Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single-molecule blueprint for synthesis

Abstract

Chemical reactions that occur at nanostructured electrodes have garnered widespread interest because of their potential applications in fields including nanotechnology, green chemistry and fundamental physical organic chemistry. Much of our present understanding of these reactions comes from probes that interrogate ensembles of molecules undergoing various stages of the transformation concurrently. Exquisite control over single-molecule reactivity lets us construct new molecules and further our understanding of nanoscale chemical phenomena. We can study single molecules using instruments such as the scanning tunnelling microscope, which can additionally be part of a mechanically controlled break junction. These are unique tools that can offer a high level of detail. They probe the electronic conductance of individual molecules and catalyse chemical reactions by establishing environments with reactive metal sites on nanoscale electrodes. This Review describes how chemical reactions involving bond cleavage and formation can be triggered at nanoscale electrodes and studied one molecule at a time.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A scanning tunnelling microscope can drive diverse chemical reactions.
Fig. 2: Visualizing reaction intermediates in a scanning tunnelling microscope.
Fig. 3: Triggering reactions in junctions.
Fig. 4: In situ formation of covalent Au contacts using different leaving groups.
Fig. 5: Electrochemically gated switches in a scanning tunnelling microscope break junction.
Fig. 6: Electric-field-driven reactions in a scanning tunnelling microscope.
Fig. 7: Inducing reactivity one molecule at a time.

References

  1. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Article  Google Scholar 

  3. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp3)–H bonds. Angew. Chem. Int. Ed. 58, 6385–6390 (2019).

    CAS  Article  Google Scholar 

  4. Zhang, W., Carpenter, K. L. & Lin, S. Electrochemistry broadens the scope of flavin photocatalysis: photoelectrocatalytic oxidation of unactivated alcohols. Angew. Chem. Int. Ed. 59, 409–417 (2020).

    CAS  Article  Google Scholar 

  5. Kim, H., Kim, H., Lambert, T. H. & Lin, S. Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potentials. J. Am. Chem. Soc. 142, 2087–2092 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Lee, H. J. & Ho, W. Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1723 (1999).

    CAS  PubMed  Article  Google Scholar 

  7. Hla, S., Bartels, L., Meyer, G. & Rieder, K. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    CAS  PubMed  Article  Google Scholar 

  8. Minato, T. et al. Tunneling desorption of single hydrogen on the surface of titanium dioxide. ACS Nano 9, 6837–6842 (2015).

    CAS  PubMed  Article  Google Scholar 

  9. Borca, B. et al. Electric-field-driven direct desulfurization. ACS Nano 11, 4703–4709 (2017).

    CAS  PubMed  Article  Google Scholar 

  10. Ohmann, R., Vitali, L. & Kern, K. Actuated transitory metal–ligand bond as tunable electromechanical switch. Nano Lett. 10, 2995–3000 (2010).

    CAS  PubMed  Article  Google Scholar 

  11. Mohn, F. et al. Reversible bond formation in a gold-atom–organic-molecule complex as a molecular switch. Phys. Rev. Lett. 105, 266102 (2010).

    PubMed  Article  CAS  Google Scholar 

  12. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    CAS  PubMed  Article  Google Scholar 

  13. Simic-Milosevic, V., Mehlhorn, M., Rieder, K. H., Meyer, J. & Morgenstern, K. Electron induced ortho-meta isomerization of single molecules. Phys. Rev. Lett. 98, 116102 (2007).

    CAS  PubMed  Article  Google Scholar 

  14. Maksymovych, P., Sorescu, D. C., Jordan, K. D. & Yates, J. T. Collective reactivity of molecular chains self-assembled on a surface. Science 322, 1664–1667 (2008).

    CAS  PubMed  Article  Google Scholar 

  15. Neél, N., Lattelais, M., Bocquet, M. L. & Kröger, J. Depopulation of single-phthalocyanine molecular orbitals upon pyrrolic-hydrogen abstraction on graphene. ACS Nano 10, 2010–2016 (2016).

    PubMed  Article  CAS  Google Scholar 

  16. Shen, T. C. et al. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590–1592 (1995).

    CAS  PubMed  Article  Google Scholar 

  17. Serrate, D., Moro-Lagares, M., Piantek, M., Pascual, J. I. & Ibarra, M. R. Enhanced hydrogen dissociation by individual Co atoms supported on Ag(111). J. Phys. Chem. C 118, 5827–5832 (2014).

    CAS  Article  Google Scholar 

  18. Qiu, X. H., Nazin, G. V. & Ho, W. Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 93, 196806 (2004).

    CAS  PubMed  Article  Google Scholar 

  19. Alemani, M. et al. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128, 14446–14447 (2006).

    CAS  PubMed  Article  Google Scholar 

  20. Lastapis, M. et al. Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308, 1000–1003 (2005).

    CAS  PubMed  Article  Google Scholar 

  21. Iancu, V., Deshpande, A. & Hla, S. W. Manipulating Kondo temperature via single molecule switching. Nano Lett. 6, 820–823 (2006).

    CAS  PubMed  Article  Google Scholar 

  22. Henningsen, N. et al. Inducing the rotation of a single phenyl ring with tunneling electrons. J. Phys. Chem. C 111, 14843–14848 (2007).

    CAS  Article  Google Scholar 

  23. Simic-Milosevic, V. & Morgenstern, K. Bending a bond within an individual adsorbed molecule. J. Am. Chem. Soc. 131, 416–417 (2009).

    CAS  PubMed  Article  Google Scholar 

  24. Yongfeng, W., Kröger, J., Berndt, R. & Hofer, W. A. Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule. J. Am. Chem. Soc. 131, 3639–3643 (2009).

    Article  CAS  Google Scholar 

  25. Grill, L., Rieder, K. H. & Moresco, F. Exploring the interatomic forces between tip and single molecules during STM manipulation. Nano Lett. 6, 2685–2689 (2006).

    CAS  PubMed  Article  Google Scholar 

  26. Grill, L. et al. Rolling a single molecular wheel at the atomic scale. Nat. Nanotechnol. 2, 95–98 (2007).

    CAS  PubMed  Article  Google Scholar 

  27. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    CAS  PubMed  Article  Google Scholar 

  28. Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283, 1683–1688 (1999).

    CAS  PubMed  Article  Google Scholar 

  29. Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. & Joachim, C. Controlled room-temperature positioning of individual molecules: molecular flexure and motion. Science 271, 181–184 (1996).

    CAS  Article  Google Scholar 

  30. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    CAS  Article  Google Scholar 

  31. Dujardin, G., Walkup, R. E. & Avouris, P. Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope. Science 255, 1232–1235 (1992).

    CAS  PubMed  Article  Google Scholar 

  32. Meyer, G., Bartels, L., Zöphel, S., Henze, E. & Rieder, K. H. Controlled atom by atom restructuring of a metal surface with the scanning tunneling microscope. Phys. Rev. Lett. 78, 1512–1515 (1997).

    CAS  Article  Google Scholar 

  33. Bartels, L., Meyer, G. & Rieder, K. H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997).

    CAS  Article  Google Scholar 

  34. Bartels, L., Meyer, G. & Rieder, K. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

    CAS  Article  Google Scholar 

  35. Stipe, B. C. et al. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997).

    CAS  Article  Google Scholar 

  36. Lauhon, L. J. & Ho, W. Single-molecule chemistry and vibrational spectroscopy: pyridine and benzene on Cu(001). J. Phys. Chem. A 104, 2463–2467 (2000).

    CAS  Article  Google Scholar 

  37. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    CAS  PubMed  Article  Google Scholar 

  38. Ullman, F. & Bielecki, J. Ueber synthesen in der biphenylreihe. Ber. Dtsch. Chem. Ges. 34, 2174–2185 (1901).

    Article  Google Scholar 

  39. Mondal, S. Recent advancement of Ullmann-type coupling reactions in the formation of C–C bond. ChemTexts 2, 17 (2016).

    Article  CAS  Google Scholar 

  40. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nat. Lett. 466, 470–473 (2010).

    CAS  Article  Google Scholar 

  41. Mette, G. et al. Controlling an SN2 reaction by electronic and vibrational excitation: tip-induced ether cleavage on Si(001). Angew. Chem. Int. Ed. 58, 3417–3420 (2019).

    CAS  Article  Google Scholar 

  42. Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Albrecht, F. et al. Intramolecular coupling of terminal alkynes by atom manipulation. Angew. Chem. Int. Ed. 59, 22989–22993 (2020).

    CAS  Article  Google Scholar 

  44. Geagea, E. et al. Collective radical oligomerisation induced by an STM tip on a silicon surface. Nanoscale 13, 349–354 (2021).

    CAS  PubMed  Article  Google Scholar 

  45. Kawai, S. et al. Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface. Nat. Commun. 7, 12711 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Clair, S. & De Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Piskun, I. et al. Covalent C–N bond formation through a surface catalyzed thermal cyclodehydrogenation. J. Am. Chem. Soc. 142, 3696–3700 (2020).

    CAS  PubMed  Article  Google Scholar 

  48. Song, S. et al. Real-space imaging of a single-molecule monoradical reaction. J. Am. Chem. Soc. 142, 13550–13557 (2020).

    CAS  PubMed  Article  Google Scholar 

  49. Ratera, I. & Veciana, J. Playing with organic radicals as building blocks for functional molecular materials. Chem. Soc. Rev. 41, 303–349 (2012).

    CAS  PubMed  Article  Google Scholar 

  50. Zhou, X. et al. Steering surface reaction dynamics with a self-assembly strategy: Ullmann coupling on metal surfaces. Angew. Chem. Int. Ed. 56, 12852–12856 (2017).

    CAS  Article  Google Scholar 

  51. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    CAS  PubMed  Article  Google Scholar 

  52. Cheng, Z. et al. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353–357 (2011).

    CAS  PubMed  Article  Google Scholar 

  53. Kiguchi, M. et al. Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008).

    CAS  PubMed  Article  Google Scholar 

  54. Kaneko, S., Nakazumi, T. & Kiguchi, M. Fabrication of a well-defined single benzene molecule junction using Ag electrodes. J. Phys. Chem. Lett. 1, 3520–3523 (2010).

    CAS  Article  Google Scholar 

  55. Schneebeli, S. T. et al. Single-molecule conductance through multiple π–π-stacked benzene rings determined with direct electrode-to-benzene ring connections. J. Am. Chem. Soc. 133, 2136–2139 (2011).

    CAS  PubMed  Article  Google Scholar 

  56. Martin, C. A. et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    CAS  PubMed  Article  Google Scholar 

  57. Bulten, E. J. & Budding, H. A. The synthesis of small-ring monostannacycloalkanes. J. Organomet. Chem. 110, 167–174 (1976).

    CAS  Article  Google Scholar 

  58. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  PubMed  Article  Google Scholar 

  59. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    CAS  PubMed  Article  Google Scholar 

  60. Hybertsen, M. S. et al. Amine-linked single-molecule circuits: systematic trends across molecular. J. Phys. Condens. Matter 20, 374115 (2008).

    PubMed  Article  CAS  Google Scholar 

  61. Olavarria-Contreras, I. J. et al. C–Au covalently bonded molecular junctions using nonprotected alkynyl anchoring groups. J. Am. Chem. Soc. 138, 8465–8469 (2016).

    CAS  PubMed  Article  Google Scholar 

  62. Hong, W. et al. Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au–C σ-bonds. J. Am. Chem. Soc. 134, 19425–19431 (2012).

    CAS  PubMed  Article  Google Scholar 

  63. Bennett, M. A., Bhargava, S. K., Hockless, D. C. R., Welling, L. L. & Willis, A. C. Dinuclear cycloaurated complexes containing bridging (2-diphenylphosphino)phenylphosphine and (2-diethylphosphino)phenylphosphine, C6H4PR2 (R=Ph, Et). Carbon–carbon bond formation by reductive elimination at a gold(ii)-gold(ii) center. J. Am. Chem. Soc. 118, 10469–10478 (1996).

    CAS  Article  Google Scholar 

  64. Chen, W. & Widawsky, J. R. Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes. J. Am. Chem. Soc. 133, 17160–17163 (2011).

    CAS  PubMed  Article  Google Scholar 

  65. Hines, T. et al. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups. J. Am. Chem. Soc. 135, 3319–3322 (2013).

    CAS  PubMed  Article  Google Scholar 

  66. Peiris, C. R. et al. Metal–single-molecule–semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes. J. Am. Chem. Soc. 141, 14788–14797 (2019).

    CAS  PubMed  Article  Google Scholar 

  67. Pla-Vilanova, P. et al. The spontaneous formation of single-molecule junctions via terminal alkynes. Nanotechnology 26, 381001 (2015).

    PubMed  Article  CAS  Google Scholar 

  68. Starr, R. L. et al. Gold–carbon contacts from oxidative addition of aryl iodides. J. Am. Chem. Soc. 142, 7128–7133 (2020).

    CAS  PubMed  Article  Google Scholar 

  69. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–91 (2000).

    CAS  PubMed  Article  Google Scholar 

  70. Tulevski, G. S., Myers, M. B., Hybertsen, M. S., Steigerwald, M. L. & Nuckolls, C. Formation of catalytic metal-molecule contacts. Science 309, 591–594 (2005).

    CAS  PubMed  Article  Google Scholar 

  71. Ren, F., Feldman, A. K., Carnes, M., Steigerwald, M. & Nuckolls, C. Polymer growth by functionalized ruthenium nanoparticles. Macromolecules 40, 8151–8155 (2007).

    CAS  Article  Google Scholar 

  72. Zhukhovitskiy, A. V., MacLeod, M. J. & Johnson, J. A. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).

    CAS  PubMed  Article  Google Scholar 

  73. Zhukhovitskiy, A. V., Mavros, M. G., Van Voorhis, T. & Johnson, J. A. Addressable carbene anchors for gold surfaces. J. Am. Chem. Soc. 135, 7418–7421 (2013).

    CAS  PubMed  Article  Google Scholar 

  74. Crudden, C. M. et al. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat. Commun. 7, 12654 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Ott, L. S., Cline, M. L., Deetlefs, M., Seddon, K. R. & Finke, R. G. Nanoclusters in ionic liquids: Evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by 2H NMR. J. Am. Chem. Soc. 127, 5758–5759 (2005).

    CAS  PubMed  Article  Google Scholar 

  76. Hurst, E. C., Wilson, K., Fairlamb, I. J. S. & Chechik, V. N-Heterocyclic carbene coated metal nanoparticles. New J. Chem. 33, 1837–1840 (2009).

    CAS  Article  Google Scholar 

  77. Weidner, T. et al. NHC-based self-assembled monolayers on solid gold substrates. Aust. J. Chem. 64, 1177–1179 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Crudden, C. M. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6, 409–414 (2014).

    CAS  PubMed  Article  Google Scholar 

  79. Wang, G. et al. Ballbot-type motion of N-heterocyclic carbenes on gold surfaces. Nat. Chem. 9, 152–156 (2017).

    CAS  PubMed  Article  Google Scholar 

  80. Doud, E. A. et al. In situ formation of N-heterocyclic carbene-bound single-molecule junctions. J. Am. Chem. Soc. 140, 8944–8949 (2018).

    CAS  PubMed  Article  Google Scholar 

  81. Gonell, S., Poyatos, M. & Peris, E. Triphenylene-based tris(N-heterocyclic carbene) ligand: unexpected catalytic benefits. Angew. Chem. Int. Ed. 52, 7009–7013 (2013).

    CAS  Article  Google Scholar 

  82. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    CAS  PubMed  Article  Google Scholar 

  83. Lovat, G. et al. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 12, 1050–1054 (2017).

    CAS  PubMed  Article  Google Scholar 

  84. Baghernejad, M. et al. Electrochemical control of single-molecule conductance by Fermi- level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).

    CAS  PubMed  Article  Google Scholar 

  85. Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    CAS  Article  Google Scholar 

  86. Brooke, R. J. et al. Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface. Nano Lett. 15, 275–280 (2015).

    CAS  PubMed  Article  Google Scholar 

  87. Mattei, M. et al. Tip-enhanced Raman voltammetry: coverage dependence and quantitative modeling. Nano Lett. 17, 590–596 (2017).

    CAS  PubMed  Article  Google Scholar 

  88. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    PubMed  Article  CAS  Google Scholar 

  89. Dulić, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    PubMed  Article  CAS  Google Scholar 

  90. Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1446 (2016).

    CAS  PubMed  Article  Google Scholar 

  91. Broman, S. L. et al. Dihydroazulene photoswitch operating in sequential tunneling regime: synthesis and single-molecule junction studies. Adv. Funct. Mater. 22, 4249–4258 (2012).

    CAS  Article  Google Scholar 

  92. Whalley, A. C., Steigerwald, M. L., Guo, X. & Nuckolls, C. Reversible switching in molecular electronic devices. J. Am. Chem. Soc. 129, 12590–12591 (2007).

    CAS  PubMed  Article  Google Scholar 

  93. Kronemeijer, A. J. et al. Reversible conductance switching in molecular devices. Adv. Mater. 20, 1467–1473 (2008).

    CAS  Article  Google Scholar 

  94. Uchida, K., Yamanoi, Y., Yonezawa, T. & Nishihara, H. Reversible on/off conductance switching of single diarylethene immobilized on a silicon surface. J. Am. Chem. Soc. 133, 9239–9241 (2011).

    CAS  PubMed  Article  Google Scholar 

  95. Tam, E. S. et al. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 5, 5115–5123 (2011).

    CAS  PubMed  Article  Google Scholar 

  96. Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647 (2012).

    CAS  PubMed  Article  Google Scholar 

  97. Ikeda, M., Tanifuji, N., Yamaguchi, H. & Matsuda, K. Photoswitching of conductance of diarylethene-Au nanoparticle network. Chem. Commun. https://doi.org/10.1039/B617246F (2007).

    Article  Google Scholar 

  98. Li, C. et al. Charge transport in single Au | alkanedithiol | Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318–326 (2008).

    CAS  PubMed  Article  Google Scholar 

  99. Kim, Y. et al. Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011).

    PubMed  Article  CAS  Google Scholar 

  100. Li, L., Lo, W.-Y., Cai, Z., Zhang, N. & Yu, L. Proton-triggered switch based on a molecular transistor with edge-on gate. Chem. Sci. 7, 3137–3141 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Meng, F. et al. Orthogonally modulated molecular transport junctions for resettable electronic logic gates. Nat. Commun. 5, 3023 (2014).

    PubMed  Article  CAS  Google Scholar 

  102. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  PubMed  Article  Google Scholar 

  103. Xu, B. Q., Li, X. L., Xiao, X. Y., Sakaguchi, H. & Tao, N. J. Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett. 5, 1491–1495 (2005).

    CAS  PubMed  Article  Google Scholar 

  104. Díez-Pérez, I. et al. Ambipolar transport in an electrochemically gated single-molecule field-effect transistor. ACS Nano 6, 7044–7052 (2012).

    PubMed  Article  CAS  Google Scholar 

  105. He, J., Fu, Q., Lindsay, S., Ciszek, J. W. & Tour, J. M. Electrochemical origin of voltage-controlled molecular conductance switching. J. Am. Chem. Soc. 128, 14828–14835 (2006).

    CAS  PubMed  Article  Google Scholar 

  106. Li, Z., Liu, Y., Mertens, S. F. L., Pobelov, I. V. & Wandlowski, T. From redox gating to quantized charging. J. Am. Chem. Soc. 132, 8187–8193 (2010).

    CAS  PubMed  Article  Google Scholar 

  107. Janin, M., Ghilane, J. & Lacroix, J.-C. When electron transfer meets electron transport in redox-active molecular nanojunctions. J. Am. Chem. Soc. 135, 2108–2111 (2013).

    CAS  PubMed  Article  Google Scholar 

  108. Yin, X. et al. A reversible single-molecule switch based on activated antiaromaticity. Sci. Adv. 3, eaao2615 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. Su, T. A., Li, H., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015).

    CAS  PubMed  Article  Google Scholar 

  110. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    CAS  PubMed  Article  Google Scholar 

  111. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    CAS  PubMed  Article  Google Scholar 

  112. Miyamachi, T. et al. Robust spin crossover and memristance across a single molecule. Nat. Commun. 3, 938 (2012).

    PubMed  Article  CAS  Google Scholar 

  113. Aragonès, A. C. et al. Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett. 16, 218–226 (2016).

    PubMed  Article  CAS  Google Scholar 

  114. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    CAS  PubMed  Article  Google Scholar 

  115. Cho, W. J., Cho, Y., Min, S. K., Kim, W. Y. & Kim, K. S. Chromium porphyrin arrays as spintronic devices. J. Am. Chem. Soc. 133, 9364–9369 (2011).

    CAS  PubMed  Article  Google Scholar 

  116. Feringa, B. L., Van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2000).

    CAS  PubMed  Article  Google Scholar 

  117. Choudhury, J. & Semwal, S. Emergence of stimuli-controlled switchable bifunctional catalysts. Synlett 29, 141–147 (2018).

    CAS  Article  Google Scholar 

  118. Broichhagen, J., Frank, J. A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

    CAS  PubMed  Article  Google Scholar 

  119. Zhang, N. et al. A single-molecular AND gate operated with two orthogonal switching mechanisms. Adv. Mater. 29, 1701248 (2017).

    Article  CAS  Google Scholar 

  120. Walkey, M. C. et al. Chemically and mechanically controlled single-molecule switches using spiropyrans. ACS Appl. Mater. Interfaces 11, 36886–36894 (2019).

    CAS  PubMed  Article  Google Scholar 

  121. Xu, L., Izgorodina, E. I. & Coote, M. L. Ordered solvents and ionic liquids can be harnessed for electrostatic catalysis. J. Am. Chem. Soc. 142, 12826–12833 (2020).

    CAS  PubMed  Article  Google Scholar 

  122. Rogers, F. J. M., Noble, B. B. & Coote, M. L. Computational optimization of alkoxyamine-based electrochemical methylation. J. Phys. Chem. A 124, 6104–6110 (2020).

    CAS  PubMed  Article  Google Scholar 

  123. Dutta Dubey, K., Stuyver, T., Stuyver, T., Kalita, S. & Shaik, S. Solvent organization and rate regulation of a Menshutkin reaction by oriented external electric fields are revealed by combined MD and QM/MM calculations. J. Am. Chem. Soc. 142, 9955–9965 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Meir, R., Chen, H., Lai, W. & Shaik, S. Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity. ChemPhysChem 11, 301–310 (2010).

    CAS  PubMed  Article  Google Scholar 

  125. Gryn’ova, G., Marshall, D. L., Blanksby, S. J. & Coote, M. L. Switching radical stability by pH-induced orbital conversion. Nat. Chem. 5, 474–481 (2013).

    PubMed  Article  CAS  Google Scholar 

  126. Gryn’ova, G. & Coote, M. L. Origin and scope of long-range stabilizing interactions and associated SOMO–HOMO conversion in distonic radical anions. J. Am. Chem. Soc. 135, 15392–15403 (2013).

    PubMed  Article  CAS  Google Scholar 

  127. Shaik, S., de Visser, S. P. & Kumar, D. External electric field will control the selectivity of enzymatic-like bond activations. J. Am. Chem. Soc. 126, 11746–11749 (2004).

    CAS  PubMed  Article  Google Scholar 

  128. Fried, S. D., Bagchi, S., Boxer & Steven, G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346, 1510–1514 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Welborn, V. V., Pestana, L. R. & Head-Gordon, T. Computational optimization of electric fields for better catalysis design. Nat. Catal. 1, 649–655 (2018).

    Article  Google Scholar 

  130. Che, F. et al. Elucidating the roles of electric fields in catalysis: a perspective. ACS Catal. 8, 5153–5174 (2018).

    CAS  Article  Google Scholar 

  131. Ciampi, S., Darwish, N., Aitken, H. M., Díez-Pérez, I. & Coote, M. L. Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: a rapidly growing experimental tool box. Chem. Soc. Rev. 47, 5146–5164 (2018).

    CAS  PubMed  Article  Google Scholar 

  132. Foroutan-Nejad, C. & Marek, R. Potential energy surface and binding energy in the presence of an external electric field: modulation of anion–π interactions for graphene-based receptors. Phys. Chem. Chem. Phys. 16, 2508–2514 (2014).

    CAS  PubMed  Article  Google Scholar 

  133. Lau, V. M., Pfalzgra, W. C., Markland, T. E. & Kanan, M. W. Electrostatic control of regioselectivity in Au(i)-catalyzed hydroarylation. J. Am. Chem. Soc. 139, 4035–4041 (2017).

    CAS  PubMed  Article  Google Scholar 

  134. Meyers, F., Marder, S. R., Pierce, B. M. & Brédas, J. L. Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation. J. Am. Chem. Soc. 116, 10703–10714 (1994).

    CAS  Article  Google Scholar 

  135. Robertson, J. C., Coote, M. L. & Bissember, A. C. Synthetic applications of light, electricity, mechanical force and flow. Nat. Rev. Chem. 3, 290–304 (2019).

    Article  Google Scholar 

  136. Zang, Y. et al. Directing isomerization reactions of cumulenes with electric field. Nat. Commun. 10, 4482 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. Huang, X. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 5, eaaw3072 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    CAS  PubMed  Article  Google Scholar 

  139. Albrecht, F., Neu, M., Quest, C., Swart, I. & Repp, J. Formation and characterization of a molecule–metal–molecule bridge in real space. J. Am. Chem. Soc. 135, 9200–9203 (2013).

    CAS  PubMed  Article  Google Scholar 

  140. Pavliček, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    PubMed  Article  CAS  Google Scholar 

  141. Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016).

    CAS  PubMed  Article  Google Scholar 

  142. de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1438 (2013).

    PubMed  Article  CAS  Google Scholar 

  143. Pavlicek, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1, 0005 (2017).

    CAS  Article  Google Scholar 

  144. Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).

    CAS  PubMed  Article  Google Scholar 

  145. Zang, Y. et al. Electronically transparent Au–N bonds for molecular junctions. J. Am. Chem. Soc. 139, 14845–14848 (2017).

    CAS  PubMed  Article  Google Scholar 

  146. Harun, M. K., Lyon, S. B. & Marsh, J. Formation and characterisation of thin phenolic amine-functional electropolymers on a mild steel substrate. Prog. Org. Coat. 52, 246–252 (2005).

    CAS  Article  Google Scholar 

  147. Leff, D. V., Brandt, L. & Heath, J. R. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12, 4723–4730 (1996).

    CAS  Article  Google Scholar 

  148. Adenier, A., Chehimi, M. M., Gallardo, I., Pinson, J. & Vilà, N. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir 20, 8243–8253 (2004).

    CAS  PubMed  Article  Google Scholar 

  149. Bélanger, D. & Pinson, J. Electrografting: a powerful method for surface modification. Chem. Soc. Rev. 40, 3995–4048 (2011).

    PubMed  Article  CAS  Google Scholar 

  150. Gallardo, I., Pinson, J. & Vilà, N. Spontaneous attachment of amines to carbon and metallic surfaces. J. Phys. Chem. B 110, 19521–19529 (2006).

    CAS  PubMed  Article  Google Scholar 

  151. Xu, B., Zhou, L., Madix, R. J. & Friend, C. M. Highly selective acylation of dimethylamine mediated by oxygen atoms on metallic gold surfaces. Angew. Chem. Int. Ed. 49, 394–398 (2010).

    CAS  Article  Google Scholar 

  152. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  PubMed  Article  Google Scholar 

  153. Mishchenko, A. et al. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 10, 156–163 (2010).

    CAS  PubMed  Article  Google Scholar 

  154. Zang, Y. et al. In situ coupling of single molecules driven by gold-catalyzed electrooxidation. Angew. Chem. Int. Ed. 58, 16008–16012 (2019).

    CAS  Article  Google Scholar 

  155. Funes-Ardoiz, I. & Maseras, F. Oxidative coupling mechanisms: current state of understanding. ACS Catal. 8, 1161–1172 (2018).

    CAS  Article  Google Scholar 

  156. Liu, C., Zhang, H., Shi, W. & Lei, A. Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. Chem. Rev. 111, 1780–1824 (2011).

    CAS  PubMed  Article  Google Scholar 

  157. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2016).

    PubMed  Article  CAS  Google Scholar 

  159. She, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  160. Jonsson, M., Lind, J., Eriksen, T. E. & Merényi, G. Redox and acidity properties of 4-substituted aniline radical cations in water. J. Am. Chem. Soc. 116, 1423–1427 (1994).

    CAS  Article  Google Scholar 

  161. Pavitt, A. S., Bylaska, E. J. & Tratnyek, P. G. Oxidation potentials of phenols and anilines: correlation analysis of electrochemical and theoretical values. Environ. Sci. Process. Impacts 19, 339–349 (2017).

    CAS  PubMed  Article  Google Scholar 

  162. Merino, E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev. 40, 3835–3853 (2011).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the NSF CHE-2023568 CCI Phase I: Center for Chemistry with Electric Fields. L.V. and X.R. acknowledge support from the NSF through the award CHE-1807654.

Author information

Authors and Affiliations

Authors

Contributions

I.S. and R.L.S. contributed equally to this work, proposed the conceptual framework and wrote the first draft. All authors contributed to the discussion and writing of the Review.

Corresponding authors

Correspondence to Xavier Roy or Latha Venkataraman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stone, I., Starr, R.L., Zang, Y. et al. A single-molecule blueprint for synthesis. Nat Rev Chem 5, 695–710 (2021). https://doi.org/10.1038/s41570-021-00316-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00316-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing