou, F. & Lipshutz, B. H. Amide and peptide bond formation in water at room temperature. Org. Lett. 17, 3968–3971 (2015).
Kunieda, N., Fuei, N., Okamoto, K., Suzuki, T. & Kinoshita, M. Liquid chromatographic assay of the products from the condensation reaction of α-amino thioacid S-dodecyl ester hydrobromides or hydrochlorides in water. Makromol. Chem. Rapid Commun. 3, 865–869 (1982).
Jin, S. et al. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nat. Commun. 11, 2793 (2020).
Raine, D. & Norris, V. Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J. Theor. Biol. 246, 176–185 (2007).
Frenkel-Pinter, M. et al. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl Acad. Sci. USA 116, 16338–16346 (2019).
Hassenkam, T., Damer, B., Mednick, G. & Deamer, D. AFM images of viroid-sized rings that self-assemble from mononucleotides through wet–dry cycling: implications for the origin of life. Life 10, 321 (2020).
Ross, D. S. & Deamer, D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6, 28 (2016).
Müller, U. F. & Bartel, D. P. Improved polymerase ribozyme efficiency on hydrophobic assemblies. RNA 14, 552–562 (2008).
Gabdrakhmanov, D. et al. Reactivity of phosphorus esters in supramolecular systems based on surfactants containing an uracil residue and polyethylenimine. Russ. J. Org. Chem. 50, 500–505 (2014).
Cuomo, F. et al. Molecular interactions mediated by nucleo-base functionalized lipids. J. Surf. Sci. Technol. 31, 59–68 (2015).
Berti, D., Barbaro, P., Bucci, I. & Baglioni, P. Molecular recognition through H-bonding in micelles formed by dioctylphosphatidyl nucleosides. J. Phys. Chem. B 103, 4916–4922 (1999).
Sproul, G. Abiogenic syntheses of lipoamino acids and lipopeptides and their prebiotic significance. Orig. Life Evol. Biosph. 45, 427–437 (2015).
Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707–4765 (2020).
Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).
Liu, Z. et al. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat. Chem. 12, 1023–1028 (2020).
Piast, R. W., Garstka, M., Misicka, A. & Wieczorek, R. M. Small cyclic peptide for pyrophosphate dependent ligation in prebiotic environments. Life 10, 103 (2020).
Fattal, D. R., Andelman, D. & Ben-Shaul, A. The vesicle-micelle transition in mixed lipid-surfactant systems: a molecular model. Langmuir 11, 1154–1161 (1995).
Conde-Frieboes, K. & Blöchliger, E. Synthesis of lipids on the micelle/water interface using inorganic phosphate and an alkene oxide. Biosystems 61, 109–114 (2001).
Mizuhashi, T., Asakawa, T. & Ohta, A. Micelle–vesicle transition by cleavage of disulfide spacer chain for gemini surfactant in didodecyldimethylammonium chloride aqueous solutions. J. Oleo Sci. 64, 963–969 (2015).
Albertsen, A. N., Maurer, S., Nielsen, K. & Monnard, P.-A. Transmission of photo-catalytic function in a self-replicating chemical system: in situ amphiphile production over two protocell generations. Chem. Commun. 50, 8989–8992 (2014).
Chen, I. A. & Szostak, J. W. A kinetic study of the growth of fatty acid vesicles. Biophys. J. 87, 988–998 (2004).
Budin, I. & Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl Acad. Sci. USA 108, 5249–5254 (2011).
Jin, L., Kamat, N. P., Jena, S. & Szostak, J. W. Fatty acid/phospholipid blended membranes: a potential intermediate state in protocellular evolution. Small 14, 1704077 (2018).
Nowak, M. A. & Ohtsuki, H. Prevolutionary dynamics and the origin of evolution. Proc. Natl Acad. Sci. USA 105, 14924–14927 (2008).
Clarke, B. L. & Jeffries, C. Chemical reaction networks with finite attractor regions. J. Chem. Phys. 82, 3107–3117 (1985).
Harrison, A., Zeevi, M. P., Vasey, C. L., Nguyen, M. D. & Tang, C. Accelerated reaction rates within self-assembled polymer nanoreactors with tunable hydrophobic microenvironments. Polymers 12, 1774 (2020).
Kunitake, T., Okahata, Y. & Sakamoto, T. Multifunctional hydrolytic catalyses. 8. Remarkable acceleration of the hydrolysis of p-nitrophenyl acetate by micellar bifunctional catalysts. J. Am. Chem. Soc. 98, 7799–7806 (1976).
Acknowledgements
This work was supported by the Minerva Foundation through the grant “The emergence and evolution of early life under extreme planetary conditions” and by an EU Horizon 2020 (DC-ren) grant (Drug combinations for rewriting trajectories of renal pathologies in type II diabetes). The authors thank D. Segrè, D. Tawfik and A. Futerman for critically reading the manuscript.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Accretion
-
Gradual growth in size by external addition.
- Breed true
-
Producing offspring of a similar breed or variety.
- Catalytic closure
-
A state of a molecular network where the formation of each molecule in the set is catalysed by at least one set member.
- Fission
-
A splitting or breaking up into parts.
- Gemini lipid
-
A class of lipids containing two head groups and two aliphatic tails linked by a spacer.
- Palisade layer
-
The border region between the polar head groups and the hydrophobic core.
- Parsimonious
-
Related to the simplest explanation of a phenomenon.
- Prebiotic
-
Occurring or existing before the emergence of life.
- Primordial
-
Ancient, existing from the beginning.
- Quasispecies
-
A group of highly similar molecules or organisms.
- Reduced dimensionality
-
A phenomenon in which reactions are speeded up by reactants adsorbing to a 2D surface.
- Stern layer
-
The immediate proximity of the micellar surface.
- Terrestrial infall
-
Incoming extraterrestrial material that falls on Earth.
Rights and permissions
About this article
Cite this article
Kahana, A., Lancet, D. Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nat Rev Chem 5, 870–878 (2021). https://doi.org/10.1038/s41570-021-00329-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-021-00329-7